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Abstract—In this paper, we propose a randomization
based technique to verify whether a manufactured chip
conforms to its design or is infected by any trojan circuit. A
trojan circuit can be inserted into the design or fabrication
mask by a malicious manufacturer such that it monitors
for a specific rare trigger condition, and then it produces a
payload error in the circuit which alters the functionality
of the circuit often causing a catastrophic crash of the
system where the chip was being used. Since trojans are
activated by rare input patterns, they are stealthy by nature
and are difficult to detect through conventional techniques
of functional testing. In this paper, we propose a novel
randomized approach to probabilistically compare the func-
tionality of the implemented circuit with the design of the
circuit. Using hypothesis testing, we provide quantitative
guarantees when our algorithm reports that there is no
trojan in the implemented circuit. This allows us to trade
runtime for accuracy. The technique is sound, that is, it
reports presence of a trojan only if the implemented circuit is
actually infected. If our algorithm finds that the implemented
circuit is infected with a trojan, it also reports a fingerprint
input pattern to distinguish the implemented circuit from
the design. We illustrate the effectiveness of our technique
on a set of infected and benign combinational circuits.

I. Introduction

The issue of trust is gaining significance in the hard-
ware industry. Motivations like higher efficiency and
better quality have led to increased use of commercially
manufactured micro-chips in high integrity systems like
military facilities, communications and aerospace sys-
tems. Procuring chips from commercial suppliers spread
across the globe allows continuous upgrading to rapidly
changing state-of-the-art in chip design and fabrication.
It has become commercially infeasible to secure the entire
IC supply chain [1]. This has increased the concern about
security of micro-chips from insertion of trojan circuits
during manufacturing [2], [3]. Hence, it is pertinent to
develop techniques which can be used to validate a
micro-chip manufactured under untrusted environment.

A trojan circuit can be implemented by adding extra
logic to the chip being fabricated, which could be done
either during manufacturing or during the chip’s design
phase. A saboteur could modify one of the masks used
to imprint the circuit layout onto the semiconductor
wafer or the chip design could be mutated to add the
extra logic. Common examples of such trojan circuits are
kill switches or reprogramming instructions to FPGA-
based architecture [4]. Since the extra logic added to

the circuit is often 3-4 orders of magnitude smaller
compared to the circuit itself [5], there is little structural
difference between the circuit and its infected version.
Also, the trojan circuits are activated through a rare
trigger event. Thus, the functional difference between
a circuit and its infected version would manifest itself
only when a very particular input pattern is applied to
a chip. These characteristics of the trojan circuits make it
extremely stealthy. Thus, the trojans are very difficult to
detect using any conventional testing technique which
are developed to find physical and logical bugs in im-
plementation [5], [6], [7].

Trojans can be intelligently built to deter any detection
through vigilant approaches based on LFSR and Logis
BIST [8], [9]. Destructive testing of a few chips does
not guarantee that the other chips are not infected.
A saboteur might deliberately insert trojans only in a
fraction of all the chips manufactured in a batch to avoid
being detected by any technique based on sampling and
destructive testing. Further, the trojans remain passive
for most of the time unless triggered and hence, are
not usually observable through circuit characteristics like
power, temperature and electro-magnetic profiles [6].

In this paper, we focus on detecting trojans in com-
binational circuits. Our technique can be applied to
sequential circuits by unfolding it to a finite number of
steps using bounded model checking [10]. Our technique
first uses randomization arguments to construct unique
probabilistic signature of a circuit. We find a probabil-
ity distribution on the inputs such that the probability
distribution of output is unique for every functionally
distinct circuit. Then, we propose a technique based on
hypothesis testing to statistically infer the presence of
a trojan in circuit under test (CUT). The output of our
technique is either an input pattern which distinguishes
the functionality of the CUT from its design or a quan-
titative confidence level that the CUT has no trojans.
The confidence level can be improved by running the
analysis technique for a longer time.

