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Secure Boot Introduction

Embedded system security can be partitioned into two categories:

• Security issues associated with the design

• Security issues associated with the system and application data once the design is

instantiated (or programmed for FPGAs) and the system is booted

Design security can be sub-divided into:

• Bootstrap: Techniques for ensuring that authentic BootROM is run or the authentic

design is programmed onto the FPGA

• Trojan insertion: Techniques for preventing or detecting adversarial insertions of

malicious functions to a design

• IP protection: Techniques to prevent adversaries from reverse engineering the

design and/or leveraging the design in their own applications

• IC overbuilding: Methods for preventing adversaries from building additional cop-

ies of an authentic design, or coping and using legitimate bitstreams illegally

The first two of these relate to Secure Boot

Methods that guarantee that the system boots with an authorized FPGA bit-

stream and/or BootROM code establish the ’root of trust’ in the system
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Secure Boot Introduction

A running system booted in a trusted fashion can then be used to ensure data security

Data security can be sub-divided into:

• Protecting stored data and user application keys

• Protecting the processing of that data

• Protecting the transmission and reception of data with other parties

Methods here include

• Tamper detection that destroys (zeroizes) all sensitive data

• Encryption and authentication mechanisms

• Secure key storage mechanisms via PUFs

• Network hardware firewalls

• Differential power analysis countermeasures

Of course, none of these can be ensured unless the system boots in a trusted and

secure fashion
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Secure Boot Introduction

The focus of our discussion will be on secure boot of FPGAs

We will examine the methods provided by commercial FPGA vendors, in particular,

Xilinx, for achieving this

And then we will discuss a novel technique that we are proposing based on the

HELP PUF

In Xilinx FPGAs, the root of trust is the stored key

Keys can be stored in Battery Backed RAMs (BBRAM) or using eFUSE

The drawbacks of these on-chip digital storage mechanisms include

• BBRAM require a battery to be installed on the system board and therefore increase

system cost

• The batteries for BBRAM also have a limited lifetime and therefore complicate sys-

tem maintenance

• eFUSE is one-time-programmable (OTP) and therefore reduce flexibility in key

management

• eFUSE keys can be read-out using, e.g., scanning electron microscopes (SEM)
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Xilinx Secure Boot Process

The BBRAM or eFUSE keys are used as the root of trust in the Xilinx secure boot

process

• In a secure facility, the Xilinx CAD tools can be used to encrypt the bitstream using

a randomly generated or user-specified key

• The decryption key is loaded via JTAG at a secure facility into the eFUSE or

BBRAM

• The in-field secure boot process first determines if the external bitstream includes

an encrypted-bitstream indicator

If so, the on-chip 256-bit AES engine decrypts the bitstream using cipher block

chaining (CBC) mode of AES along with the eFUSE or BBRAM key

CBC mode XORs the previous block ciphertext with the next block plaintext

before encrypting the current block (decryption reverses this process)

This forces different ciphertexts for replicated components in the plaintext
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Xilinx Secure Boot Process

• Authentication is used to ensure data integrity of the bitstream using SHA-256

where a 256-bit keyed MAC (HMAC) is computed for the bitstream

The HMAC is designed to prevent bit-flip attacks and other types of fault injec-

tion attacks

Therefore, the HMAC authenticates the origin of the bitstream and detects any

type of tamper

The HMAC of the unencrypted bitstream is computed in a secure facility and

embedded with the key in the bitstream, which is then encrypted by AES

During in-field boot, a second HMAC is computed as the bitstream is decrypted

and compared with the HMAC embedded in the decrypted bitstream

If the comparison fails, the FPGA does not become active

The secure boot process provides confidentiality, data integrity and authentication

It detects tamper and attempts to program FPGA with a non-authentic bitstream
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Xilinx SoC Secure Boot Process

