
HOST Cryptography III ECE 525

ECE UNM 1 (1/18/18)

AES Block Cipher

Blockciphers are central tool in the design of protocols for shared-key cryptography

What is a blockcipher?

It is a function E of parameters k and n that maps

The function E takes two inputs, a k-bit string (key) and an n-bit string (plain-

text), and returns an n-bit string (ciphertext)

For each key , we let be the function defined

by EK(M) = E(K, M)

For any blockcipher and any key K, it is required that the function EK be a permuta-

tion on {0, 1}n (it is a bijection -- one-to-one and onto function)

Bijection indicates that for every , there is exactly one such

that EK(M) = C

0 1,{ }
k

0 1,{ }
n

× 0 1,{ }
n

→

K 0 1,{ }
k

∈ E
K

: 0 1,{ }
n

0 1,{ }
n

→()

C 0 1,{ }
n

∈ M 0 1,{ }
n

∈

HOST Cryptography III ECE 525

ECE UNM 2 (1/18/18)

AES Block Cipher

EK has an inverse, denoted EK
-1, that also maps {0, 1}n to {0, 1}n with EK

-1(EK(M)

= M and EK
-1(EK(C) = C for all M, C in {0, 1}n

We let E-1: be defined by E-1(K, C) = EK
-1(C)

This is the inverse blockcipher of E

Properties:

• The blockcipher E should be a publicly specified algorithm

• Both the cipher E and its inverse E-1 should be easily computable

In a typical use, a random key K is chosen and kept secret between a pair of users

The function EK is used by both parties to process data to be exchanged

We assume that the adversary will be able to obtain some input-output examples of

EK, i.e., pairs of the form (M,C) where C = EK(M), but will not have the key K

Therefore, goal of the adversary is to recover key K with the input/output examples

0 1,{ }
k

0 1,{ }
n

× 0 1,{ }
n

→

HOST Cryptography III ECE 525

ECE UNM 3 (1/18/18)

AES Block Cipher

In 1998, NIST announced a competition for a new blockcipher to replace DES

AES addresses short 256 key length, software speed, block size (64 ->128) of DES

Fifteen algorithms were submitted to NIST, second round narrowed number of five --

in summer of 2001, NIST announced that algorithm called Rijndael won

Authors are from Belgium, Joan Daemen and Vincent Rijmen

function AESK(M)

 (K0, ..., K10) <- expand(K)

 s <- M XOR K0

for r = 1 to 10 do

 s’ <- SBOX(s)

 s* <- shift-rows(s’)

if r <= 9 then s+ <- mix-cols(s*) else s+ <- s* fi

 s <- s+ XOR Kr

endfor

 return s

HOST Cryptography III ECE 525

ECE UNM 4 (1/18/18)

AES

AES has a block length of n = 128 bits, and a key length k that is variable, 128, 192 or

256 bits

AES can be explained in terms of four additional mappings: expand, SBOX, shift-

rows and mix-cols

Expand takes a 128-bit string and produces a vector of 11 keys (K0, ..., K10)

The other three functions bijectively map 128-bits to 128-bits

AES consists of 10 rounds, each identical except for the Ki used, and the omission of

mix-cols in the 10th round

The operations of SBOX and mix-cols involve arithmetic on bytes

The arithmetic structure has all the properties necessary to be called a finite field

See http://en.wikipedia.org/wiki/Advanced_Encryption_Standard

HOST Cryptography III ECE 525

ECE UNM 5 (1/18/18)

AES

SBOX: Each input byte ai,j is replaced with SBOX(ai,j) using an 8-bit substitution

box ({0, 1}8 -> {0, 1}8)

This operation provides the non-linearity in the cipher

The SBOX is derived from the multiplicative inverse over GF(28), which is known to

have good non-linearity properties

H
ig

h
 o

rd
er

 4
 b

it
s

Low order 4 bits

HOST Cryptography III ECE 525

ECE UNM 6 (1/18/18)

AES

Shift-rows: takes the 16 bytes of SBOX, s0s1...s15 and makes a 4 x 4 table

This step prevents the columns from being linearly independent, in which case,

AES degenerates into four independent block ciphers

Mix-cols:

Here the resulting columns in the 4 x 4 table above are combined using an

invertible linear transformation

The MixColumns function takes four bytes as input and outputs four bytes,

where each input byte affects all four output bytes

s
0

s
4

s
8

s
12

s
1

s
5

s
9

s
13

s
2

s
6

s
10

s
14

s
3

s
7

s
11

s
15

s
0

s
4

s
8

s
12

s
5

s
9

s
13

s
1

s
10

s
14

s
2

s
6

s
15

s
3

s
7

s
11

Rotate row 2 by 1 elements

Rotate row 3 by 2 elements

Rotate row 4 by 3 elements

Rotate row 1 by 0 elements

HOST Cryptography III ECE 525

ECE UNM 7 (1/18/18)

AES

Together with ShiftRows, MixColumns provides diffusion in the cipher

MixColumns multiplies each column by a fixed matrix:

Matrix multiplication is composed of multiplication and addition (XOR) of the

entries with the multiplication operation defined as follows:

Multiplication by 1 means no change

Multiplication by 2 means shifting 1-bit to the left

Multiplication by 3 means shifting 1-bit to the left and then performing XOR

with the initial unshifted value

After shifting, a conditional XOR with 0x1B should be performed if the shifted value

is larger than 0xFF -- these are special cases of multiplication in GF(28)

2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2

HOST Cryptography III ECE 525

ECE UNM 8 (1/18/18)

AES

In more general sense, each column is treated as a polynomial over GF(28):

a(x) = a3x3 + a2x2 + a1x + a0

And is then multiplied with a fixed polynomial:

c(x) = {03}x3 + {01}x2 + {01}x + {02}

And then taking the result modulo:

x4 + 1

AddRoundKey: the subkey is combined with the output of Mix-cols

For each round, a subkey is derived from the main key using Rijndael’s key

schedule

 s <- s+ XOR Kr

Next round ciphertext s is computed by bitwise XORing each byte of the Mix-

cols output with the corresponding byte of the subkey

Note that in the first round, the plaintext M and original key K0 is used to com-

pute s

HOST Cryptography III ECE 525

ECE UNM 9 (1/18/18)

SHA-3 Secure Hash Algorithm

Block ciphers serve the confidentiality requirement of information security

As we discussed earlier, authentication and data integrity are important orthoganol

properties of information security

Secure hash functions play a central role in serving these properties

Similar to encryption, the NIST standard for secure hash has changed over time

In 2006, NIST organized the NIST hash function competition for SHA-3

This was driven by concerns over the successful attacks on MD5 and SHA-0,

and theoretical attacks on SHA-1

SHA-3 is designed to supplement SHA-2 (not replace it)

51 candidates entered the competition in 2008, 14 were selected in July 2009 and a

final set of 5 candidates were selected in Dec. 2010

HOST Cryptography III ECE 525

ECE UNM 10 (1/18/18)

Keccak Secure Hash Algorithm

Keccak won the competition on Oct. 2012

Keccak is a cryptographic hash function designed by Guido Bertoni, Joan Daemen,

Michaël Peeters, and Gilles Van Assche

The SHA-3 standard was released by NIST on August 5, 2015

SHA-3 uses the sponge construction

In the first phase, data is absorbed into the sponge, which is later squeezed out

Absorbion involves XORing message blocks into the internal state, which is a

large array of bits partitioned into 3 dimensions

ro
w

col

0
1
2
3
4

0 1 2 3 4 lanes
012

n-1

Row and column are always 5x5 in any
version

The number of lanes can be configured as
1, 2, 4, 8, 16, 32, 64

Keccak-f[200] is the smallest version
recommended, with lane size = 8

HOST Cryptography III ECE 525

ECE UNM 11 (1/18/18)

Keccak Secure Hash Algorithm

keccak-f[200] has 200 bits of internal state

Keccak has two parameters, rate and capacity

rate refers to the size of the message blocks while capacity is what remains

With rate equal to 72, 200-72 = 128 bit capacity

Capacity of 128 provides an equivalent security level of 64 bits

The message of 72-bits is XOR’ed into the 0-state in round 1

Keccak-f[200] hashes this string with the state in 18 rounds (Keccak-f[1600] has 24

rounds)

ro
w

col

0
1
2
3
4

0 1 2 3 4 lanes
012

7
3456

HOST Cryptography III ECE 525

ECE UNM 12 (1/18/18)

