Introduction

Probability and statistics play very important roles in hardware security and trust (in fact, they do in MANY other fields as well)

Our focus is on their application to Trojan Detection and Physical Unclonable Functions

We will discuss only a few (of many) statistical techniques for these problems, in particular

- NIST statistics for evaluating the *randomness* of bit streams generated by PUFs
- Hamming distance statistics for evaluating PUF uniqueness and stability
- Regression models and outlier analysis for hardware Trojans detection

Randomness (this material derived from NIST "A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications") A random bit sequence can be interpreted as the result of a sequence of 'flips' of an unbiased (fair) coin

Randomness

Randomness

With sides labeled '0' and '1', each flip has probability of exactly 1/2 of producing a '0' or '1'

Also, the 'flip' experiments are independent of one another

The fair coin toss experiment is an example of a *perfect* random bit generator because the '0's and '1's are randomly and uniformly distributed

The result of the next trial is IMPOSSIBLE to predict!

Random Number Generators (RNGs)

An RNG uses a *non-deterministic* source (the **entropy source**, e.g., noise in an electrical circuit), plus a processing function (the **entropy distillation** process) to produce randomness

The *distillation* process is used to overcome any weaknesses in the entropy source that results in production of non-random numbers

Statistics

Randomness

There are an *infinite number* of possible statistical tests that can be applied to a sequence to determine whether 'patterns' exist

Therefore, no *finite* set of tests is deemed complete

Statistical tests are formulated to test a specific **null hypothesis** (H_0)

Here the null hypothesis-under-test is that the sequence being tested is **random**

The antonym to H_0 is the alternative hypothesis (H_a), that the sequence is NOT random

Each test has an underlying *reference distribution* which is used to develop a **critical value**, e.g., a value out on the tail of the distribution, say at 99%

The **test statistic** computed for the sequence is compared against the critical value, and if larger, the sequence is deemed NOT random (H_0 is rejected)

The premise is that the tested sequence, if random, has a very low probability, e.g., 0.01%, of exceeding the critical value

HOST	Γ Statistics	ECE 525
Rand	lomness	
]	The probability of a Type I error (data is actual random but test statistic	exceeds crit-
	ical value) is often called the level of significance , α	
	Common values used in crypto are 0.01	
ł	Analogously, the probability of a Type II error (data is not random but test) is denoted by β	passes the
	Beta (unlike alpha) is NOT a fixed value because there are an infini ways a sequence can be non-random	ite number of
]	The NIST tests attempt to minimize the probability of a Type II error	
1	Note that the probabilities α and β are related to each other and to the statested sequence	ize <i>n</i> of the
I	The third parameter is dependent on the other two	
	Usually sample size n and an α are choosen, and a critical value is that minimizes the probability of a Type II error	computed

4

Randomness

A **test statistic**, e.g. *S* is computed from the data, and is compared to the critical value t to determine whether H₀ is accepted

S is also used to compute a *P-value*, a measure of the *strength* of the evidence **against** H_0

Technically, the *P-value* is the probability that a perfect RNG would have produced a sequence **less random** than the sequence-under-test

If the *P-value* is 1, then the sequence appears to have *perfect* randomness, if 0, then completely non-random, i.e., **larger** *P-values* support randomness

A significance level, α , is chosen and indicates the probability of a Type I error If the *P*-value >= α , then H₀ is accepted, otherwise it is rejected

If α is 0.01, then one would expect 1 truly random sequence in 100 to be rejected A *P*-value < 0.01 indicates that the sequence is non-random with a **confidence** of 99%

ECE UNM

Randomness

Two major assumptions:

- Uniformity: At **any** point in the generation of a random bit sequence, the number of '0's and '1's is equally likely and is 1/2, i.e., expected number of '1's is *n*/2
- Scalability: Any test applicable to a sequence is also applicable to a **subsequence** extracted at random, i.e. all subsequences are also random

Entropy

A measure of the *disorder* or *randomness* in a closed system The entropy of uncertainty of a random variable X with probabilities p_i , ..., p_n is

$$H(X) = -\sum_{i=1}^{n} p_i \log p_i$$

$$H(X) = \frac{1}{\ln(2)} \log_2\left(\frac{1}{p}\right) \qquad \text{When } p_i = 1/n \text{ (equal probabilities)}$$

$$H_{\infty}(X) = \min_{i=1}^{n} (-\log_2 p_i) = -\log_2(\max_i(p_i)) \qquad (\text{min-entropy})$$