The rest of the paper is organized as follows. In
Section II, we discuss different techniques proposed in
literature for detection of trojan circuits. We describe our
approach to generate unique probabilistic signatures for
functionally distinct circuits in Section III. In this section,
we present theoretical results and develop instrument
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techniques to propose a trojan detection algorithm in the
following section. In Section IV, we present the trojan
detection algorithm and show how the algorithm can be
made scalable by using signature hash which map func-
tionally close circuit to the same signature. We show how
hypothesis testing based statistical inference can be used
to probabilistically check the presence of trojan circuits.
In Section V, we present the results of experiments on a
set of combinational circuits. We conclude by discussing
ongoing work to extend this technique to test presence
of trojans in sequential circuits and in software.

II. RelatedWork

The problem of trojan detection has been discussed
only recently in literature. Two different approaches have
been proposed to address this problem.

The first approach is invasive testing which is a de-
structive testing technique where each layer of a chip
is inspected through X-ray tomography. This process
involves demasking, delayering and layer-by-layer com-
parison of X-ray scans with the original mask. Apart
from being very expensive, this approach depends on
randomly sampling the chips and destructively testing
these chips. There is no guarantee that the chips which
were not tested and would be put in use do not have any
trojan in them even if the circuits sampled for testing are
found to be trojan free.

The second approach is based on side channel analy-
sis, that is, using side channels like power to compare the
corresponding characteristics of CUT and the original
circuit. Agrawal et al [5] use power signals as side
channel and detect presence of trojans by filtering the
power signature of the trojan circuit from the noise.
Their work has two key weaknesses. Firstly, they require
that the power signature difference between the infected
and benign circuit must exceed the process variation to
be statistically significant and thus, to be filtered from
noise. In modern nano-scale technology based ICs, the
amount of parameter variation can be much more than
7.5%. Also, the trojan circuit area can be as low as 0.01%
in which case the power signature difference would be
too small [7]. Secondly, they use completely random
inputs which may not be effective in attaining significant
difference between the infected and benign circuit. Banga
et al [6] build on the work in [5] and propose some
heuristics to find set of inputs which would maximize
the discrepancy in the power signatures and hence, help
in detection of trojans. Their approach relies on reducing
the power consumption of the CUT by switching it
across states which are close in Hamming distance. This
allows them to identify the high activity regions which
are potential sites of trojan infections in the circuit. Their
technique also can not detect trojans which hide their
activity in the statistical noise.

The approach presented in this paper is the first
functional testing based approach proposed for trojan

detection to best of our knowledge. It is orthogonal
to the techniques discussed above and can be used
together with the above techniques to complement them
in detection of trojans. While side channel analysis can
provide a list of suspect chips, our functional differen-
tiating technique can help identify inputs which trigger
the trojan and hence, conclusively show that a chip is
infected. Another key advantage of our technique is that
unlike side channel cryptanalysis we do not depend on
any measurement of physical phenomenon like power or
current. Also, our validation technique is not destructive
like invasive testing and hence, it is possible to test each
chip before use.

III. Probabilistic Signature of a Circuit

In this section, we show how to obtain a probabilistic
signature of a Boolean circuit. Without loss of generality,
let us assume that the circuit has a set of inputs I and a
single output O. For circuits with more than one output,
we can consider each output and its fan-in cone as a sep-
arate circuit. We find a probability distribution, P, of the
input assignment such that the random application of
input from the distribution leads to a unique probability
of the output of the circuit being 1. Then, distinguishing
CUT with its design is done by finding the probability
of the output being 1 by applying inputs randomly from
the probability distribution P. If the CUT is infected with
a trojan, then the probability of logic 1 at the output of
CUT and original circuit will be different.

This idea of using randomization to distinguish func-
tionally different circuit has been used in probabilistic
equivalence checking [11], [12] of circuits. But there
is a key difference between probabilistic equivalence
checking of circuits and trojan detection. In traditional
equivalence checking [13] both circuits - CUT and the
original circuit are available as white box. Hence, it is
possible to use techniques like satisfiability solving [14]
and randomized structural hashing [15], [16]. In contrast,
the problem of trojan detection is more complicated since
we only have the original circuit design and the CUT is
only available as a black box. Though we have the circuit
design as a completely observable Boolean circuit, chip
under test needs to be tested for equivalence with the
design by observing only its input/output behavior.

