
HOST PUF-Based Authentication ECE 525

ECE UNM 1 (2/11/18)

PUF-Based Authentication

PUF-based protocols have been proposed for applications including:

• Encryption and authentication

• For detecting malicious alterations of design components

• For activating vendor specific features on chips

PUFs generate bitstrings that can serve the role of uniquely identifying the hardware

tokens for authentication applications

With the Internet-of-things (IoT), there are a growing number of applications in

which the hardware token is resource-constrained

Therefore, novel authentication techniques are required that are low in cost,

energy and area overhead

Conventional methods use area-heavy cryptographic primitives and non-volatile

memory (NVM) and are less attractive for these types of embedded applications

HOST PUF-Based Authentication ECE 525

ECE UNM 2 (2/11/18)

PUF-Based Authentication

PUFs are attractive for authentication in resource-constrained tokens b/c:

• They eliminate (in many proposed authentication protocols) the need for NVM

• A special class of strong PUFs can also reduce area and energy overheads by

reducing the number and type of hardware-instantiated cryptographic primitives

• The application controls the precise generation time of the secret bitstring

• They are tamper-evident, i.e., the entropy source of the PUF is sensitive to invasive

probing attacks

The tamper-evident and unclonable characteristics of PUFs can be leveraged in

authentication protocols to

• Generate nonces and repeatable random bitstrings

• Provide secure storage of secrets

• Reduce costs and energy requirements

• Simplify key management

HOST PUF-Based Authentication ECE 525

ECE UNM 3 (2/11/18)

PUF-Based Authentication

The application defines the requirements regarding the security properties of the PUF

For example, PUFs that produce secret keys for encryption are not subject to model

building attacks (as is true for PUF-based authentication)

As discussed, model building attempts to ‘machine learn’ the components of the

entropy source as a means of predicting the complete response space of the PUF

 This is true for encryption because the responses, i.e., the key, are not revealed out-

side the chip

In general, the more access a given application provides to the PUF externally, the

more resilient it needs to be to adversarial attack mechanisms

Authentication as an application for PUFs clearly falls in the category of extended

access

HOST PUF-Based Authentication ECE 525

ECE UNM 4 (2/11/18)

Strong PUFs

As discussed earlier, strong PUFs are characterized as having:

• An exponential challenge space (note that the response space is not required to be

’exponential’)

• Model-building resistance (traditionally, ML-resistance was not a requirement, but

is now used to distinguish a strong PUF from a truly strong PUF)

Given the exposed nature of authentication interfaces, strong PUFs are preferred

However, weak PUFs whose interfaces can be cryptographically protected are com-

monly proposed as alternatives

Truly Strong PUFs provide a distinct advantage in authentication protocols

• By reducing the number of cryptographic primitives

• While providing high resistance to machine learning and other types of protocol

attacks

HOST PUF-Based Authentication ECE 525

ECE UNM 5 (2/11/18)

Intro to PUF-Based Authentication Protocols

Goals of an authentication protocol

• Basic: the protocol needs to provide unilateral, e.g., server-based, authentication

• Medium: the protocol needs to provide mutual authentication

• Advanced: the protocol needs to preserve privacy of the token (privacy-preserving)

This goal is more difficult to achieve, and typically requires additional crypto-

graphic primitives and message exchanges

Entity authentication requires the prover (hardware token) to provide both an identi-

fier and corroborative and timely evidence of its identity

For example, a secret, that could only have been known by the prover itself

PUFs carry out user authentication under the general model of ‘something you pos-

sess’, e.g., a hardware token such as a smart card

Note that PUFs do not address the task of identifying the user to the token

User-token authentication is handled with passwords, PINs, fingerprints, etc.

