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Building on prior concepts of electronic money and e-cash, we introduce a digital currency where physical
unclonable function (PUF) devices satisfy the twin properties of being enrolled in a participating set and
sufficient security features to act as their own root of trust in bilateral transfers. Presented in this work is
an electronic cash ecosystem consisting of device enrollment, token creation and a bilateral secure transfer
mechanism that authenticates devices as ones issued by the authority and propagates the token from sender to
recipient in a secure fashion without incurring any third party dependencies at transfer time. A Propagation of
Provenance (PoP) is proposed to establish a chain of custody from token creation to redemption. Authentication
is based on challenge response pairs (CRPs) drawn from labelled and unlabelled databases established at a
central authority during enrollment. A mutual self-trust Underlying PUF primitives enable the The central
authority can establish that all transactions occurred between enrolled devices without revealing the identity
of the interacting devices. Devices perform a pairwise mutual authentication to establish a secure channel,
relying on challenge response pairs that only PUFs are familiar with. Only devices enrolled at the central
authority can participate in transactions, eliminating counterfeit risk. A thorough
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1 INTRODUCTION
2 ECOSYSTEM
3 SIRF PUF AND HARDWARE SECURITY PRIMITIVES
The authentication bitstrings, encryption keys, random nonces and eCash tokens utilized within the
proposed MST and eCash protocols are derived from a physical unclonable function (PUF) called
the shift-register reconvergent-fanout (SiRF) PUF [1]. The SiRF PUF serves as the root-of-trust in
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Fig. 1. High level overview of PUF-Cash V3.0

the proposed MST and eCash protocols, and its exponential challenge-response-pair (CRP) space
provides the foundation for the strong security and trust properties associated with these protocols.

3.1 SiRF PUF Architecture and Algorithm
The SiRF PUF architecture and algorithm are shown on the left and right sides of Fig. 2, respectively.
The SiRF PUF utilizes within-die variations in a set of path delays as a source of entropy. Path
delays are measured through an engineered netlist of shift-registers and logic gates constructed
with fan-out and fan-in, referred to as reconvergent-fanout, to create an exponentially diverse
matrix of signal paths that traverse a rectangular region of the FPGA fabric (22x23 CLBs). A set of
32 flip-flips launch a set of transitions onto the path inputs and a time-to-digital converter (TDC) is
used to measure the delay of signal transitions emerging on the path end points. The TDC creates
high resolution integer representations (digital values or 𝐷𝑉𝑠) of the path delays. The 𝐷𝑉 are
stored in a BRAM and are used as inputs to a post-processing algorithm responsible for generating
authentication bitstrings and keys. The SiRF PUF architecture incorporates a mode switch to enable
the entropy source and algorithm to be used for true-random number generation (TRNG), which is
able to supply an unlimited number of random nonces for cryptographic operations [5].

3.2 SiRF PUF Challenge
The challenge for the SiRF PUF consists of several components, annotated as𝐶ℎ𝑙𝑛𝑔𝑎 and𝐶ℎ𝑙𝑛𝑔𝑏 in
Fig. 2. A vector of binary values, 𝑣 , controls the configuration of the paths through the netlist of
shift-registers and logic gates. Although 𝑣 represents a sequence of netlist configurations vectors
that are applied to generate a set of 2048 rising and 2048 falling 𝐷𝑉 , in our implementation, 𝑣
actually refers to a 32-bit number that represents a seed to an LFSR, which pseudo-randomly
selects the sequence of configuration vectors from a𝑉𝑒𝑐𝑠𝐷𝐵 database (not shown in the figure). The
remaining components of the challenges are given as 𝑝, 𝑆𝐹, 𝐻𝐷 . The 𝑝 component is used to specify
parameters to the SiRF PUF algorithm. The parameters are used by the SiRF PUF algorithm as control
inputs to mathematical operations applied to the 4096 𝐷𝑉 stored in the BRAM. The first operation
involves creating differences in the path delay values, called 𝐷𝑉𝐷 (DVDiff module). The 𝐷𝑉𝐷 are
then compensated to remove variations in delay introduced by global performance differences and
operational environments that are not nominal with respect to temperature and supply voltage, to
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Fig. 2. SiRF PUF Architecture and Algorithm.

produce 𝐷𝑉𝐷𝑐 (GPEVCal module). A third operation removes delay bias introduced by differences
in the length of the tested paths, which is accomplished through the application of SpreadFactors
(𝑆𝐹 ) (SpreadFactors module). The 𝐻𝐷 component refers to helper data that is needed for bitstring
or encryption key regeneration.
The 𝑆𝐹 are computed by a server using timing data (𝐷𝑉 ) collected from a sample of devices

during provisioning, and are transmitted to the device when the PUF is generating the bitstring
or encryption key for the first time; a process called enrollment. The 𝑆𝐹 are used to optimize the
statistical quality of the PUF-generated bitstrings, and are computed using the timing data stored
in one of two timing databases, labeled 𝐴𝑇𝐷𝐵 and 𝑁𝐴𝑇𝐷𝐵 in Fig. 2. The process used to construct
these databases is described in the next section.
The components of the challenge, including the 𝑆𝐹 and the helper data 𝐻𝐷 produced during

enrollment, are stored in a database to enable the device to regenerate the bitstring or key at any
point in the future and potentially under adverse environmental conditions. Although the details
of the SiRF PUF algorithm are not presented here, the size of the challenge data is an important
criteria when assessing the storage requirements of the MST and PUF-Cash protocols. As discussed
in the following sections, the bitstring and keys used in the protocols are 256-bits, which requires
approximately 512 bytes for 𝐻𝐷 and 4096 bytes for 𝑆𝐹 . However, the 𝑆𝐹 are derived from and can
be applied to any device in the population, which reduces challenge overhead significantly.