We now develop a probabilistic technique to check
equivalence of a black box implementation with respect
to a whitebox design.

A. Characteristic Polynomial of a Circuit

We use lower case letters for Boolean variables xi, i =
1, 2, . . .N taking value in {0, 1}. We use upper case letters
for real variables Xi, i = 1, 2, . . .N taking values from R.
A Boolean function f is a function from {0, 1}n to {0, 1}.
The corresponding polynomial P( f ) is a mapping from
R

n to R. It also must be noted that Boolean operators
and and or are similar to the arithmetic operators multiply
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and add over the finite field GF(2) respectively. Also, the
Boolean operators are idempotent, that is,
• f ∧ f = f
• f ∨ f = f

The definition of characteristic polynomial [12], [11] is
based on these properties.

Definition 3.1: Characteristic Polynomial - Given a
Boolean function f , the characteristic polynomial P( f ) is
defined inductively as follows:
• P( f (. . . , xi, . . .) = (1 − Xi)P( fxi=0) + XiP( fxi=1)
• P(xi) = Xi

• P(true) = 1
• P( f alse) = 0

where fxi=0 and fxi=1 are co-factors of f with respect to
xi obtained by setting xi = 0 and xi = 1 respectively.
The idempotent property can be enforced through expo-
nent suppression that is all exponents in the polynomial
are reduced to 1.

For the common binary functions, the characteristic
polynomial would be as follows -
• P(x ∧ y) = XY
• P(x ∨ y) = X + Y − XY
• P(¬x) = 1 − X
The following examples illustrate the characteristic

polynomials obtained from the Boolean formulae after
exponent compression.

1) P[(x∧y)∨(x∧z)] = XY+XZ−X2YZ = XY+XZ−XYZ
2) P[(x ∨ x) ∧ y] = (X + X − X2)Y = XY
3) P[(x ∧ y) ∨ (x ∧ y)] = XY + X(1 − Y) = X
It has been shown [11] that when the inputs are

assigned randomly selected real numbers, the character-
istic polynomials of two Boolean functions give the same
value with probability 1 if and only if the functions are
identical. This follows from the fact that there is a unique
embedding of Boolean functions into a polynomial ring
over any finite field such that they have the same value
when all variables take values 0 or 1. Properties of char-
acteristic polynomials are well-studied in literature [11],
[12] The following theorem summarizes the main result
used in our technique.

Theorem 3.2: Given two Boolean formulae f and g,
f = g if and only if the characteristic polynomial are
identical, that is, P( f ) = P(g).

The characteristic polynomials of a Boolean formulae
and the above uniqueness property provide an efficient
way to test the correctness of any system by computing
their characteristic polynomial of the design and imple-
mentation and matching whether the polynomials are
identical. But such an use of characteristic polynomials
in verification has two main impediments.

1) Both the design and implementation should be
available as white-boxes, that is in a description
that can be translated to a Boolean formulae so
that the characteristic polynomial can be computed

for both and matched. This is not possible in
most applications where implementation is only
partially observable. In case of detecting trojans in
a chip, the implementation is a black-box and hence
direct computation of polynomial representing im-
plementation is not possible.

2) It has been shown by Kumar et al [11] that the
computation complexity of computing a character-
istic polynomial for a n -input circuit is O(n2n) and
hence, it is not feasible for even circuits of moderate
size.

The characteristic polynomial can also be interpreted
probabilistically. The assignments from real domain [0, 1]
can be interpreted as probabilities of logic 1. Then,
the corresponding value of the characteristic polynomial
gives the probability of output logic 1 for the Boolean
function. Thus, the probability of an output of a Boolean
function can be calculated using the characteristic poly-
nomial of the function. Hence, the characteristic poly-
nomial of a Boolean function can also be called its
probability expression. This probabilistic interpretation of
the characteristic polynomial allows us to use statistical
techniques to test whether a circuit is infected or not.

