Big Picture

Customer’s needs

Determine requirements

Write specifications

Design synthesis and verification

Test development

Fabrication

Test

Chips to customers
Design Verification vs. Manufacturing Test

- **Design Verification**: Predictive analysis to ensure that the synthesized design, when manufactured, will perform the given I/O function

- **Test**: A process that ensures that the physical device, manufactured from the synthesized design, has no manufacturing defects

Verification

* Verifies correctness of design.
* Performed by simulation, hardware emulation or formal methods.
* Performed "once" prior to manufacturing.

Test

* Verifies correctness of hardware.
* Two-parts:
 * Test generation: software process executed "once" during design.
 * Test application: electrical tests applied to hardware.
* Test application performed on EVERY manufactured device.
Ideal vs Real Tests

Ideal tests detect **all defects** produced in a manufacturing process
Pass all functionally good chips, fail all defective chips

Very large numbers and varieties of possible defects need to be tested

Difficult to generate tests for some real defects -- **defect-based testing** is an active research area

![Diagram](image-url)
Ideal vs Real Tests

Fault models may not map onto real defects

A fault is a logic level abstraction of a physical defect that is used to describe the change in the logic function of a device caused by the defect.

It is difficult to generate tests that detect every possible fault in the chip due to high design complexity

Some good chips are rejected

The fraction of such chips is called yield loss

Some bad chips are shipped

The fraction of bad chips among all passing chips is called defect level (test escapes)

Benefits of Testing:

Quality and economy: Quality means satisfying the user’s need at a minimum cost
Roles of Testing

Detection: Go/no-go, is the chip manufactured properly?

Diagnosis: A process to determine where, in the IC, the failure is occurring. Performed on chips that fail go/no-go tests

Failure Analysis (FA): A process to determine the specific manufacturing process steps that are producing the defects

Performance Characterization: For speed binning parts

Process characterization: A process designed to help with yield learning

Design for Manufacturability: A process for establishing which design rules and guidelines are best to improve an IC’s yield

Trust and Security?: Will test "get stuck with" hardware security and trust
Components of Test

Design for Testability (DFT): On-chip components added to make test easier
- Scan-chains
- BIST

Software processes associated with test:
- Automatic test pattern generation (ATPG)
- Fault simulation
- Automatic test equipment (ATE) programming and debug

Manufacturing test:
- Application of test vectors by ATE

![Diagram of test process]

- Input patterns:
 - --11
 - --01
 - --00
 - Scan inputs

- Chip:
- PIs or Scan inputs
- POs or Scan outputs
- Stored responses:
 - --11
 - --01
 - --00

- Comparator:

- Output responses:
 - --11
 - --01
 - --00
ATE for Manufacturing Test
Wafer Probe Physical Model
Test head and membrane (cobra) probe card for probing C4s

Tester Channel Electronics & Power Supplies

Device Interface Board (DIB)

Test Head

POGO Pins

Probe Card Power Supply Plane

Via

Membrane

PCB

Probe Pad

Solder Ball (C4)

CUT on wafer
Cantilever Style Probe Cards
Test Programming
The test program and test vectors are needed once the chip is contacted

CAD tools are used to automate the generation of the test programs

Chip specifications

Test generation (from simulators)

Logic design

Physical design

Test Program Generator

Test program

test plan

test types

timing specs

vectors

pin assignments
4 Basic Types of Testing

Characterization testing, design debug or verification testing:
Verifies correctness of design and test procedure

Production (**go/no-go test**):
Factory testing of all manufactured chips for parametric faults and for random defects
 Shorter and less intensive test performed on every chip

Main driver is cost -- test time MUST be minimized
 But tests must have high coverage of faults to ensure high quality

Burn-in or stress test:
Testing designed to stress the chip and accelerate the mechanisms that cause the chip to fail

Acceptance testing or incoming inspection:
Customer performs tests on purchased parts to ensure quality
Test Flow

Masks → Manufacturing → In-line Wafer Tests → Wafer Sort

DC Parametrics → Functional
- I_{DDQ}
- Logic
- Delay

GO/no-GO

Packaged Device → Package Test → Burn-In

Test escapes → Customer → Incoming inspection

Test escapes

System Integration → System Test → Customer

Fallout

Die
Physical Defects

Defects can be caused by dust particles on the mask, wafer surface or processing chemicals, e.g. photoresist.

During photolithography, these particles lead to unexposed photoresist areas, leading to:

- Unwanted material or unwanted etching of the material
- Causes shorts and opens in the poly, active or metal layers

Opens in CMOS circuits are more difficult to detect because fault behavior is dependent on location, resistance and values of parasitic coupling cap, leakage currents, etc.
Single stuck-at faults (SSF)
Assumes defects cause the signal net or line to remain at a fixed voltage level
Model includes stuck-at-0 (SA0) or stuck-at-1 (SA1) faults and assumes only one fault exists

For example, how many SSF faults can occur on an n-input NAND gate?