3.3 PUF-Based Authentication and Encryption Key Primitives
Mutual authentication (𝑀𝐴) and session key generation (𝑆𝐾𝐺) is accomplished in the MST and
PUF-Cash protocols using one of two PUF-based protocols. The versions described in this section
are used between the TI and customer devices, and between the TI and FI, and are referred to as
timing-based (TB) versions, because they utilize the 𝐴𝑇𝐷𝐵 and 𝑁𝐴𝑇𝐷𝐵 timing databases stored on
the TI (see upper right of Fig. 2). The timing databases encode a large set of challenge-response
pairs (CRPs) for each device and represent the root-of-trust for the TI. Alternative, lighter-weight
versions of𝑀𝐴 and 𝑆𝐾𝐺 , referred to as challenge-response-based (CRB), utilize the CRPs directly.
The CRB versions are used for mutual authentication and encryption key generation between pairs
of customer devices and between a customer device and the FI, where the timing databases are
not available. Despite these differences, it is always the case that one of the two parties in the
engagement utilize a PUF to generate the bitstrings and keys for authentication or session key
generation.
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The timing databases give the TI the ability to exactly reproduce the responses to the challenges
presented to the PUF devices. The timing databases are constructed as devices are added to the PUF-
Cash ecosystem during provisioning, and represent an alternative to the challenge-response-pair
(bitstring) format usually used for PUFs. The digitized values of the path delays enable bitstrings
and keys to be constructed on-the-fly by executing a software version of the SiRF PUF algorithm on
the server. The parameters 𝑝 used as input to the algorithm expand the challenge-response space
by a factor greater than 1000 over the alternative of storing challenge-response bitstrings directly.
The timing values can be reused to generate more than 1000 256-bit authentication bitstrings (or
encryption keys), while maintaining high levels of model-building resistance. Experimental results
supporting the model-building resistance of a delay PUF similar to SiRF is presented in [3].

The TB operations carried out between the TI and the fielded devices is annotated as𝑀𝐴𝑁𝐴 or
𝑀𝐴𝐴 (for mutual authentication) and 𝑆𝐾𝐺 (for session key generation) in the message exchange
diagrams shown in this paper. The subscript 𝑁𝐴 refers to a non-anonymous mutual authentication
operation, where the device identifies itself to the TI using it’s unique chip number, e.g., 𝐶1. The
𝑁𝐴𝑇𝐷𝐵 is used for non-anonymous authentication, where the timing data is labeled in the database
with the chip number as shown in Fig. 2. The subscript 𝐴 refers to an anonymous authentication,
where the TI is able to confirm that the device has been enrolled, but is not able to identify the
customer’s name (chip number) during authentication. The𝐴𝑇𝐷𝐵 and 𝑁𝐴𝑇𝐷𝐵 are built with distinct
𝐷𝑉 , and the ordering of device timing data sets in the two databases is scrambled to provide
anonymity. The SiRF PUF has more than 10 million unique paths that can be timed, making it
possible to select large numbers of unique 𝐷𝑉 per database. The number of 𝐷𝑉 per device in each
database in the implementation presented in this paper is approximately 15,000.

The basic PUF-based security functions leveraged in the proposed MST and PUF-Cash protocols
also include true-random-number-generation (𝑇𝑅𝑁𝐺) and long-lived key (𝐿𝐿𝐾) generation. The
SiRF 𝑇𝑅𝑁𝐺 function uses the same measurement and processing operations shown in Fig. 2 to
produce a sequence of nonces, but randomizes the 𝑣 and 𝑝 challenge components and eliminates the
𝑆𝐹 and𝑋𝑀𝑅 components [5]. The 𝐿𝐿𝐾 function, on the other hand, needs to reproduce the bitstring
and therefore, implements both enrollment and regeneration modes, where 𝐻𝐷 is produced when
the bitstring is generated for the first time that is later used as input when the bitstring is reproduced.
However, unlike𝑀𝐴 and 𝑆𝐾𝐺 which involve two parties, 𝐿𝐿𝐾 is used when the device needs to
reproduce the bitstring in a stand-alone environment. The 𝐿𝐿𝐾 function plays a central and novel
role in the MSP and PUF-Cash protocol operations.