B. Probability Signature

In this section, we show that there exists a probability
assignment to inputs such that the probability of output
of the Boolean function is unique for each function.
We identify a set of assignments in R such that each
probability expression P( f ) for any Boolean function f
evaluates to distinct values in R. We generalize the sim-
ilar assignments discussed in [17], [12] for probabilistic
equivalence checking of white-box circuits.

We now state and prove the main result in this section.
Theorem 3.3: Let f , g be a Boolean functions with

common inputs {x0, x1, . . . , xn−1} and P( f ),P(g) be the
probability expression with corresponding variables
{X0,X1, . . . ,Xn−1}. For the variable assignment given by
the following equation

Xi −→ p2i

p2i + 1

where p is an integer greater than 1, the characteristic
polynomials P( f ) and P(g) evaluate to the same value if
and only if the Boolean functions f and g are equal.

Proof: Let us consider mj = kn−1 . . . k1k0 which is
binary encoding of j in n bits for j = 0 to j = 2n − 1, that

is, j =
n−1∑

i=0

(ki2i) =
∑

ki=1

2i. Each mj represents a particular

assignment of 0 or 1 to the inputs of a n-input Boolean
function such that the i-th bit of mj is 1 if and only if
xi = 1.
Under the assignment, Xi =

p2i

p2i+1
, Xi = 1 − p2i

p2i+1
= 1

p2i+1

119

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on September 1, 2009 at 18:22 from IEEE Xplore.  Restrictions apply. 



P(mj) = (
∏

Xki=1

p2ki

p2ki + 1
)(
∏

Xki=0

1

p2ki + 1
)

From elementary algebra, we know that
(p2k
+ 1)(p2k − 1) = (p2k+1 − 1)

We use this to compute P(mj).
The denominator product is
(p + 1)(p2 + 1)(p22

+ 1) . . . (p2n−1
+ 1)

=
p−1

(p−1)(p+1)(p2+1)(p22+1)...(p2n−1+1)

=
p−1

p2n−1

The numerator product is
∏

Xki=1

p2ki = pj since j =
∑

Xki=1

2ki

Thus, P(mj) =
pj(p−1)
p2n−1

P(mj) = C(p,n)pj where C(p,n) denotes (p−1)
p2n−1 .

Any Boolean function can be expressed in sum-of-
products form as the sum of its minterms. Let us
assume that both f and g are presented as SOP of
minterms. We denote the set of minterms in a Boolean
function f by M( f ). Clearly, the sets M( f ) and M(g) are
equal if and only if f and g are equal.
Since, f =

∑

mj∈M( f )

mj

P( f ) =
∑

mj∈M( f )

P(mj) since mj ∧ mi = f alse if i � j and

hence P(mj ∧mi) = 0 for all i, j.
that is, P( f ) =

∑

mj∈M( f )

C(p,n)pj,

that is, P( f ) = C(p,n)
∑

mj∈M( f )

pj.

Intuitively,
∑

mj∈M( f )

pj is a number in p-ary number system

and hence is unique for any given M( f ).
Hence, P( f ) = P(g), that is,
C(p,n)

∑

mj∈M( f )

pj = C(p,n)
∑

mj∈M(g)

pj

if and only if M( f ) =M(g), that is, f = g.

The above assignment of variables in P( f ) can also
be treated as probability of assigning 1 to the inputs of
the Boolean function f as discussed earlier. Thus, the
following corollary follows from Theorem 3.3.

Corollary 3.4: Given two Boolean functions f and g
over the n inputs x0, x1, . . . , xn−1, if the probability of

assigning xi as 1 is p2i

p2i+1
, then the probability of output

of f and g being 1 is equal if and only f and g is equal.

Definition 3.5: The probability signature of a Boolean
function f is the probability of output of f being 1 when
the inputs are assigned using the probability distribution

p(xi = 1) = p2i

p2i+1
.

