
LAB Assignment #3 for ECE 495/595

Assigned: Thur., March 3, 2009

Due: Thur., March 12, 2009

Description: Transfer the y integer values from the waveform to the PPC, com-

pute a ‘software’ DFT and send the values back to labview for conversion and

viewing.

a) Modify the LABVIEW from Lab #1 and #2 to transfer the y integer values to the FPGA -

- see flow chart below:

The bold steps in the flow chart are new steps (the others are from previous labs). The VISA

Clear step is a labview VI. It clears the COM port of data from previous attempts. The Write

Num Pts String uses the VISA Write widget. Convert the number of points, 512, into a string and

write it to the COM port. The next step, Delay (~50ms), is important. You are writing a large

number of bytes to the COM port. If you don’t use flow control, e.g., check if the COM port has

room for more bytes in its buffer, you’ll overwrite the buffer and loose data if you let labview just

write the entire file of numbers. One way around flow control is just to slow down the write oper-

ation. Once you’ve written the number of points, you convert each integer value of the wfm into a

character string and write it to the COM port (Write Data String). Add a delay between each

write. 50 ms is conservative. You can start with this value and then lower it. I eventually up’ed the

BAUD rate to 19,200 and set the delay to 1ms and it works fine. For the Convert Time To Fre-

quency step, you are creating the x axis for the frequency domain magnitude and phase values.

First define a fundamental frequency as 1/(time range of time domain data). Then each frequency

component is computed using:

2) Create a project in EDK and write the C code that implements a Discrete Fourier Trans-

form.

In EDK, create a project as described by the HelloWorld tutorial. You’ll need to make some mod-

ifications once you’ve created the project. Before you run the Generate Linker Script, click on

the ‘Addresses” tab under ‘System Assembly View. Change the ‘xps_bram_if_crtl_1’ size to

128K. When you run Generate Linker Script step (see EDK tutorial 1), set the stack size 0x4000

VISA Configure
SerialPort

VISA Clear

Read DataFile Float To
Integer

Convert Time
To Frequency

Write Num
Pts String

Delay
(~50ms)

Write Data
String

for (i = 0; i < num_pts/2; i++)

freq[i] = i*fund_freq;

AND the heap size to 0x2000 (defaults are 0x400, which are too small for scanf and printf to

work). Create a C program that makes use of the code that I’ve provided (for the integer lookup

table version of sin and cos). Your code should read in the header (512) and the y integer values

using scanf, compute the DFT saving the values in real and imag arrays, and then output the 256

real and 256 imag values to the COM port using printf. The DFT is given below.

GetCos and GetSin are calls to the lookup table functions that I’ve provided on my website.

NOTE: The full transform actually needs num_pts/2 + 1 points in the frequency domain, so we

are not computing the highest frequency component using this formulation. Also, the imag com-

ponents should be negated but we fix with this later when converting to magnitude and phase.

NOTE: This DFT implemented on a processor with floating point operations is given by:

The C library sin and cos functions output floating point values between -1.0 and 1.0. On the Pow-

erPC, floating point operations are not supported. So we need to write special sin and cos func-

tions that takes integer arguments and returns integers instead of floating point values. The portion

of the argument ‘2*PI/num_pts’ is removed and incorporated in the special GetSin and GetCos

integer lookup functions that I’ve provided. This implementation emulates what we’ll eventually

do in hardware, as described below.

In our future lab which implements the DFT in the reconfigurable logic, we’ll use the Core Gener-

ator to generate a hardware based sin and cos lookup table. The Core Generator for the sin and cos

function defines the input argument, THETA, to the sin and cos functions as follows: θ represents

the argument to the sin and cos functions in the C code. THETA is the input that you will provide

when you invoke the sin and cos functions. The constants 2 * pi/2THETA_WIDTH represent “2*PI/

num_pts” in the C code above. This indicates that the Core generated sin and cos functions

already incorporate these constants as we have done in our C functions. THETA is the remaining

portion of the argument, i.e., “j*i”, that you will use as input to the sin/cos Core.