Xilinx FPGA SoCs, e.g., Zynq series, use an asymmetric (public-private) authentica-

tion (digital signature) scheme in the secure boot process

Here, we see bootgen computes a SHA-256 hash of the encrypted first stage boot

loader (FSBL) and a digital signature is then computed using the RSA private key

Signature verification is carried out by the Zynq chip using the public key to recover

the hash, which is compared with a locally computed hash of the encrypted FSBL

Leveraging Asymmetric Authenticationto Enhance Security-Critical Applications Using Zynq-7000 All Programmable SoCs,WP468 (v1.0) October 20, 2015
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Xilinx SoC Secure Boot Process

The first stage boot loader (FSBL) is authenticated as shown BEFORE it is decrypted

and executed by the PS-side

If authentication succeeds, the FSBL is decrypted by a PL-side AES engine using a

key stored in the BBRAM or eFUSE

RSA-2048 signature verification algorithm resides in the PS-side BootROM, which is

a mask-programmed, hardwired, immutable memory

Neither the private or public keys are stored on the FPGA

Instead, a 256-bit hash of the public key is programmed into the eFUSE array

The FSBL then becomes the root of trust in the boot process

PS-side images and PL configurations can then be loaded by the FSBL

The user must include decryption and authentication functions in the FSBL to

ensure these subsequent components of the boot process are secure
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Xilinx Secure Boot Process

Secure boot requires the boot process to begin with a root of trust, and then carry out

authentication in each of the subsequent stages

As indicated above, Xilinx FPGA SoCs use public key cryptography, i.e., RSA, for

authentication and attestation of FSBL and other configuration files

And a hardwired 256-bit AES engine and HMAC to securely decrypt and

authenticate boot images on chip using a BBRAM or eFUSE embedded key

Although the Xilinx FPGA SoC root of trust begins with the RSA authenticated

FSBL, which does not use an embedded key, decryption of the FSBL does

Moreover, the Xilinx non-SoC PL-side boots, as discussed earlier, use eFUSE and

BBRAM for bitstream decryption

In either case, the root of trust cannot be expanded to include PS-side images and/

or PL configuration data without keeping the embedded key confidential
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Xilinx Boot Process

Let’s examine the underlying steps of the Xilinx boot process and then look at an

alternative self-authenticating PUF-based solution

The Xilinx BootROM loads the FSBL from an external NVM to DDR (DRAM)

The FSBL programs the PL side and then reads the second stage boot loader (U-

Boot), which is copied to DDR, and passes control to U-Boot

U-Boot loads the OS images, which includes a bare-metal application, or the Linux

OS, embedded software applications and data files

Zynq 7020 SoC

Zynq BootROM loads

FSBL from Boot image

FSBL programs PL and

passes control to U-Boot

U-Boot loads the OS

images (Linux, software
apps. etc.)

External NVM

Boot Image

1) FSBL.elf
2) Encrypted bitstream
3) U-Boot.elf
4) Linux kernel
5) Device tree
6) Root file system
7) Data files/apps.
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Self-Authenticated Secure Boot (SASB) Process

The Self-Authenticated Secure Boot (SASB) boot process does not use any of the

security features provided by Xilinx, i.e., it is self-contained and self-authenticaing

The first step is identical to the existing

boot process

The PL component that is programmed

into the PL side by the FSBL is the

unencrypted SASB bitstream

The FSBL then passes control to SASB

and blocks

SASB reads the PUF’s challenges and

helper data from the external NVM and

carries out key regeneration

The key is transferred to an embedded PL-side AES engine

Zynq 7020 SoC

Zynq BootROM loads

FSBL from Boot image

FSBL programs PL with

SASB bitstream

External NVM

Boot Image

1) FSBL.elf
2) SASB bitstream,

5) U-Boot.elf (encrypted)
6) Linux kernel (encrypted)
7) Device tree (encrypted)
8) Root file sys. (encrypted)
9) Data & apps. (encrypted)

SASB generates decryption

key and self-authenticates,

PUF challenges and
helper data (unencrypted)

and transfers key directly
to PL AES engine

SASB reads encrypted components, U-Boot, Linux,

SASB uses partial dynamic

PS side boots Linux and

reconfiguration to program
unused PL regions and

pass?

runs apps, etc.