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Fault-Free Response</th>
<th>Faulty Response</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A/0</td>
<td>B/0</td>
</tr>
<tr>
<td>00</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>01</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

What fault(s) does the pattern $AB = 01$ detect?

What is the minimum number of tests needed to "detect" all of them?
Single stuck-at faults (SSF)

An n-line circuit can have at most $2n$ SSF faults.

This number can be further reduced through fault collapsing.

Fault detection requires:

• A test t activates or provokes the fault f.

• t propagates the error to observation point (primary output (PO)/scan latch).

A line that changes with f is said to be sensitized to the fault site.

Fault propagation requires off-path inputs be set to non-dominant values.

$01, 10,$ and 11 do not provoke the fault

14 faults possible here.
Delay Faults

Delays along every path from PI to PO or between internal latches must be less than the operational system clock interval

An SA0 or SA1 can be modeled as a delay fault in which the signal takes an infinite amount of time to change to 1 or 0, respectively.

Passing stuck fault tests is usually not sufficient however for systems that operate at any appreciable speed.

Test Definition:

- At time t_1, the initializing vector of the two-pattern test, V_1, is applied through the input latches or PIs and the circuit is allowed to stabilize.
- At time t_2, the second test pattern, V_2, is applied.
- At time t_3, a logic value measurement (a sample) is made at the output latches or POs.

The delay test vectors V_1 and V_2 may sensitize one or more paths, p_i.
Delay Tests

Let:

- \(T_C = (t_3 - t_2) \) represent the time interval between the application of vector \(V_2 \) at the PIs and the sampling event at the POs
- The *nominal delay* of each of these paths be defined as \(p_{d_i} \)
- The *slack* of each path be defined as \(s_{d_i} = T_C - p_{d_i} \)

This is the difference between the propagation delay of each of the sensitized paths in the nominal circuit and the test interval.

Combinational Logic

From FFs or PIs → Combinational Logic → To FFs or POs

- Delay of combination logic cannot exceed the clock period
- Transient region
- Slack
- Clock period
- \(t_2 \) → \(t_3 \)
Delay Fault Test Generation

Difficulties with delay fault test generation:
- Test generation requires a sensitized path that extends from a PI to a PO
- Path selection heuristics must be used because the total number of paths is exponentially related to the number of inputs and gates in the circuit
- The application of the test set must be performed at the rated speed of the device
 - This requires test equipment that is capable of accurately timing two-vector test sequences
- The detection of a defect that introduces an additional delay, \(ad_i \), along a sensitized path is dependent on satisfying the condition:
 \[ad_i > sd_i \text{ (or } pd_i + ad_i > T_C) \]
Delay Tests

The critical path(s) of this circuit is 6 time units.
Let’s set the clock period \(T = 7 \)

Assume only one faulty path.
No delay fault is detected if path delay along P3 is less than 7 units.

P1: A-h-K
P2: B-e-q-h-K
P3: B-e-g-j-K
Scan proposed in ’73 by Williams and Angell
Main idea is to obtain control and observability for FFs

It reduces *sequential* TPG to *combinational* TPG

With Scan, a synchronous sequential circuit works in two modes
Normal mode and test mode:

In **test mode**, all FFs are configured as a shift register, with Scan-in and Scan-out routed to a (possibly dedicated) PI and PO
Storage Cells for Scan Designs

An implementation using two-port master-slave FF with a **MUX**

2-to-1 MUX

To ensure *race-free* operation, use a 2-phase nonoverlapping clk
Delay Test Methodologies

Launch-on-shift (LOS): Scan in of V_1 is followed by one extra cycle of slow clock with the circuit still in scan mode ($TC = 0$)

The test is designed so that V_2 is obtained from V_1 by a 1 bit translation (PI bits of both vectors are unrestricted)

As soon as V_2 is applied, mode is changed from scan to normal and Clk is controlled at the rated period to latch outputs

Broad-side delay test or LOC
Delay Test Methodologies

Normal-scan sequential test

Launch-on-capture (LOC), the state portion (FF values) of V_2 are functionally generated by the combo logic under V_1

Simultaneous application of V_2 at the PIs and into the FFs via Clk in normal mode generates the $V_1 \rightarrow V_2$ transitions

The outputs are latched one rated clock period later

Disadvantages:

For LOS, scan-enable must switch at rated speed of clk

For LOC, correlations between V_1 and V_2 may not allow high fault coverage