NOTE: See errata for correction to formula for sin/cos Core lookup table function.

for (i = 0; i < num_pts; i++)

for (j = 0; j < num_pts/2; j++) // Num of frequencies 1/2 num y values

imag[j] += y_data[i] * GetSin(i*j);
real[j] += y_data[i] * GetCos(i*j);
{

}

for (i = 0; i < num_pts; i++)

for (j = 0; j < num_pts/2; j++) // Num of frequencies 1/2 num y values

imag[j] += y_data[i] * sin(j*2*PI*i/num_pts);
real[j] += y_data[i] * cos(j*2*PI*i/num_pts);
{

}

Θ THETA
2 Π×

2
THETA_WIDTH

---×= in radians

The output of the GetCos and GetSin functions are 12-bit signed integer. This integer represents a

fixed point number when divided by the appropriate constant. The constant that you will divide by

is 212. You will perform this division once you have transferred the numbers back to LABVIEW,

as described below.

The 12-bit values returned by the GetSin and GetCos functions need to be multiplied by the y data

values (which are 8-bits), as shown in the C code above. The result of the multiplication is a 20-bit

value (12+8). The ‘+=’ operation in the loops above will need no more than an additional 9 bits

because the number of times the ‘+=’ is performed is 512 (2^9). You will use 32-bits integers to

store the real and imag components. The additional 12-bits available (32 - 20) will guarantee that

no overflow occurs. (NOTE: If you’ve written you labview code in a modular way, you can extend

the 8-bit values to 10-bits safely for higher precision).

Synthesize you project and eliminate syntax errors in your C code.

3) Write labview code to read back the real and imag components, convert them into magni-

tude and phase.

I used the following flow diagram to read the real and imag components sent from the FPGA.

In order to prevent data loss, this loop keeps grabbing the characters sent by the FPGA on the

COM port until all values are provided.

Once you have converted the frequency domain data computed by the FPGA into integers, you

first divide each of them by 212. As mentioned above, the GetSin and GetCos functions generate

After writing the
y integers

Wait for
bytes at port

Read Data
bytes at port

Scan string
for a newline

no -- newline not found (concatenate this
string to new string read on next iteration)

Convert
portion of

yes

string upto
newline to
integer --
num pts

Pass remaining

string

Count
number

of newlines
in string

Equal to
num pts + 1

Convert
string into
integer array

Process
as described
below

NOT Equal to

num pts + 1
Wait for

bytes at port

Read Data
bytes at port

Concatenate to
existing string

12-bit signed integers that represent the range 1.0 to -1.0. This division restores the real and imag

components to true sin and cos values.

The second conversion involves y_int. We used ‘y_int[i] = (y_float[i] - zero)/mult’ to convert

from float to int. Plugging in;

Therefore, to convert back to float, you should NOT add the zero when applying the inverse for-

mula (except for real[0] explained below). Instead, just multiply each real[j] by ‘mult’ as shown

below.

For real[0] (the DC value of the DFT), you ALSO need to add the following constant:

Finally, to convert from real and imag values to magnitude and phase (the human readable repre-

sentation of the frequency domain data), use the following:

FPGA_cos = cos(i*j*2*PI/2THETA)*212 C code generates this value given
(i*j) as an argument.

real j[] y_int[i]
i j 2 π×××

n
----------------------------- 

 cos 4096××
i 0=

n 1–

∑=
4096 is easily removed by division
(Similar for imag components).

real j[] y_float[i] zero–

mult
-- 

  i j 2 π×××
n

----------------------------- 
 cos×

i 0=

n 1–

∑=

real j[] y_float[i]

mult
------------------------ 

  i j 2 π×××
n

----------------------------- 
 cos×

i 0=

n 1–

∑ zero

mult
----------- 

  i j 2 Π×××
n

------------------------------ 
 cos×

i 0=

n 1–

∑–=

Except for real[0], this sum is 0.
where n is the number of
data points, e.g., 512.

real[i] = real[i]*mult;

imag[i] = imag[i]*mult;

real[0] = real[0] + zero*num_pts;

for (i = 1; i < num_pts/2; i++)

{

mag[i] = sqrt(imag[i]*imag[i] + real[i]*real[i]);

mag[0] = real[0]/num_pts;

phase[i] = atan2(-imag[i], real[i])*180/PI;

}

phase[0] = 0;

imag[i] = imag[i]*2.0/num_pts;

real[i] = real[i]*2.0/num_pts;

Laboratory Report Requirements:

1) No written report required for this laboratory. Be prepared to demonstrate your project in class

on Thurs, Feb 19. You need to read in the file of (x,y) floating point values and write a file with the

8-bit integers.

Grading:

LABVIEW coding style: 20%

Proper operation: 80%