Thus, probability signature is unique for each Boolean
function. We illustrate this by tabulating the probability
signature for all possible Boolean functions with number
of inputs as 2. Any Boolean function over 2 inputs can be
represented as a binary sequence of length 22 where the
i-th element in the sequence represents the output of the
function when the input is assigned 0, 0 if i is 0; 0, 1 if i is
1; 1, 0 if i is 2 and 1, 1 if i is 3. For example, the sequence
0001 denotes the binary AND gate which gives output 1
only when the input is 11. Similarly, the sequence 0111
denotes the binary OR gate. The following table shows
the probability signature of all possible binary Boolean
functions where the constant p is chosen to be 2.

TABLE I
Probability Signature of all Binary Boolean Functions

Function f Signature P(f) Function f Signature P(f)

0000 0 0001 8
15

0010 4
15 0011 12

15

0100 2
15 0101 10

15

0110 6
15 0111 14

15

1000 1
15 1001 9

15

1010 5
15 1011 13

15

1100 3
15 1101 11

15

1110 7
15 1111 1

The direct determination of probability signature us-
ing evaluation of the probability signature is difficult
since the computation complexity of obtaining proba-
bility expression is O(n2n) for a n input function [11].
Further, the accurate evaluation of the polynomial ex-
pression also requires high precision arithmetic. We dis-
cuss how to efficiently compute the probability signature
using randomized testing followed by statistical analy-
sis. We first present an information theoretic analysis of
the signature to show that the most efficient signature
would be obtained by setting p = 2 in the probability
distribution of the input.

C. Information Theoretic Analysis of the Signature

We use Shannon’s entropy to compare the space of
signatures and the Boolean functions. Since we have
an injective correspondence between the signatures and
the Boolean functions, we require that the entropy of
signature is atleast as much as the entropy of the Boolean
function.

The entropy of a Boolean function f over n inputs
is maximum if it is equally likely to be any Boolean
function of n inputs. Hence, the maximum Shannon’s
entropy is given by

H( f ) =
∑

i

1
22n log 22n

= 2n

This intuitively is in agreement with the fact that there
are 22n

possible Boolean functions with n inputs and
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hence, any Boolean function with n inputs requires 2n

bits to be uniquely represented.
The entropy of probability signature is also maximum

if each of the possible signature is equally likely. For any
arbitrary p, Shannon’s entropy is given by

H(P( f )) =
∑

i

1
p2n log p2n

= 2nlogp

It follows that log p ≥ 1, that is p ≥ 2. Choosing
p = 2 is enough to ensure that one-to-one mapping
exists between the signatures and the possible Boolean
functions.

D. Probability Signature using Parameter Estimation

The probability signature of any circuit (Boolean func-
tion) is essentially the probability of getting 1 at the
output of the circuit when the input vectors are selected
randomly from the probability distribution given by

p(xi = 1) = p2i

p2i+1
where p(xi = 1) denotes the probability

of applying 1 at the primary input xi of the circuit. For
a given circuit, with an unknown probability signature
we can apply a number of random input vectors from
this probability distribution and estimate the probability
of the output being equal to 1.

Let the probability signature of the circuit be p. The
random variable representing the output of the circuit
being 1 when input vectors are chosen from the above
distribution is clearly a Bernoulli variable which takes
value 1 with success probability p.

If X is a random variable with Bernoulli distribution
such that the expected value E(X) = p and variance
var(X) = p(1 − p), then the maximum likelihood estimator
of p from a random sample of size N is p̂ =

∑
i Xi

N
So, the maximum likelihood estimate of the probabil-

ity signature of a circuit f can be obtained by applying
inputs from the above probability distribution and by
using the following simple formula P̂( f ) =

N f=1

N where N
is the total number of times the inputs where applied
and Nf=1 is the number of times the output of f was
observed to be 1.

IV. Trojan Detection Algorithm

In this section, we present the algorithm to detect
trojans in a CUT using techniques developed in the last
section. We first present an outline of the algorithm.

1) Compute probability signature of the design of the
circuit using either its probability expression or
through randomized testing followed by statistical
estimation.