HOST PUF-Based Authentication ECE 525

ECE UNM 6 (2/11/18)

Intro to PUF-Based Authentication Protocols

Let’s first look at principles and techniques used in PUF-based authentication

And then later look at several protocols that have been proposed which make use

of both weak and strong PUFs

Many proposed techniques utilize Secure Sketches and Fuzzy Extractors to improve

the cryptographic quality of the PUF-generated bitstrings and to improve reliability

These techniques are referred to as error-correction and randomness extraction

mechanism in the literature

There are many forms of error correction that have been developed, mainly in the

context of communication protocols

PUF-based methods typically use helper-data-based algorithms

Helper data is produced as a supplementary source of information during the initial

bitstring generation (Gen) process

Helper data is later used to fix bit-flip errors during reproduction (Rep) process

HOST PUF-Based Authentication ECE 525

ECE UNM 7 (2/11/18)

Secure Sketches and Fuzzy Extractors

Helper data is typically transmitted and stored openly, in a public location

It therefore must reveal as little as possible about the bitstring it is designed to

error correct

The Sketch component of a secure sketch takes an input y, typically the enrollment

response bitstring of a PUF, and returns a helper data bitstring w

The Recover component takes a noisy input y’, typically the regenerated response bit-

string with bit flip errors, and a helper bitstring w and returns y”

y" is guaranteed to match the original bitstring y as long as the number of bit flip

errors is less than t

t is a parameter that specifies the level of error correction that is needed

A security property can be proved that guarantees that if y is selected from a distribu-

tion with MinEntropy m

Then an adversary can reverse-engineer y from the helper data w with probabil-

ity no greater than 2-m’ (m’ is defined below)

HOST PUF-Based Authentication ECE 525

ECE UNM 8 (2/11/18)

Secure Sketches and Fuzzy Extractors

Recall MinEntropy refers to the worst-case behavior of a random variable

Dodis et al. proposed two algorithms for a secure sketch, both based on binary error-

correcting linear block codes

A linear block code is characterized with three parameters given as [n, k, t], which

indicate that there are 2k codewords of length n

Here, each codeword is separated from all others by at least 2t-1 bits

The last parameter specifies the error correcting capability of the linear block code,

in particular, that up to t bits can be corrected

H
∞

X() min log
2

p
i

–() log
2

max p
i

()()–= = Eq. 1.

Y. Dodis, L. Reyzin, A. Smith, “Fuzzy Extractors: How to Generate Strong Keys from Bio-

metrics and Other Noisy Data”, Advances in cryptology (EUROCRYPT), 2004, pp. 523-540.

Y. Dodis, R. Ostrovsky, L. Reyzin, A. Smith, “Fuzzy Extractors: How to Generate Strong

Keys from Biometrics and Other Noisy Data”, SIAM Journal on Computing, 38(1), 2008, 97-139.

HOST PUF-Based Authentication ECE 525

ECE UNM 9 (2/11/18)

Secure Sketches and Fuzzy Extractors (derived from Maes text)

The first linear block code is called the code-offset construction

The Sketch(y) procedure samples a uniform, random codeword c (which is inde-

pendent of y) and produces an n-bit helper data bitstring w

Eq. 2 shows that a simple XOR relationship defines the relationship of the 3 variables

Recover(y’, w) computes a noisy codeword c’ using Eq. 3 and then applies an error-

correcting procedure to correct c’ as c” = Correct(c’)

The error-corrected value of y’ is computed as given by Eq. 4

If the number of bits that are different between c and c’ < t, where t represents the

error-correcting capability of the code, then the algorithm guarantees y = y”

w y c⊕= Eq. 2.

c′ y′ w⊕= Eq. 3.=> c′ y y′⊕() c⊕=

y″ w c″⊕ y c c″⊕()⊕= = Eq. 4.

HOST PUF-Based Authentication ECE 525

ECE UNM 10 (2/11/18)

Secure Sketches and Fuzzy Extractors

Also, w discloses at most n bits of y, of which k are independent of y (with k <= n)

Therefore, the remaining MinEntropy m’ is the base MinEntropy m minus (n - k),

where (n-k) represents the MinEntropy that is lost by exposing w to the adversary

The second algorithm is referred to as the syndrome construction

The Sketch(y) procedure produces an (n-k)-bit helper data bitstring using the opera-

tion specified by Eq. 5, where HT is a parity-check matrix dimensioned as (n-k) by n

The Recover procedure computes a syndrome s using Eq. 6

Error correction is carried out by finding a unique error word e such that the hamming

weight in bitstring e is <= to t (the error correction capability of the code)

w y H
T

•= Eq. 5.