Y

N

FPGA deactivates

 device tree, etc. from external NVM, decrypts and
 performs integrity check on generated key

3) key integrity ck (encrypted)

4) App bitstream (encrypted)

transfers software images to DDR



HOST Secure Boot I ECE 525

ECE UNM 11 (3/9/18)

Self-Authenticated Secure Boot (SASB) Process

SASB reads the encrypted second stage

boot image components labeled as com-

ponents 3 through 9 from external NVM

and transfers them to the AES engine

An integrity check is performed at the

beginning of the decryption process as a

mechanism to determine if the proper

key was regenerated

The first component decrypted is the key

integrity check component (labeled 3)

This component can be an arbitrary

string or a secure hash of, e.g., U-Boot.elf, that is encrypted during enrollment and

stored in the external NVM

Zynq 7020 SoC

Zynq BootROM loads

FSBL from Boot image

FSBL programs PL with

SASB bitstream

External NVM

Boot Image

1) FSBL.elf
2) SASB bitstream,

5) U-Boot.elf (encrypted)
6) Linux kernel (encrypted)
7) Device tree (encrypted)
8) Root file sys. (encrypted)
9) Data & apps. (encrypted)

SASB generates decryption

key and self-authenticates,

PUF challenges and
helper data (unencrypted)

and transfers key directly
to PL AES engine

SASB reads encrypted components, U-Boot, Linux,

SASB uses partial dynamic

PS side boots Linux and

reconfiguration to program
unused PL regions and

pass?

runs apps, etc.

Y

N

FPGA deactivates

 device tree, etc. from external NVM, decrypts and
 performs integrity check on generated key

3) key integrity ck (encrypted)

4) App bitstream (encrypted)

transfers software images to DDR
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Self-Authenticated Secure Boot (SASB) Process

An unencrypted version of the key integ-

rity check component is also stored as a

constant in the SASB bitstream

The integrity of the decryption key is

checked by comparing the decrypted

version with the SASB version

If they match, then the integrity check

passes and the boot process continues

Otherwise, the FPGA is deactivated and

secure boot fails

If the integrity check passes, SASB then decrypts components 4 through 9, starting

with the application (App) bitstream

Zynq 7020 SoC

Zynq BootROM loads

FSBL from Boot image

FSBL programs PL with

SASB bitstream

External NVM

Boot Image

1) FSBL.elf
2) SASB bitstream,

5) U-Boot.elf (encrypted)
6) Linux kernel (encrypted)
7) Device tree (encrypted)
8) Root file sys. (encrypted)
9) Data & apps. (encrypted)

SASB generates decryption

key and self-authenticates,

PUF challenges and
helper data (unencrypted)

and transfers key directly
to PL AES engine

SASB reads encrypted components, U-Boot, Linux,

SASB uses partial dynamic

PS side boots Linux and

reconfiguration to program
unused PL regions and

pass?

runs apps, etc.

Y

N

FPGA deactivates

 device tree, etc. from external NVM, decrypts and
 performs integrity check on generated key

3) key integrity ck (encrypted)

4) App bitstream (encrypted)

transfers software images to DDR
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Self-Authenticated Secure Boot (SASB) Process

SASB uses the HELP PUF to generate the decryption key as a mechanism to elimi-

nate the vulnerabilities associated with on-chip key storage

Key generation using PUFs starts with an enrollment phase carried out in a secure

environment

Challenges are applied to generate the encryption key for encrypting the 2nd

stage boot images

A special enrollment version of SASB generates the key internally and transfers

helper data off of the FPGA

The challenges and helper data are stored in the external NVM unencrypted

The internally generated key is then used to encrypt the other components of the

NVM by configuring AES in encryption mode

 The enrollment version performs encryption while the in-field version performs

decryption, but the two versions are otherwise identical
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Security Properties of SASB

The proposed system has the following security properties

• The enrollment and regeneration processes never reveal the key outside the FPGA,

requiring the adversary to use physical, side-channel-based attacks to steal the key

• Any type of tamper with the unencrypted helper data by an adversary will only pre-

vent the key from being regenerated and a subsequent failure of boot process

Note that it is always possible to tamper with the contents stored in the external