2) Use the probability distribution of input discussed
above in Section III in forming the probability
signature to generate random input vectors and
apply it to the CUT and the design circuit.

3) If the output of CUT and design circuit differ for
an input vector, then the algorithm terminates with

the input vector as the fingerprint of the trojan
infection.

4) After a set of N vectors have being applied and the
CUT and design circuit gives the same output, we
use statistical reasoning to give a confidence interval
that they have the same probability signature and
hence, the CUT is trojan free.

The first step follows immediately from the previous
section. The probability signature of the circuit design
can be obtained directly from the designer’s high level
description without having to construct the signature
from the circuit synthesized from the high level descrip-
tion. For example, a circuit design in DSP applications
like filters have already a polynomial representation and
hence, can be directly used as the probability signature
of the circuit. If the probability signature needs to be
obtained from the circuit description, then we can use
statistical estimate of the signature. This step is done
offline and only once without the use of the fabricated
chip and hence, is not the performance bottleneck of the
technique.

The second step requires us to simulate the fabricated
chip which is the CUT and the design circuit on a set
of input vectors where the inputs are generated from
the distribution used to define the probability signature.
If the CUT is not infected by any trojan, then it is
functionally identical to the design circuit and hence, its
output must be same as the design circuit on each of the
input vectors.

If an input vector is found at which the CUT and the
design circuit differ, then the CUT is clearly functionally
distinct from the design and is thus, infected by a
trojan. Since, it is not possible to distinguish between an
implementation error during fabrication and a deliberate
trojan insertion, we assume that all functional difference
correspond to malicious infection of the CUT. The input
vector which illustrates the difference between CUT and
the design is the fingerprint which is a proof of the trojan
infection.

It is infeasible to test the CUT with n inputs for any
significant fraction of the total number of possible 2n

input vectors. Hence, after applying N << 2n input
vectors, if the output of the pattern as well as the design
are identical, we use hypothesis testing to provide a
confidence interval for the hypothesis that the CUT is free
of any trojan infection.

Each simulation by application of test vector to the
circuit and observation of the output is a Bernoulli trial
with the output being 1 as the success event having
probability p which is the probability signature of the
CUT. The number of successes in Bernoulli trials is a
random variable with Binomial distribution. If we count
the number of times, the output was 1 in the simulation,
then this will be a Binomial random variable. If the
number of simulations N is fairly large, that is, Np > 5
and N(1 − p) > 5, then the Binomial distribution can be
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approximated as a normal distribution according to the
central limit theorem [18]. Let us denote the corresponding
normal variable as X.

Further, if N̂ of the simulations resulted into output
being set to 1, then N̂ is a point estimator of X. We
need to verify whether the random variable representing
the outcome of the output on random simulations of
the CUT has a mean which is same as the probability
signature p. This can be done by verifying that X ∼
normal(Np,Np(1 − p)), that is, X is a random normal
variable with mean Np and variance Np(1−p). We verify
this via Hypothesis Testing.

We need to test the following hypotheses where μ
is the mean of the normal distribution of the random
variable X.

H0 : Mean of μ = Np
H1 : Mean of μ � Np

Since X is a normal distribution, Z = X−Np√
Np(1−p)

is a

standard normal distribution. Using the point estimator
N̂ of X, the test statistic is

Z0 =
N̂ −Np√
Np(1 − p)

.
Given a significance level α, we will reject hypothesis

H0 if the test statistic Z0 > zα/2 or Z0 < −zα/2 where zα/2
is the 100α/2 percentage points of the standard normal
distribution. We will fail to reject H0 if −zα/2 ≤ Z0 ≤ zα/2.
The confidence of the conclusion is given by 1 − α.