Keccak Secure Hash Algorithm

Each round manipulates the state (kstate) using the the following datapath operations

The algorithm is elegant and easily configured for different applications from high-

security (keccak-f[1600]) to resource constrained (keccak-f[200])

round_in

(0)(0) (0)(63) (4)(63)

theta_out

rho_in
(0)(0)(0)

rho_out

pi_in

pi_out

chi_in

chi_out

itoa_in
round_constant

itoa_out

round_out

kstate(0)(0)(0) (4)(4)(63)

HOST Cryptography III ECE 525

ECE UNM 13 (1/18/18)

HMAC

HMAC is a keyed-hash message authentication code

(https://en.wikipedia.org/wiki/Hash-based_message_authentication_code)

HMAC leverages a cryptographic hash function, e.g. SHA-3, and can be used to ver-

ify data integrity and authenticity of a message

Commonly used terms include HMAC-MD5 and HMAC-SHA1, which use

MD5 and SHA-1 cryptographic hash functions

Iterative hash functions, such as SHA-1, break the message into 512-bit blocks and

compress the message into a smaller, e.g., 128-bit digest

Data integrity and authenticity is accomplished by transmitting the message

(encrypted or un-encrypted) and the digest to the receiver

 The receiver carries out the same process using her (shared) secret key on the

received message to compute a second digest, which is compared with the received

digest

If the digests match, then the message is authentic

HOST Cryptography III ECE 525

ECE UNM 14 (1/18/18)

HMAC

The most straightforward method for computing the ’tag’ (which is the hash digest)

is

Unfortunately, this subjects most hash functions to length extension attacks (SHA-3

is naturally resistant to these attacks, making this construction secure -- see KMAC)

Here, the transmitted digest can be used by adversaries to create a new valid

digest after adding malicious components to the original message

The digest is loaded into the hash function and run with the additional text

Notice that knowledge of the secret key is not needed in this attack because the orig-

inal digest embodies the secret key

Instead, HMAC uses two separate runs of the cryptographic hash function and does

not use the secret key directly

MAC H key message||()=

HOST Cryptography III ECE 525

ECE UNM 15 (1/18/18)

HMAC

HMAC derives an inner and outer key from the secret key and runs the hash twice:

• The first hash is carried out on the message and inner key

• The second hash uses the inner hash and outer key to produce the final digest

H is the hash function, K is the secret key and m is the message

K’ is another secret key derived from K by either padding K to the right with

extra zeros until it matches the hash input size, or hashing K if it is longer

|| represent concatenation and (+ with circle) is XOR

opad is the outer padding: 0x5c5c... (one block long)

ipad is the inner padding: 0x3636... (one block long)

HMAC K m,() H K″ opad⊕() H K′ ipad⊕() m||()||()=

https://en.wikipedia.org/wiki/Hash-based_message_authentication_code

HOST Cryptography III ECE 525

ECE UNM 16 (1/18/18)

Diffie-Hellman Key Exchange

Allows two parties with no prior knowledge of each other to jointly establish a

shared secret key over an insecure channel

(https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange#Description)

The shared key is then used to encrypt messages using a symmetric encryption

scheme such as AES

https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange#Description

Alice and Bob agree on a common starting color
(this is not a secret)

Each selects a color that they keep to themselves

Secret colors are mixed with common color

Mixed colors are exchanged

Secret colors are mixed with exchanged colors

Results in a shared secret color no one else knows

HOST Cryptography III ECE 525

ECE UNM 17 (1/18/18)

Diffie-Hellman Key Exchange

Original scheme uses multiplicative group of integers modulo p

Where p is prime and g is a primitive root modulo p

Example (public values in blue and secret values in red)

• p = 23 and based g = 5 (which is a primitive root modulo 23)

• Alice choose a secret integer a = 4 and sends Bob A = ga mod p

A = 54 mod 23 = 4

• Bob chooses a secret integer b = 3 and sends Alice B = gb mod p

B = 53 mod 23 = 10

• Alice computes s = Ba mod p

s = 104 mod 23 = 18

• Bob computes s = Ab mod p

s = 43 mod 23 = 18

They now share the secret 18, which can be used as an symmetric encryption key

(ga mod p)b mod p = (gb mod p)a mod p