A distribution has a min-entropy of at least *b* bits if no possible state has prob. > 2^{-b}

Probability Distributions Entropy

So a string of *10* binary values, one with worst case probability of occurrence of 1/500 = 0.002, yields $-\log_2(0.002) = 8.966$ bits (the best you can achieve)

NIST reference distributions: standard normal

$$f(x;\mu,\sigma^2) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma}}$$

Normal (Gaussian) probability density function (wikipedia reference)

ECE UNM

Statistics

Probability Distributions

And **chi-square**(χ^2)

The chi-squared distribution with k *degrees of freedom* is the distribution associated with the sum of the squares of *k* **independent standard normal** random variables Degrees of freedom: number of values in the final calculation of a statistic that are free to vary

NIST uses *chi-squared* tests to measure the 'goodness of fit' of an observed distribution and a theoretical one

NIST Test Suite

For NIST tests, if the bit sequence-under-test is non-random, then the calculated test statistic will fall in the *extreme regions* of the reference distribution

The NIST Test Suite has 15 tests -- for many of them, it is assumed the bit sequence is large, on order of 10^3 to 10^7

1) Frequency (Monobit) Test (n > 100)

Analyzes the proportion of '0's and '1's in the entire sequence, i.e., assesses the closeness of the fraction of '1's to 0.5

ALL SUBSEQUENT tests depend on the passing of this test!

Bit sequence is converted to '1's and '-1's using $X_i = 2\varepsilon - 1$ (ε_i represent the individual bits in the sample)

Test statistic is s_{obs} : absolute value of the sum of the X_i divided by the sqrt(*n*) (*n* is the sequence length)

Statistics

NIST Test Suite

The reference distribution for the test statistic is *half normal*, *i.e.*, if z is distributed as normal, |z| is distributed as half normal

For example, if $\varepsilon = 1011010101$ then n = 10 and $S_n = 1 + (-1) + 1 + 1 + (-1) + 1 + (-1) + 1 + (-1) + 1 = 2$

Test statistic:

$$s_{\text{obs}} = \frac{|S_n|}{\sqrt{n}} = \frac{|2|}{\sqrt{10}} = 0.63245532$$

Compute the *P*-value = $erfc(s_{obs}/sqrt(2))$, where *erfc* is the complementary error function

 $\operatorname{erfc}\left(\frac{0.63245532}{\sqrt{2}}\right) = 0.527089$

If the *P*-value is < 0.01, then conclude the sequence is non-random Large values of s_{obs} , which are caused by large numbers of '0's or '1's, yield small *P*-values

ECE UNM

NIST Test Suite 2) Frequency Test within a Block (n > 100, M is block size, N is # bits/block (Select M >= 20, M > 0.01n and N < 100)

Analyzes the proportion of '1's within *M*-bit blocks to determine if they are $\sim M/2$ Chi-squared is used as the reference distribution

Small *P-values* (computed from incomplete gamma function) indicate that at least one of the blocks has a large deviation in '1's from the expected of 0.5

3) Runs Test (*n* > 100)

Analyzes the total number of *runs* (uninterrupted sequences of identical bits), and determines whether the *oscillation* between '0's and '1's is **too fast** or **too slow**

Runs the Frequency test first, if the sequence fails, *P-value* set to 0

Computes test statistic by looking at each bit and its successor, if different add 1 to sum, else 0, e.g.,

 $\varepsilon = 1 \ 00 \ 11 \ 0 \ 10 \ 11 \ \text{generates test statistic} \ (1+0+1+0+1+1+1+0) + 1 = 7$