We explain this further with help of the following
example. Suppose that, we are interested in accepting
a CUT as trojan-free CUT with 95% confidence, then
α = 0.05. Further, let the probability signature be 7/15
corresponding to the 2-bit Boolean function represented
as 1110 in Table I. Let N = 105 be the number of
simulation vectors that were applied to the CUT and
design-circuit, and the CUT did not differ from design
in any simulation. Further, let the number of times the
output was 1 be 45, 016. In order to declare the CUT,
trojan free, we need to compute the test statistic Z0 which
is given by 45,016−7/15×105√

105×7/15×8/15
= −10.459. Now, z0.025 = 1.96

and z−0.025 = −1.96. Since Z0 < −1.96 in this case, we
reject the hypothesis.

We can either terminate and output that the algorithm
did not find a fingerprint but can not claim with 95%
confidence that the CUT is trojan free or we can continue
with experiments further upto N = 2.105 simulation
vectors. If none of the 2.105 simulation vectors detect any
difference in output of CUT and the design and we find
that N̂ = 93562, we need to recompute the test statistic
for rejection or acceptance of hypothesis. The test statistic
Z0 which is now given by 93562−7/15×2.105√

2.105×7/15×8/15
= −1.025. Since

−1.96 ≤ Z0 ≤ 1.96 in this case, we are 95% confident that

the CUT is free of trojans and we can terminate with this
answer.

We now present some extensions of the main algo-
rithm presented above. We first show how we can make
this technique more scalable by using hash of probability
signature instead of the signature itself. Then, we show
how our technique can be applied to Boolean functions
with multiple outputs. As intuitively obvious, more than
one output provide more than one observation point in
the circuit and hence, the detection of trojan infection in
a multi-output circuit is easier compared to detection of
trojans in a single-output circuit of same size. We also
show that our technique would be able to detect trojans
which cause greater functionality change more easily
than trojans which cause smaller functionality change.

A. Probability Signature Hash

The probability signature matches each functionally
distinct circuit to a unique signature. If the circuits are
large, we can reduce the signature space by mapping
more than one functionally distinct circuit to the same
signature. We illustrate this with an example strategy
here which reduces the signature space.

Instead of the probability distribution p(xi = 1) = p2i

p2i+1
where i = 0, 1, 2 . . . (n−1) which creates unique signatures
for circuits with n inputs, we consider the following
hashed probability distribution

p(x2m+1 = 1) = p(x2m = 1) =
p2m

p2m + 1

for m = 0, 1, 2, . . . (n − 2)/2.
Using the same argument as in the proof of Theo-

rem 3.3, it can be shown that each min-term will now
be mapped to C(p,n)pj such that j is now an n/2-bit
binary number. So, 2n

2n/2 = 2n/2 minterms will be mapped
to the same signature. Any function f and g will now
be assigned a signature corresponding to C(p,n)

∑

mj∈M( f )

pj

where the sum term is a number in the p-ary number sys-
tem. For each bit of this p-ary number, any one of the 2n/2

minterms corresponding to pj could be present. Thus,
22n

possible functionally distinct circuits of input length
n are assigned signatures of length p2n/2

and hence, each
signature corresponds to 22n

p2n/2 distinct Boolean functions.

For p = 2, this collision set is 22n/2
.

This hashing technique is of use when we know the
set of inputs of the function which are most expected to
be used by the trojan circuit. The probability distribution
of the input determines the activity of the input, that is,
how frequently the input is toggled while simulation and
hence, a higher activity means that we explore both co-
factors of the circuit with respect to the high activity
variable with higher probability. Thus, the suspected
inputs need to be provided with high activity and can
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TABLE II
Trojan Detection on ISCAS85 Benchmarks

ISCAS Benchmark Benchmark with Trojan IP/OP Fingerprint

c17 1e17 5/2 {1, 3}
c17 2e17 5/2 {2}

c1355 1e1355 41/32 {176}
c1355 2e1355 41/32 {8, 22, 64, 113, 141, 183, 218, 229, 230, 233}
c1908 1e1908 33/25 {1, 4, 22, 25, 28, 31, 34, 40, 46, 94}
c1908 2e1908 33/25 Not Detected
c432 1e432 36/7 {4, 14, 17}
c432 2e432 36/7 {4, 56, 66}
c499 1e499 41/32 {1, 9, 21, 29, 37, 41, 73, 85, 113, 117, 131, 137}
c499 2e499 41/32 {1, 33, 49, 73, 77, 97, 109, 113, 125}
c6288 1e6288 32/32 Not Detected
c6288 2e6288 32/32 {1, 52, 69, 86, 103, 273, 290, 307, 324, 341, 358, 375}

be harmlessly clubbed with inputs which are expected
to be benign.