The ability to exactly reproduce bitstrings is a requirement for the𝑀𝐴, 𝑆𝐾𝐺 and 𝐿𝐿𝐾 functions,
independent of whether bitstring generation occurs between two devices or is carried out at two
separate times within a single device. All of these security functions leverage three reliability
enhancing techniques that are integrated into the SiRF PUF algorithm. The GPEVCal module first
compensates the 𝐷𝑉𝐷 for sources of variation that are not entropy-related. A thresholding scheme
is then applied to select 𝐷𝑉𝐷𝑐 (after 𝑆𝐹 are applied) that have a low probability of generating bit
flip errors. Last, an 𝑋𝑀𝑅 technique incorporates redundancy in the bitstring enrollment process
that is used to further decrease the chance of bit flip errors during regeneration of the bitstring
or key. The details of these techniques and experimental results showing their effectiveness are
presented in previous work [6] [4].

4 MUTUAL-SELF-TRUST PROTOCOL
An eCash payment system should support trusted payment transactions in any type of environment,
including scenarios in which the payer and payee cannot consult with other entities, e.g., trusted
third parties (TTPs), to assist with authentication and session key generation. In such cases, trust
within the two-party system must be derived from the devices themselves. We use the term
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mutual-self-trust (MST) to describe this scenario, in contrast to environments in which peers
(other customers) can be consulted to build a trusted relationship, or a TTP is available to provide
authentication credentials for the two entities. Given the access restrictions of theMST environment,
devices will necessarily need to obtain and securely store local data that enables them to establish
a trusted relationship.

A key challenge to implementing authentication, session key generation and an eCash transaction
protocol that meets the security properties described earlier is to accommodate transactions between
any pair of customer devices from the population. Given that each device must store MST data on
every other device within the population, the composition of the MST data must be compact to
be practical for an embedded system, while simultaneously providing each device with sufficient
confidence that the relationship can be trusted. In this section, we describe a MST system that
meets these requirements, and later describe a PUF-Cash protocol that leverages the MST data
format for providing a secure and trusted payment mechanism.

4.1 MST Enrollment Operations
The security properties of the MST protocol are derived from two primitives, one hardware-based,
namely the SiRF PUF and one cryptography-based, namely a secure hash function. The PUF serves
as the root-of-trust and is the source of entropy while secure hash provides obfuscation, data
integrity and authentication. The integration of the two primitives provides a highly secure and
lightweight mechanism for enabling Alice and Bob to authenticate and to generate a shared secret
for encrypting communications.

The MST protocol requires the SiRF PUF to generate a 256-bit long-lived key (𝐿𝐿𝐾 ) and a 256-bit
nonce 𝑛 using its TRNG function. These bitstrings are used as input to a hash function to create an
authentication token (𝐴𝑇 ), referred to as 𝑍𝐻𝐾 , with 𝑍 referring to mutual-self-trust, 𝐻 for secure
hash and 𝐾 of 𝐿𝐿𝐾 . In our implementation, the SHA-3 hash function is used as the secure hash.
The 𝑍𝐻𝐾 authentication tokens are created using the relation given by 1.

ZHK := SHA-3(LLK ⊕ n) (1)

The MST scheme requires Alice and Bob’s devices to each carry out an enrollment operation
with the Token Issuer or 𝑇 𝐼 , as shown in the upper portion of Fig. 3. Enrollment is performed by
Alice and Bob separately during provisioning, i.e., after device manufacturing, and periodically in
the field as needed. The following sequence of operations are carried out by both both Alice and
Bob separately during enrollment:
(1) Alice and Bob authenticate non-anonymously via𝑀𝐴𝑁𝐴 and generate a session key 𝑆𝐾𝑇𝐴 us-

ing 𝑆𝐾𝐺 with the𝑇 𝐼 . As discussed in Section 3.3, the𝑇 𝐼 uses the TB versions of these security
functions given the availability of the timing databases. The non-anonymous authentication
allows the 𝑇 𝐼 to identify Alice and Bob as 𝐼𝐷𝑥

(2) The 𝑇 𝐼 transmits unique challenges to Alice and Bob, labeled 𝐶ℎ𝑙𝑛𝑔𝑍𝑇 .
(3) Alice and Bob apply the challenge to their hardware PUFs, 𝐻𝑃𝑈𝐹𝐸 , in enrollment mode, to

generate a long-lived key, 𝑍𝑇_𝐿𝐿𝐾1, and helper data 𝐻𝐷1. Alice and Bob store the challenge
information in the 𝐿𝐿𝐾𝐷𝐵 , which includes the components discussed earlier in reference to
Fig. 2, i.e., 𝑣 , 𝑝 , 𝑆𝐹 and 𝐻𝐷 , to enable regeneration of 𝑍𝑇_𝐿𝐿𝐾1 at any point later in the field.

(4) Once the 𝑍𝑇_𝐿𝐿𝐾1 is generated, the 𝑇 𝐼 sends a request to Alice and Bob to generate
𝑛𝑢𝑚_𝑍𝐻𝐾𝑠 .