HOST	Statistics	ECE 525
NIST Test Suite		
4) Longest Run of One	es in a Block (<i>n</i> > 128)	
(M set accore	ding to n , min $n = 128, M \rightarrow 8, n = 6272$, <i>M</i> -> 128,)
Analyzes the longe	est run of '1's within <i>M</i> -bit blocks, and det	termine if it is consistent
with the length of	the longest run expected in a random seq	uence
The larger the bloc	k size M (and corresponding n), the more	partitions that exist in
the 'binning' tabl	e (see doc)	
This makes sense s	since the probability that a longer sequence	e of '1's occurs increases
as the bit sequenc	e increases	
5) Binary Matrix Ran	k Test (n > 38,912)	
$(\mathbf{M} = \mathbf{rows} \ \mathbf{of}$	each matrix, Q = columns, code set wit	th both = 32, also need
at least 38 n	natricies)	
Analyzes the linea	r dependence among 'fixed length' substri	ings in the sequence, and
determines if the	number of ranks of size M, M-1 and those	e less than this match the
expected number		

NIST Test Suite

5) Binary Matrix Rank Test (cont.)

Rank indicates the number of rows that are **linearly independent**

The larger the rank for a given matrix, e.g., as it approach full rank or *M*, the more 'information' it posseses

6) Discrete Fourier Transform Test (*n* > 1000)

Analyzes the peak heights in the frequency spectrum of the sequence, and determines if there are *periodic* features (repeating patterns close to each other)

The test statistic is the **normalized difference** between the observed and expected number of frequency components that are beyond the 95% threshold

Test fails if number of peaks exceeding the 95% threshold is significantly different than 5%

The threshold is computed as a function of n

Statistics HOST ECE 525 **NIST Test Suite** 7) Non-overlapping Template Matching Test (n > 100 with N = 8) (M > 0.01 * n, N can be changed but should be <= 100)Analyzes the bit sequence for the number of times **pre-specified** target strings occur, to determine if too many occurrences of a non-periodic patterns occur An *m*-bit window is used to search of a specific *m*-bit pattern If not found, the window slides by 1 bit position (overlapping) If found, window is reset to bit after the found pattern, and search continues *m* is the length of each template *B* defined in the template library Sequences for $m = 2, 3 \dots 10$ have been provided, sequences with m = 9 or 10 should be specified Bit sequence is partitioned into N sequences of length M (N is fixed at 8) For example, if n = 1000, and N = 8, then M = 1258) Overlapping Template Matching Test ($n > 10^6$ with N = 8)

Similar to the above but 'hits' slide the window 1 position -- M = 1032 and N = 968

NIST Test Suite

9) Maurer's "Universal Statistical" Test (*n* > 387,840)

Analyzes the bit sequence to determine the **level of compression** that can be achieved (without loss of information)

The bit sequence is partitioned into two segments

• An **initialization segment** consisting of *Q M*-bit non-overlapping blocks The unique sequences in the *M*-bit blocks define a table where the last occurrence of each *M*-bit block is noted in the table

• A test segment consisting of *K M*-bit non-overlapping blocks

The tests segment is scanned to determine the number of blocks since the last occurrence of the same *M*-bit block

Sums of distances between identical blocks is computed for the test statistic

NIST Test Suite

10) Linear Complexity Test ($n > 10^6$ + other restrictions on N and M)

Analyzes the bit sequence to determine the length of the smallest set of LFSRs needed to reproduce the sequence

Partition the bit sequence into N independent blocks of M bits

Use Berlekamp-Massey algorithm to determine the linear complexity (L_i) of each block

Here, L_i is the length of the shortest LFSR that can generate all bits in block *i*

11) Serial Test (choose m and n such that m < floor(log₂n) -2)

Analyzes the bit sequence to determine the frequency of all possible (2^m) overlapping *m*-bit patterns, to determine if the number is uniform for all possible patterns

Every *m*-bit sequence has the same chance, as any other, of appearing in the bit sequence, so the distribution is expected to be uniform

NIST Test Suite 12) Approximate Entropy Test (choose m and n such that m < floor(log₂n) -5)

Similar to Serial Test, this test analyzes the frequency of all possible overlapping *m*-bit patterns

The difference is that here we compare the frequency of overlapping blocks of **two** consecutive/adjacent lengths (m and m + 1) against the expected result

```
For example, assume \varepsilon = 0100110101,
```

Then the overlapping blocks become 010, 100, 001, 011, 110, 101, 010, 101, 010, 101

The number of occurrences for each possible (2^3) *m*-bit string are tallied, #000 = 0, #001 = 1, #010 = 3, etc and converted to **frequencies**