NVM, independent of whether it is encrypted or not

• The HELP PUF discussed earlier implements a helper data scheme that does not

leak information about the key

• The HELP PUF to designed to self-authenticate itself, thereby detecting any type of

tamper with unencrypted version of the SASB bitstream
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SASB Attack Model

The primary attack model addressed by SASB is key theft

The adversary’s goal is to add a key leakage channel via a hardware Trojan that

would provide backdoor access to the key

In order to accomplish this, the

unencrypted SASB bitstream first

needs to be reverse engineered

The attack modifications labeled

A1 involve changing wire and

LUT configuration information

within SASB

The A2 attack modifications illus-

trate the addition of a hardware Trojan outside of SASB

In both scenarios, the objective is to leak the key to I/O pads

External NVM

SASB

Helper data

Challenges

Layout of SASB in FPGA

SASB logic
AES

k
ey

Application PL logic

Encypted
2nd stage

boot images

PS side

PL side

leakage
channel

A1

A2
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SASB Attack Model

The back door logic added by the adversary could simply wait until the key is gener-

ated, which occurs in the 3rd step of the secure boot process

SASB implements defense mechanisms that detects tamper and scrambles the key if

A1 is attempted, and deletes the hardware Trojan when A2 is attempted

The defense mechanisms are based on measuring path delays within SASB at high

resolution and then deriving the key from these measurements

Therefore, correct regeneration of the key is dependent on the delays of a set of paths

The SASB key generation algorithm is constructed such that a change in any of the

path delays b/c of tamper causes a large number of bits in the key register to change

Therefore, the key read by the adversary is wrong and the system fails to boot
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SASB Architecture

The original and newly proposed architecture for HELP

HELP leverages variations in path delays in arbitrarily-synthesized functional units,

i.e., cryptographic primitives to generate a unique key (see PUF screencasts)

The HELP Engine includes a set of modules that measure path delays in the Func-

tional Unit, and then uses these digitized delays in a key generation algorithm

The SASB architecture eliminates the ‘Functional Unit’ and instead uses the imple-

mentation logic of the HELP engine itself as the source of entropy

HELP Engine

HELP measures
path delays in

this logic

Launch-Capture,

Modulus, Bit Gen
modules

PNDiff, TVComp,

Functional Unit

HELP Engine
Launch-Capture,

Modulus, Bit Gen
modules

PNDiff, TVComp,

HELP
self-authenticates
by measuring path
delays in its own

modules

Original SASB Version
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SASB Architecture

All of the modules within HELP except for the Launch-Capture module are config-

ured to operate in one of two modes

• Mode 1 is the original mode, in which the module carries out its dedicated function

as part of the HELP algorithm

• Mode 2 is a special mode, that allows the Launch-Capture module to apply 2-vector

sequences to its inputs and then measure the delays of paths through the modules

The digitized representation of these path delays are stored in a BRAM and used later

to generate the key when the modules are switched back to Mode 1

All the changes are implemented in an HDL, i.e., no hand-crafting of the wires and

LUTs is necessary

The original HDL modules for HELP are written in a two-segment style to enable the

second mode to be easily integrated

In two-segment style, State and DataPath registers (FFs) are described in a sepa-

rate process block from the NextState and DataPath combinational logic
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SASB Architecture

The dual mode structure for a typical SASB module

The elements shown in blue represent the changes required to provide two modes of

operation for each of the SASB modules

The 2-vector sequences (challenges) are delivered to the State and Datapath FFs by

adding MUXs as shown on the left side

HELP uses a clock strobing technique to time the paths (see PUF screencasts)

State FFs
2
1

DataPath FFs

NextState logic

DataPath logic

Capture

Capture

Clk2

Clk1

Clk2

To timing

evaluation

module

Mode ctrl

1
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module inputs
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module inputs

Capture
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SASB Architecture

Note that any tamper to the logic functions implemented within the LUTs will

change the functional behavior and result in missing or extra timing values

As mentioned, adversaries can also snoop during key regeneration in Mode 1 as a

mechanism to leak the key by adding fanout branches

As a countermeasure, SASB is configured into an isolation region (a pblock), which

is surrounded by the blanking bitstream region

SASB writes a blanking bitstream into this region using the ICAP interface before

the key is generated destroying Trojans and any switch box routing information

FPGA PL side

Blanking bitstream region

SASB

Isolation region
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SASB Architecture