(5) Alice and Bob construct a set of tuples {𝑍𝐻𝐾𝑖 , 𝑛𝑖 } by running their PUF’s TRNGs to generate
a sequence of nonces, 𝑛𝑖 , which are XOR’ed with 𝑍𝑇_𝐿𝐿𝐾𝑖 and used as the input to the AT
creation function given by Eq. 1.
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Fig. 3. MST enrollment and authentication token (𝑍𝐻𝐾𝑖 ) exchange process between Token Issuer, Alice and
Bob.

(6) The tuples are encrypted using 𝑆𝐾𝑇𝐴 and transmitted to the 𝑇 𝐼 . The 𝑇 𝐼 decrypts and stores
them along with the customer’s device identifier 𝐼𝐷𝑥 in its𝑀𝑆𝑇𝐷𝐵 .

The 𝑇 𝐼 collects 𝑍𝐻𝐾𝑖 from all customer devices to build the 𝑀𝑆𝑇𝐷𝐵 . Note that each entry
consumes only 72 bytes, assuming 4-byte integers for the 𝐼𝐷𝑥 and 𝐶𝑁𝑥 fields, and 32 byte for
each of the 𝑍𝐻𝐾𝑖 and 𝑛𝑖 . Alice and Bob will retrieve one unique 𝑍𝐻𝐾𝑖 tuple from the 𝑇 𝐼 for each
customer during the distribution operation shown along the bottom of Fig. 3, which they store in
their𝑀𝑆𝑇𝐷𝐵 .

The𝑀𝑆𝑇𝐷𝐵 constructed on Alice and Bob’s devices can include millions of elements, one element
for each potential customer in the population. Given a customer entry requires 72 bytes within
𝑀𝑆𝑇𝐷𝐵 , it follows that a million customers would require a database of 72 MB. Moreover, the data
can be stored in a standard off-the-shelf NVM, e.g., SD card, where storage capacities of 4 GB or
larger are common. Further protections can be provided by encrypting the data on the SD card.
We propose a secure enclave in PUF-Cash that can be used here for implementing this type of
additional layer of security.
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4.2 MST In-Field Operations
The MST in-field process is carried out when Alice contacts Bob for goods or services in an
environment where connectivity exists only between Alice and Bob. Themessage exchange protocol
is shown in Fig. 4, and is described as a sequence of the following operations:
(1) The transaction begins with Alice sending Bob a request to authenticate and generate a

shared session key.
(2) Alice sends Bob an identifier, 𝐼𝐷𝐴, that allows Bob to locate the corresponding 𝐴𝑇 in his

𝑀𝑆𝑇𝐷𝐵 .
(3) Bob responds to Alice with an Ack or Nak (as 𝑠𝑡𝑎𝑡𝑢𝑠) on whether or not he possesses an 𝐴𝑇

for Alice. He also responds with his own identifier 𝐼𝐷𝐵 in cases where he possesses an 𝐴𝑇
for Alice.

(4) Alice determines if she has an 𝐴𝑇 for Bob in her𝑀𝑆𝑇𝐷𝐵 using the Bob’s 𝐼𝐷𝐵 .
(5) She transmits a corresponding Ack or Nak to Bob.
(6) Alice and Bob retrieve the 𝐴𝑇 for the other party from their𝑀𝑆𝑇𝐷𝐵 , which is represented by

the tuple 𝑍𝐻𝐾𝑥 , 𝑛𝑥 with 𝑥 := 𝑏 or 𝑎, respectively.
(7) Shared Key Generation: Alice and Bob exchange the nonce components, 𝑛𝑥 , of the 𝐴𝑇 .
(8) Both parties regenerate their long-lived keys 𝑍𝑇_𝐿𝐿𝐾 using challenge information stored

in their 𝐿𝐿𝐾𝐷𝐵 , and then compute a local version of the 𝑍𝐻𝐾 ′
𝑥 using 𝐻𝑎𝑠ℎ(𝑍𝑇_𝐿𝐿𝐾𝑥 ⊕ 𝑛𝑥 )

(NOTE: XOR operation is annotated as ˆ in the diagram).
(9) Alice and Bob create a shared key 𝑆𝐾𝐴𝐵 by XOR’ing the local copy of 𝑍𝐻𝐾 ′

𝑥 with the 𝑍𝐻𝐾𝑥

that they store for the other party in their𝑀𝑆𝑇𝐷𝐵 .
(10) Authentication: Authentication begins with Alice and Bob encrypting the 𝑛𝑥 they received

from the other party with the newly created shared key 𝑆𝐾𝐴𝐵 to create 𝑒𝑛𝑥 .
(11) Alice and Bob exchange the encrypted nonces 𝑒𝑛𝑥 .
(12) Alice and Bob decrypt the 𝑒𝑛𝑥 using the shared key.
(13) Alice and Bob compare the decrypted 𝑛𝑥 with the ones they store in their𝑀𝑆𝑇𝐷𝐵 .
(14) The status of the comparison is shared with the other party with each transmitting an Ack

or Nak. Alice and Bob have authenticated and posses a shared key at this point assuming
both have acknowledged that the nonces 𝑛𝑥 match their own local copies.