B. Circuit with Multiple Outputs

In case, a circuit has more than one output, a circuit
would be considered infected with a trojan if there exists
some input assignment such that atleast one output of
CUT is different than the corresponding output of the
design.

A simple way to achieve this is to decompose the
circuit into a set of Boolean function representing cone
of each primary output and then, applying the above
technique for each output separately. We currently use
this in our experiments with ISCAS85 benchmarks.

If a fingerprint is detected that distinguishes a single
output, we can also treat it as fingerprint of the trojan
infection. If after N simulations, the outputs of the CUT
and the design do not differ, then we require that the con-
fidence of the hypothesis corresponding to each primary
output be at least as much as the required confidence of
claiming that the CUT is trojan free. Thus, if we require
that a CUT be said to be trojan free with confidence 95%,
then for each output of the CUT, we should be able to
show that the hypothesis that the mean of the output
being 1 is equal to the probability signature is accepted
with significance 0.05.

C. Extent of Infection and Hardness of Detection

A key property of our technique is that the greater the
extent of functional modification of the CUT due to an
infection with a trojan, the easier it would be to detect
the infection. This is due to the property of our signature.
If two Boolean functions differ at more minterms, then
their signatures are further apart. Hence, if an infection
results in toggle of more number of minterms, then the
signature of the infected circuit will be very different
from the probability signature of design. Consequently,
we will be able to find a fingerprint with higher prob-
ability. Also, it is less likely to reach a high confidence

level with a seriously infected circuit since the signatures
of the infected CUT and design would be far apart.

V. Experiments

We now present experimental evaluation of our tech-
nique using ISCAS benchmark circuits. We added ex-
tra logic to these circuits randomly to change their
functionality and to make them infected circuits. Then,
the infected circuit and the original ISCAS benchmark
were given as inputs to the trojan detection algorithm
presented in this paper. Though in a practical setting,
we expect that a hardware simulator would be used
to stimulate the circuits with inputs generated from the
probability distribution corresponding to the signature,
in our experiments we do a software simulation of the
circuit.

The results of our experiments are presented in Ta-
ble II. The first column is the name of the ISCAS circuit
and the second is the infected circuit. The third column
gives the number of inputs and outputs in the example.
The fourth column gives the fingerprint which distin-
guishes the infected circuit from the original circuit.
All inputs mentioned are the inputs assigned 1 in the
fingerprint; the remaining inputs are assigned 0. The
simulations were run with a timeout of 30 minutes. We
were able to detect trojans in 10 out of the 12 examples.

The ISCAS benchmarks and the infected circuits as
well as the experimental data are available from first
author’s website1.

VI. Conclusion

The technique presented in this paper for trojan detec-
tion can be used to verify any black-box implementation
against a white-box design. If the analysis is able to find
a fingerprint that distinguish the implementation and the
design, then this fingerprint can be used for post-analysis
like debugging to further localize the cause of difference.

1www.eecs.berkeley.edu/∼jha/trojan hase.tar
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In context of trojan, fingerprints can be useful for invasive
techniques like X-ray tomography which can locate the
exact difference using a layer-by-layer comparison of the
chip and the design.

Though induction and bounded model checking can
be used to convert a sequential circuit into a combina-
tional circuit, we are trying to develop a randomized
slicing based approach to unroll only parts of circuit to
make our technique more scalable on sequential circuits.
It would be interesting to decouple the problem of hunt-
ing for a trojan in a sequential circuit into two separate
problems - testing memory elements and testing the
combinational circuit. Another direction of future work
is to use the fingerprint to provide more localization
information regarding the nature of trojan infection.
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