Entropy formula is applied using these counts

The process is repeated for m+1-bit strings and a test statistic computed

NIST Test Suite

13) Cummulative Sums Test (n > 100)

Analyzes the bit sequence to determine if the cummulative sum of incrementally increasing (decreasing) partial sequences is too large or too small

The bit sequence is converted to (1, -1) and sums are computed by simply adding one additional bit in the sequence at each step

The largest excusion from zero is used as the test statistic

Large values of the test statistic indicate that there are too many '1's or '0's early in the sequence (for forward) or late in the sequence (for reverse)

Small values indicate that the '1's and '0's are intermixed TOO evenly

14 & 15) Random Excursions (Variant) Test $(n > 10^6)$

See documentation

NIST Test Suite

Interpretation of results (written to experiments/AlgorithmTesting/finalAnalysis-Report.txt)

• Examine the number of bit sequences that pass each test For each sequence, a *P-value* is produced and is used to determine if the sequence passes the test, i.e., if *P-value* > α

At a significant level of $\alpha = 0.01$, about 1% of the sequences are expected to fail

• Examine the distribution of *P-values* for uniformity (using at least **55 sequences**) The result file contains categories C1 through C10, which partition the unit interval (0 to 1) into 10 equal sized segments

The *P-values* computed from the sequences are 'binned' into these categories

The expected distribution is **uniform**

A *P-value* of the *P-values* can also be computed using a chi-squared statistic

HOST	Statistics	ECE 525
Regression Ana A statistica and one of	alysis I technique that examines the relationship bet r more independent variables	ween one dependent variable
For 2 varia 8.5 8.0 (E) 7.5 Never 7.0 6.5 6.0 5	Correlation coefficient CC = 99.1% LSE estimate of Regression line $+/-3 \sigma$ prediction limits CC = 95.2% 5 6.0 6.5 7.0 7.5 8.0 8.5 Delay (ns)	 30 Chips 90 nm IBM technology Design-macro-under-test Floating Point Unit Regression line 'tracks' chip-to-chip process variations Dispersion around reg. line represents measurement error and within-die variation

ECE UNM

Correlation Coefficient (CC)

Given a sample $[(X_1, Y_1), (X_2, Y_2), ..., (X_n, Y_n)]$ is a random sample of *n* paired values of the random variables *X* and *Y*.

The **sample correlation coefficient** is:

$$CC = \frac{\sum (X_i - \overline{X})(Y_i - \overline{Y})}{\left[\sum (X_i - \overline{X})^2 \sum (Y_i - \overline{Y})^2\right]^{1/2}} \qquad -1 \le CC \le 1$$

A **test statistic** for testing the H₀ hypothesis of **zero** correlation between *X* and *Y*:

$$t^* = \frac{CC\sqrt{n-2}}{\sqrt{1-CC^2}}$$
 p-value = $2P\{t(n-2) > t^*\}$

Statistics

Regression Analysis

Given a sample { $(X_1, Y_1), (X_2, Y_2), ..., (X_n, Y_n)$ } of paired values from random variables *X* and *Y*, **least squares estimate** of the **regression line** is:

$$\widehat{Y} = b_0 + b_1 X$$

where

$$b_{1} = \frac{\sum (X_{i} - \overline{X})(Y_{i} - \overline{Y})}{\sum (X_{i} - \overline{X})^{2}}$$
$$b_{0} = \overline{Y} - b_{1}\overline{X}$$

Sample variance in regression, MSE, is defined as:

$$MSE = \frac{\sum_{i=1}^{n} (Y_i - \hat{Y})^2}{n-2}$$

(Two degrees of freedom are lost b/c of b_0 and b_1)

Regression Analysis

Limits can be defined in several ways, depending on your needs:

 \bullet Confidence Interval for mean response of Y_h at X_h

$$Y = b_0 + b_1 x_i \pm t \sqrt{MSE} \sqrt{\frac{1}{n} + \frac{(X_h - \bar{X})^2}{\sum_{i=1}^n (X_i - \bar{X})^2}}$$

• Prediction Interval for a new observation

$$Y = b_0 + b_1 x_i \pm t \sqrt{MSE} \sqrt{1 + \frac{1}{n} + \frac{(X_h - \overline{X})^2}{\sum_{i=1}^n (X_i - \overline{X})^2}}$$