(15) Refresh ZHKs: Alice and Bob generate new nonces 𝑛𝑥_𝑛 by running their TRNGs, and then
compute new 𝐴𝑇 by hashing (𝑍𝑇_𝐿𝐿𝐾𝑥 ⊕ 𝑛𝑥_𝑛).

(16) Alice and Bob encrypt the new 𝐴𝑇 as 𝐶𝑥 with their shared session keys 𝑆𝐾𝐴𝐵 .
(17) Alice and Bob exchange the 𝐶𝑥 .
(18) They both decrypt the 𝐶𝑥 to recover the new 𝐴𝑇 .
(19) They both store the new𝐴𝑇 in their𝑀𝑆𝑇𝐷𝐵 , replacing the existing𝐴𝑇 used in this transaction.
The MST in-field operations are light-weight using only PUF and secure hash operations. The

refresh operation ensures that future transactions can occur between two parties without either
party needing to return to the TI to obtain additional 𝐴𝑇 . The new 𝐴𝑇 are generated by Alice and
Bob’s PUFs and therefore have the same strong security properties as the original 𝐴𝑇 that are
replaced.

5 PUF-CASH PROTOCOL
The PUF-Cash protocol is a eCash system that uses only lightweight security functions, namely
PUFs and secure hash, to allow any arbitrary pair of devices to securely exchange funds. The
operating environment used in the protocol version described here is characterized as off-line,
requiring Alice and Bob to authenticate using the MST model described in the previous section.
However, the PUF-Cash protocol also supports a peer-trust model, where limited connectivity
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Fig. 4. Mutual-self-trust in-field authentication and session key generation between Alice and Bob.

exists that allows other devices to be consulted during authentication, and a full-trust model for
cases in which a trusted-third-party (TTP) can be consulted. The peer-trust and full-trust models
will be presented in future work.

PUF-Cash also supports unlimited transitivity of eCash tokens (eCt) through multiple parties,
e.g., Alice pays Bob, and then Bob pays Charlie with the same eCt, without first requiring Bob to
validate his eCt with the financial institution (FI) and/or token issuers (TI). PUF-Cash introduces a
novel security primitive called propagation-of-provenance (POP) and a hardware-oriented secure
enclave (HOSE) as a means of engendering eCash transitivity with important security properties.
In particular, POP and HOSE enable each party in a chain of eCash value transfers to authenticate
the eCt that they receive, and to validate provenance back to the point of origin, namely the FI and
TI. Furthermore, the HOSE is designed to prevent Alice from double spending her eCt.

The HOSE is implemented as a set of state machines embedded in a hardwired portion of the
device, or, in the case of FPGAs, in the programmable logic. HOSE limits interactions and potential
attacks with software applications, including the PUF-Cash software components, through an
interface that provides only two 32-bit hardware registers. HOSE incorporates the SiRF PUF to
serve as the root-of-trust for generating keys on-the-fly as needed. The proposed POP scheme
leverages the PUF keys, and the capability of the SiRF PUF to produce a large number of them,
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Fig. 5. High level overview of PUF-Cash V3.0

to allow Bob to confirm the provenance of Alice’s eCt, and to enable the provenance validation
property to be propagated to Charlie, Ted, etc.

5.1 PUF-Cash Overview
In this section, we present the PUF-Cash protocol at a high-level of abstraction to emphasize the
sequence of operations as well as the security properties associated with the HOSE and POP scheme.
The sequence of operations are numbered 1 through 10 in Fig. 5.

(1) Similar to the MST protocol, the bootstrap (enrollment) operation associated with the PUF-
Cash protocol generates and distributes a set of POP cryptographic tuples (𝑃𝑂𝑃𝑐𝑦𝑐𝑙𝑒𝑥 ) to
Alice and Bob’s devices (which is represented as a circled 1 and is abbreviated as 𝑃𝑃𝑥 in the
figure).

(2) Alice contacts here financial institution (FI) and requests a withdrawal from her account. The
FI checks her balance and responds with an ACK (not shown) if she has sufficient funds or a
NAK if she does not.

(3) Assuming Alice has sufficient funds, the FI forwards her request to the token issuer (TI) to
generate e-Cash tokens (𝑒𝐶𝑡𝑥 ). The TI records her anonymous 𝑃𝑃𝑥 (also part of the REQ
transaction) in its 𝑒𝐶𝑡𝐷𝐵 database.

(4) The TI encrypts the 𝑒𝐶𝑡𝑥 as 𝑒𝑒𝐶𝑡𝑥 using a shared session key that is created between Alice
and the TI anonymously (see message exchange diagram below for details), and transmits
the 𝑒𝑒𝐶𝑡𝑥 to FI.

(5) The FI simply forwards the 𝑒𝑒𝐶𝑡𝑥 to Alice. This feature of using the FI as an intermediary
provides anonymity for Alice to the TI. Moreover, her 𝑒𝐶𝑡𝑥 are also anonymous to the FI
because they are encrypted with a session key that only Alice and the TI know.

(6) Alice contacts Bob for a payment transaction, and then run the ZeroTrust (ZT) mutual
authentication and session key generation algorithm described previously.