s y′ H
T

w⊕•=
Eq. 6.=> s y y′⊕() H

T
•=

s e H
T

•= Eq. 7.with error corrected PUF output => y″ := y′ e⊕

HOST PUF-Based Authentication ECE 525

ECE UNM 11 (2/11/18)

Secure Sketches and Fuzzy Extractors

In both the code-offset and syndrome techniques, the Recover procedure is more

computationally complex than the Sketch procedure

The first PUF-based authentication protocols implemented the Recover procedure on

the resource-constrained hardware token

Subsequent work proposes a reverse fuzzy extractor, which implements Sketch on

the hardware token and Recover on the resource-rich server

This makes the protocol more cost-effective and attractive for this type of appli-

cation environment

Similar to error-correction, there is a broad range of techniques for constructing a

randomness extractor

The Maes text provides a survey of techniques

Fuzzy extractors combine a secure sketch with a randomness extractor

HOST PUF-Based Authentication ECE 525

ECE UNM 12 (2/11/18)

Secure Sketches and Fuzzy Extractors (modified from Maes text)

This PUF-based authentication protocol shows the hardware token, e.g., smart card,

shown on the left and the secure server, e.g., bank, shown on the right

The Sketch takes an input r, which, e.g., might be a PUF response to a server-gener-

ated challenge c, as input and produces helper data w (labeled 1st in the figure)

Recover(...)

Reproduce (Rep)

Extractor(...)

r”

n z’

w
r’

hardware token

PUF(c)

2nd

Sketch(...)

TRNG()

Generate (Gen)

Extractor(...)

w

n
z

r

c,w,n

trusted server
1st

c

DB

?match?
c,z,w,n

c
r

HOST PUF-Based Authentication ECE 525

ECE UNM 13 (2/11/18)

Secure Sketches and Fuzzy Extractors

The Extractor takes both r and a random number (seed) n and produces an entropy

distilled version z

This information can be stored as a tuple (c, z, w, n) in a secure database (DB) on the

server

This component of the fuzzy extractor is called Generate or Gen

Recover(...)

Reproduce (Rep)

Extractor(...)

r”

n z’

w
r’

hardware token

PUF(c)

2nd

Sketch(...)

TRNG()

Generate (Gen)

Extractor(...)

w

n
z

r

c,w,n

trusted server
1st

c

DB

?match?
c,z,w,n

c
r

HOST PUF-Based Authentication ECE 525

ECE UNM 14 (2/11/18)

Secure Sketches and Fuzzy Extractors

Authentication in the field begins by selecting a tuple (c, z, w, n) from the DB and

transmitting the challenge c, helper data w and the seed n to the hardware token

The PUF is challenged a second time with challenge c and produces a ‘noisy’

response r’ (labeled 2nd in the figure)

The Reproduce or Rep process of the fuzzy extractor uses the Recover procedure of

the secure sketch to error correct r’ using helper data w

Recover(...)

Reproduce (Rep)

Extractor(...)

r”

n z’

w
r’

hardware token

PUF(c)

2nd

Sketch(...)

TRNG()

Generate (Gen)

Extractor(...)

w

n
z

r

c,w,n

trusted server
1st

c

DB

?match?
c,z,w,n

c
r

HOST PUF-Based Authentication ECE 525

ECE UNM 15 (2/11/18)

Secure Sketches and Fuzzy Extractors

The output r” of Recover and the seed n are used by the Extractor to generate z’

As long as the number of bit flip errors in r’ is less than t (the chosen error correction

parameter), the z’ produced by the token’s Extractor will match the server-DB z

And authentication succeeds

Note that the error corrected z’ establishes a shared secret between the server and

token, which can alternatively be used as input to hash and block cipher functions

Recover(...)

Reproduce (Rep)

Extractor(...)

r”

n z’

w
r’

hardware token

PUF(c)

2nd

Sketch(...)

TRNG()

Generate (Gen)

Extractor(...)

w

n
z

r

c,w,n

trusted server
1st

c

DB

?match?
c,z,w,n

c
r