SASB includes a module that performs partial dynamic reconfiguration on the blank-

ing bitstream region

Given that SASB is unencrypted, the adversary might attempt to disable this state

machine or change its functionality

As a countermeasure, SASB also self-authenticates the blanking bitstream state

machine as part of the key generation process

Other proposed countermeasures include wiring unused LUTs together within the

isolation region and creating fanout-blocking paths through the switch boxes

FPGA PL side

Blanking bitstream region

SASB

Isolation region
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BulletProof Architecture

We developed a variation of SASB called Bullet-Proof Boot for FPGAs (Bullet-

Proof)

BulletProof derives challenges for the HELP PUF using the FPGA configuration data

read directly from the ICAP interface

Since the FPGA is programmed with the unencrypted BulletProof bitstream, this also

represents a second form of self-authentication

 The source of entropy of the HELP PUF is an implementation of the SHA-3 algo-

rithm, in contrast to the HELP modules themselves as was true for SASB

The bitstream configuration data is hashed using SHA-3 configured in Mode 1 (func-

tional mode)

Periodically, the current state of the SHA-3 hash is used as a challenge to SHA-3 con-

figured in Mode 2 (PUF mode) to generate timing data for key generation
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BulletProof Architecture

The configuration data within the PL-side of the FPGA is shown overlaid on top of

the BulletProof flow diagram

The SHA-3 blocks are shown as two separate blocks but are in fact one block

The BulletProof architecture is designed such that challenges are launched directly

from the ICAP interface register to prevent a specific type of RE attack

01011...

slice config data

11011... 00100... 11101... 11101...
00111...
11111...

11011...

ICAP interface

SHA-3
functional mode

SHA-3
PUF mode

1 Read slice config data

2 Use as input to SHA-3

3 Compute digest

4 Use digests as
challenges for HELP

BRAM

5 Store digitized
path delays

151 230

16-bit digitized
path delays

97 349

HELP Algorithm
decrypt key

11010110001... AES

6 Generate key

7 Check key

Decrypt 2nd stage

To PL
and DDR

FPGA Programmable Logic

External NVM

Helper data Encrypted SSBI

boot images (SSBI)

1 Enroll/Boot config. bit

Boot
Boot

Enroll

8

Un-Encrypted SSBI

Enroll
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BulletProof Architecture

The paths between the ICAP and SHA-3 are timed because of the following reverse

engineering attack scenario

We must guarantee that the configuration data used as input to the SHA-3 originates

from the ICAP interface

Otherwise, the adversary can create a route as shown and then change the on-

chip version of BulletProof to leak the key off-chip

01011...

slice config data

11011... 00100... 11101... 11101...
00111...
11111...

11011...

ICAP interface

SHA-3
functional mode

SHA-3
PUF mode

1 Read slice config data

2 Use as input to SHA-3

3 Compute digest

4 Use digests as
challenges for HELP

BRAM

5 Store digitized
path delays

151 230

16-bit digitized
path delays

97 349

HELP Algorithm
decrypt key

11010110001... AES

6 Generate key

7 Check key

Decrypt 2nd stage

To PL
and DDR

FPGA Programmable Logic

External NVM

Helper data Encrypted SSBI

boot images (SSBI)

1 Enroll/Boot config. bit

Boot
Boot

Enroll

8

Un-Encrypted SSBI

Enroll

Adversary modifies BulletProof
to create a route off-chip for
streaming in the ’legitimate’
configuration data

Decryption key leakage
channel
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Time-to-Digital Converter Alternative to Xilinx MMCM

The screencasts on the HELP PUF discussed the clock strobing method that we use to

time paths

An alternative is to use the high-speed carry chains on the FPGA in a time-to-digital

converter (TDC) configuration

The TDC timing engine replaces the Xilinx MMCM, and when used with a ring

oscillator as the clock source, prevents attacks that attempt to stop the clock
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