(7) Assuming authentication succeeds, Alice pays Bob with her 𝑒𝐶𝑡𝑥 by encrypting them with
the Alice-Bob ZT session key.
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(8) Bob at some point in the future regains internet connectivity (gets on-line) and deposits
the 𝑒𝐶𝑡𝑥 to his FI. Note that although Alice and Bob use the same FI as shown, this is not a
requirement. Moreover, Bob may use his 𝑒𝐶𝑡𝑥 to pay another party, and choose not to engage
in a deposit transaction, i.e., transitivity is supported in this POP scheme.

(9) The FI contacts the TI and asks the TI to validate the 𝑒𝐶𝑡𝑥 , as a precursor to the FI accepting
the 𝑒𝐶𝑡𝑥 as a valid deposit.

(10) Assuming validation succeeds, the FI credits Bob’s account and the 𝑒𝐶𝑡𝑥 are discarded.

5.1.1 POP Unique Characteristics. As shown in Step 1 of Fig. 5, the 𝑇 𝐼 generates the POP crypto-
graphic tuples, 𝑃𝑃𝑥 , in contrast with the MST scheme where Alice and Bob devices’ generate their
own 𝐴𝑇 using their 𝑍𝑇_𝐿𝐿𝐾 . Moreover, the 𝑇 𝐼 generates the 𝑃𝑃𝑥 using the anonymous timing
database (𝐴𝑇𝐷𝐵), which will be leveraged in PUF-Cash to provide anonymity for Alice and Bob’s
eCash tokens. A third distinction of the POP scheme is that the𝑇 𝐼 generates a unique challenge for
creating Alice and Bob’s 𝑃𝑃𝑥 , and the 𝑃𝑂𝑃𝐷𝐵 stores the challenge and encrypted responses, while
the𝑀𝑆𝑇𝐷𝐵 stores only a nonce-hashed version of the responses.

The𝑇 𝐼 uses a specialized process to create the entire set of 𝑃𝑃𝑥 for each of Alice or Bob’s 𝑃𝑂𝑃𝐷𝐵

that significantly reduces the storage requirements for the challenges. The 𝑃𝑃𝑥 transmitted to
Alice and Bob’s device is composed of two components, a population-based component (PBC) and
a customer-based component (CBC), each stored in two different databases labeled 𝐿𝐿𝐾𝐷𝐵 and
𝑃𝑂𝑃𝐷𝐵 in Fig. 5, respectively. The PBC component of the 𝑃𝑃𝑥 labeled 𝐶ℎ𝑙𝑛𝑔 in the 𝐿𝐿𝐾𝐷𝐵 is used
for all customers in Alice’s 𝑃𝑂𝑃𝐷𝐵 , and is defined as the tuple 𝑣𝑥 , 𝑆𝐹𝑥 (the components of the SiRF
challenge were described earlier in Section 3). The CBC components of the 𝑃𝑃𝑥 are stored in the
𝑃𝑂𝑃𝐷𝐵 , one element for each customer, and are defined as a tuple𝐴𝐼𝐷𝑥 , 𝑒𝑅𝑥 , 𝑝𝑥 , 𝐻𝐷𝑥 . The 𝐴𝐼𝐷𝑥 is
a 4-byte integer representing a customer’s anonymous ID, the 𝑒𝑅𝑥 is the encrypted PUF’s response
to the challenge (32 bytes), the 𝑝𝑥 component is a 4-byte nonce used to select parameters to the
SiRF algorithm and 𝐻𝐷𝑥 is the helper data (512 bytes). Therefore, the size of each POP database
element is 552 bytes, which is quite a bit larger than the𝑀𝑆𝑇𝐷𝐵 at more than 1/2 GB for 1 million
customers. However, the benefits of the larger database are significant as we describe next.
One immediate benefit of the POP scheme over the MST scheme is related to the distribution

operation. The POP scheme is able to deliver a complete set of 𝑃𝑃𝑥 to Alice and Bob’s devices
during the BootStrap operation, in contrast to the MST scheme where the set delivered to Alice
and Bob’s devices is composed of only those devices that have enrolled beforehand. Here, complete
refers to the set of 𝑃𝑃𝑥 that includes all registered PUF devices.

Second, the challenge information stored by Alice for, e.g., Bob’s device, allows a stronger form
of authentication whereby Bob is required to generate the response to Alice’s stored challenge, and
the challenge that Alice’s stores (at least initially) has not been exposed a priori to Bob’s device.
This is true because the 𝑇 𝐼 provides Alice with Bob’s response to this challenge (in the 𝑃𝑃𝑥 tuple)
by running a ’soft PUF’ version of the SiRF algorithm using the anonymous timing data stored in
the 𝐴𝑇𝐷𝐵 . The soft PUF is able to produce the same response that Bob’s device generates for this
challenge.
Last, Alice is able to refresh Bob’s 𝑃𝑃𝑥 after every engagement with Bob in two different ways.

In one scenario, Alice generates a new challenge for Bob’s device by changing the 𝑝𝑥 component,
and then asks Bob to generate a new response (which she receives encrypted using the session
key she generated using the initial 𝑃𝑃𝑥 ). She then replaces the PBC component of Bob’s 𝑃𝑃𝑥 in
her 𝑃𝑂𝑃𝐷𝐵 with the new information. In the second scenario, Alice authenticates with the 𝑇 𝐼 and
asks the 𝑇 𝐼 to perform this operation. Although this requires Alice to be on-line, it allows Alice to
leverage the stronger form of authentication using a trusted-third party.
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Fig. 6. PUF-Cash V3.0 bootstrap operations between the Token Issuer and Alice.

5.2 PUF-Cash Protocol Details
The message exchange diagrams for the four PUF-Cash operations are described in this section.
The BootStrap operation is carried out after device manufacture, and at any point in the field under
the condition that Alice is on-line, i.e., has internet connectivity. Once Alice has engaged the 𝑇 𝐼
in a bootstrap operation, she can perform any one of the three primary PUF-Cash operations,
Withdrawal, Transfer and Deposit (note, her very first transaction must be a Withdrawal).

All of Alice’s transactions with the 𝑇 𝐼 , as well as transactions between the 𝐹𝐼 and 𝑇 𝐼 are pre-
ceded with a PUF-based mutual authentication operation, annotated as𝑀𝐴𝑁𝐴 or𝑀𝐴𝐴 for mutual
authentication using the non-anonymous (𝑁𝐴𝑇𝐷𝐵) or anonymous (𝐴𝑇𝐷𝐵) timing database, respec-
tively, and with a PUF-based session key generation operation, annotated as 𝑆𝐾𝐺 . The session
key generation operation produces a shared key 𝑆𝐾𝑥 , where 𝑥 is replaced with the initials of the
authenticating parties, e.g., 𝑆𝐾𝑇𝐹 refers to the shared session key between the 𝑇 𝐼 and 𝐹𝐼 . Although
the details of these strong, timing-database-oriented security functions are presented in previous
work [2][7][1][5], the PUF-Cash challenge-response protocol operations related to the generation
of 𝑃𝑃𝑥 utilize the same fundamental operations and are described herein for completeness.

5.2.1 PUF-Cash BootStrap. The message exchange diagram for Bootstrap is shown in Fig. 6. The
message exchange and operations performed by Alice and the 𝑇 𝐼 are described in a series of
numbered steps, annotated with circles in the figure. We define the term hardware-obfuscated
secure enclave (HOSE) to refer to the programmable logic region of Alice’s device, which can
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maintain confidential information, e.g., PUF keys, securely from the outside world and even the
processor side of Alice’s device. As discussed below, the HOSE is accessible only through a well-
defined interface.

(1) Generate HOSE Chlng: Alice and the Token Issuer (𝑇 𝐼 ) mutually authenticate and generate
a shared session key, 𝑆𝐾𝑇𝐴. Mutual authentication is done anonymously, i.e., the 𝑇 𝐼 uses its
𝐴𝑇𝐷𝐵 which contains timing data obtained during provisioning in a secure facility. Upon
successful authentication, the 𝑇 𝐼 affirms that Alice’s device is a genuine SiRF-instantiated
PUF device, with anonymous ID 𝐴𝐼𝐷𝐴. The 𝐴𝐼𝐷𝐴 is a unique record number associated with
her timing data in the 𝐴𝑇𝐷𝐵 .

(2) The 𝑇 𝐼 generates random values {𝑣ℎ𝑜𝑠𝑒 , 𝑝ℎ𝑜𝑠𝑒 } for the generation of Alice’s long-lived key
𝐿𝐿𝐾𝐴, to be used in her hardware security module 𝐻𝑂𝑆𝐸 for encrypting POP and PUF-Cash
data. 𝑣ℎ𝑜𝑠𝑒 is used to pseudo-randomly select a set of vectors 𝑣𝑒𝑐𝑠 from the 𝑉𝑒𝑐𝐷𝐵 , while
𝑝ℎ𝑜𝑠𝑒 is used to specify parameters for the SiRF algorithm. The anonymous timing data for a
subset of devices 𝑇𝑖𝑚𝑖𝑛𝑔∗ corresponding to paths timed by the selected vectors is extracted
from the 𝐴𝑇𝐷𝐵 and used to generate SpreadFactors 𝑆𝐹ℎ𝑜𝑠𝑒 . The 𝑆𝐹ℎ𝑜𝑠𝑒 optimizes uniqueness
and randomness in the responses of all PUF devices that utilize the challenge. The 𝑆𝐹ℎ𝑜𝑠𝑒 ,
𝑝ℎ𝑜𝑠𝑒 and the timing data for Alice’s device 𝑇𝑖𝑚𝑖𝑛𝑔𝐴 are used as input to a software version
of the SiRF PUF enrollment algorithm to generate the 𝐿𝐿𝐾𝐴 and helper data 𝐻𝐷𝐴. The 𝐿𝐿𝐾𝐴

is stored in the 𝐴𝑇𝐷𝐵 as a field associated with her timing data record.
(3) The challenge components {𝑣ℎ𝑜𝑠𝑒 , 𝑆𝐹ℎ𝑜𝑠𝑒 , 𝑝ℎ𝑜𝑠𝑒 } and helper data 𝐻𝐷ℎ𝑜𝑠𝑒 are sent to Alice’s

device, which she stores in her 𝐿𝐿𝐾𝐷𝐵 . The 𝐿𝐿𝐾𝐷𝐵 stores long-lived challenges for Alice,
which she uses for various functions in POP, PUF-Cash and other security related functions
beyond those discussed here.

(4) Alice’s 𝐻𝑂𝑆𝐸 is tasked with regenerating the 𝐿𝐿𝐾𝐴 for encrypting POP data received during
the ’Generate PP’ operation.

(5) Generate PP: The 𝑇 𝐼 generates another set of random values {𝑣𝑃𝑃𝑎 , 𝑝𝑃𝑃𝑎}, which are used in
the same fashion as described above in step 2.

(6) The 𝑇 𝐼 generates a set of response bitstrings 𝑅𝑖 and helper data bitstrings 𝐻𝐷𝑖 , one for each
device 𝑖 in the 𝐴𝑇𝐷𝐵 , using the 𝑆𝐹𝑃𝑃𝑎 , 𝑝𝑃𝑃𝑎 and 𝑇𝑖𝑚𝑖𝑛𝑔𝑖 as input to the SiRF PUF enrollment
algorithm.

(7) The 𝑇 𝐼 encrypts the challenge components, 𝑣𝑃𝑃𝑎 , 𝑆𝐹𝑃𝑃𝑎 , 𝑝𝑃𝑃𝑎 , and the set of data associated
with the device responses, 𝐴𝐼𝐷𝑖 , 𝑅𝑖 and 𝐻𝐷𝑖 , as 𝐶1.

(8) The packet 𝐶1 is transmitted to Alice.
(9) Alice decrypts 𝐶1 and stores the population-based-components (PBC) of the challenge in the

𝑃𝑂𝑃𝐴𝐷𝐵 , which includes the 𝑣𝑃𝑃𝑎 and 𝑆𝐹𝑃𝑃𝑎 elements of the packet. The customer-based-
components, 𝐶𝐵𝐶 , are stored in the 𝑃𝑂𝑃𝐵𝐷𝐵 and include the 𝐴𝐼𝐷𝑖 , 𝑝𝑃𝑃𝑎 and 𝐻𝐷𝑖 . Note that
although the 𝑝𝑃𝑃𝑎 component is identical for all elements in the 𝑃𝑂𝑃𝐵𝐷𝐵 , and can therefore
be stored in 𝑃𝑂𝑃𝐴𝐷𝐵 , Alice will later replace this component with a new value after carrying
out a payment transaction with a customer.

(10) The 𝑅𝑖 component is first encrypted by the 𝐻𝑂𝑆𝐸 before being stored in the 𝑃𝑂𝑃𝐵𝐷𝐵 , using
Alice’s long-lived key 𝐿𝐿𝐾ℎ𝑜𝑠𝑒 generated earlier. This protects the customer PUF response
information stored in the 𝑃𝑂𝑃𝐷𝐵 in the event an adversary gains access to Alice’s device and
attempts to extract information from the 𝑃𝑂𝑃𝐵𝐷𝐵 .

5.2.2 PUF-Cash Withdrawal. The message exchange diagram for the PUF-Cash Withdrawal oper-
ation is shown in Fig. 7. Alice carries out a withdrawal of eCash-tokens (eCt) on-line by contacting
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Fig. 7. PUF-Cash V3.0 message exchange for withdrawal operation between Alice, the Financial Institution
and the Token Issuer.

her financial institution (FI). The FI commonly manifests as a commercial bank in our existing finan-
cial infrastructure, where Alice opens and maintains her Bank accounts, and therefore, interactions
between Alice and the FI are not anonymous.

The token issuer (TI) represents the central authority and root-of-trust in the PUF-Cash system,
and plays a key role in providing anonymity in eCt value transfer operations. The TI is responsible
for carrying out two primary functions; it creates and later validates eCt for the FI and second, it
serves as the root of security in the initiation and closure operations for the proposed propagation-
of-provenance (POP) scheme.

The following series of message exchanges and cryptographic operations are carried out between
Alice, the FI and TI to enable Alice to obtain a set of anonymous eCt for use in value transfer
operations with other entities, i.e., customers or commercial vendors, while providing provenance
and protection against cloning and double spending.
(1)

6 PUF-CASH EXPERIMENTAL RESULTS
6.1 PUF-Cash Overhead Considerations
Similar to the MST model discussed earlier, the POP model requires Alice and Bob to store data
about customers in the population, and given the potentially large customer base, the database
needs to be compact.
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Fig. 8. PUF-Cash V3.0 message exchange for transfer operation between Alice and Bob.

7 PUF-CASH SECURITY ANALYSIS
8 CONCLUSIONS
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Fig. 9. PUF-Cash V3.0 message exchange for deposit operation between Charilie, the Financial Institution
and the Token Issuer.
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