
LAB Assignment #4 for ECE 495/595

Assigned: Tue., April 7, 2009

Due: Tue., April 14, 2009

Description: Build a state machine the implements a communication protocol using software registers with the PPC.

This lab utilizes the UNM EDK Tutorial 2, in which you build a custom peripheral. (I found the tutorials at http://www.fpgadeveloper.com useful as

well). The basic idea is to build a client-server model between a hardware state machine and the PPC designed to allow data to be exchanged. The PPC

plays the role of the server, which manages an array of data. The hardware state machine issues read and write commands to the PPC through a set of

addressable registers embedded in a PLB bus slave peripheral. The PPC responds by moving values between the array and these registers.

The following describes the steps involved in this lab:

1) Create a custom peripheral following the UNM EDK Tutorial 2. When you create the base project using BSB, add only the UART, i.e., you will

NOT need to pushbutton, leds or interrupts as described in the tutorial. On the Name and Version screen, use micro_assist_dft instead of

switch_debouncer. Although you are not building the hardware DFT in this lab, you will do so in the next lab, where this name will have more mean-

ing. On the IP Interfaces Services Screen, you do NOT need to check the ‘Interrupt Control’ box -- only the ‘User Logic Software Registers’. On the

User S/W Registers screen, set the number of registers to 3. When you run ISE and open the project in the projnav directory, you will see only the

PLBV46_SLAVE_SINGLE and USER_LOGIC modules under the micro_assist_dft module. Follow the tutorial instructions to add a module, naming

it dft_core instead of switch_debouncer_core. You’ll need to put your state machine in this module, as described below. You’ll also need to change the

functionality of the USER_LOGIC module. You will probably want to modify it first and write a simple driver in the dft_core to test your modifica-

tions.

2) User Logic Module modifications. The VHDL code generated by the Create Peripheral Wizard in the user_logic.vhd module is shown by follow-

ing schematic. The logic is designed to enable software reads and writes to the three registers, named slv_regx. You should carefully study and fully

understand the operation of this code, simulate it if necessary. For example, the code enables ‘byte-level’ reads and writes using a ‘for loop’ con-

struct. More importantly, reads and writes to the registers are indicated by the PLB using the Bus2IP_RdCE and Bus2IP_WrCE signals. The proper

interpretation of these signals is that, when one of the write bits is ‘1’ in Bus2IP_WrCE, then on the NEXT rising edge of the clock, the data on

Bus2IP_Data will be latched into the designated slv_regx. When one of the read bits is ‘1’ in Bus2IP_RdCE, then the appropriate register is MUXED

to drive the IP2Bus_Data, which samples the data on the NEXT rising edge. You need to modify the automatically generated VHDL code in order to

enable writes to occur from your state machine. At this point, the existing code only enables the PPC to communicate to the hardware.

The client-server memory model needs to implement the following functionality. The slave registers, 0, 1 and 2 are named Command, Index and Value,

respectively, as shown in the following schematic. The Command register defines four operations using the least significant bits, 28, 29, 30 and 31. Bit

31 is called the ‘go’ bit and is special. It keeps the hardware state machine in the idle state until it is set. In the next lab, this will be necessary to allow

the PPC to fetch the y values of the wfm from LABVIEW. Once the PPC sets the ‘go’ bit to ‘1’, it enters a loop where it serves as a memory controller,

effectively becoming a slave to the hardware DFT. In the loop, it will read the Command register and respond to read and write commands. The hard-

ware DFT sets the ‘read’ bit when it wants the PPC to fetch a value from its array. The specific value will be given by the ‘index’ that the hardware

Bus2IP_Clk

Bus2IP_Reset

Bus2IP_Data

32

Bus2IP_BE

4

Bus2IP_RdCE

3

Bus2IP_WrCE

3

IP2Bus_Data

32

IP2Bus_RdAck

IP2Bus_WrAck

IP2Bus_Error

slv_reg_write_sel

3

slv_reg_read_sel

3

slv_read_ack

slv_write_ack

“one hot”

8

8

8

8

slv_ip2bus_data

slv_reg0

slv_reg1

slv_reg2 ‘0’

‘0’

Original Design

PLB

DFT has placed in the Index register. The PPC responds by placing the designated array value given by that index value into the Value register. Writes

are implemented in a similar fashion, i.e., the hardware DFT sets the write bit in the Command register, the PPC reads the Command register and

writes the integer in the Value register to the array at the position given by the Index register. The hardware DFT will set the ‘done’ bit in the Command

register once the DFT is computed. The PPC will then exit the loop and print the values in the array to the UART. In the next lab, the PPC will write the

values to LABVIEW using the UART port.

In order to implement this functionality, you’ll need to modify this schematic. For example, the following shows one possible modification that enables

the PPC to write the ‘go’ bit of the Command register (Note: the ‘command_dir_reg’ is optional, i.e., you can feed back command register bit 31

directly to the select MUX if you like). Once set, further writes by the PPC are ignored and the hardware DFT is able to write it until the go bit is set

back to 0. Your state machine (in dft_core) should remain in the initial state until the ‘go’ bit in the Command register is set to ‘1’. Your state machine

must keep this bit set to ‘1’ through its entire operation, i.e., until it reaches the final state (to be described).

From this description, several conclusions can be made. The Command register needs to accept input from the BUS2IP_Data bus (as shown above)

until the ‘go’ bit is set. The Index register is written ONLY by the state machine -- never by the PPC. The Value register is written by the PPC for reads

and is written by the state machine for writes. I would recommend that you draw a algorithmic state diagram to represent this functionality and write a

simple driver to test each function, before writing the state machine in dft_core, as described below.

Command Register (slv_reg0)

32-bits 28 29 30 31

go

read

write

done

Index Register (slv_reg1) Value Register (slv_reg2)

32-bits 32-bits

Bus2IP_Data

32

Command Register (slv_reg0)

32-bits 28 29 30 31

go

get

put

done

dft_command

command_dir_reg

0

132

3) Write a simple state machine in dft_core that performs the following functions.

a) Wait until the ‘go’ bit in the Command register is set to ‘1’

b) Issue a read command for one of the elements in the array (to be discussed below).

c) Wait for the value.

d) Add 1 to the value and write it back to the same (or another memory location) in the array.

e) Issue the ‘done’ command.

The following is the port map that I used for my dft_core module (as given in the user_logic.vhd module). This is only provided to help you understand

what you might need. Your module definition may include other signals.

DFT_CORE_INSTANCE: DFT_CORE

 generic map

 (

 SLV_DWIDTH => C_SLV_DWIDTH

)

 port map

 (

 Clk => Bus2IP_Clk,

 Reset => Bus2IP_Reset,

 data_written => slv_reg_write_sel,

 data_read => slv_reg_read_sel,

 command_bit => slv_reg0(31),

 value_reg => slv_reg2,

 dft_command => dft_command,

 dft_index => dft_index,

 dft_value => dft_value

);

4) Write a C program that implements the server. Here are some key components. Global declarations:

unsigned int *dft_command_reg =

 (unsigned int *) XPAR_MICRO_ASSIST_DFT_0_BASEADDR;

unsigned int *dft_index_reg =

 (unsigned int *) XPAR_MICRO_ASSIST_DFT_0_BASEADDR + 1;

unsigned int *dft_value_reg =

 (unsigned int *) XPAR_MICRO_ASSIST_DFT_0_BASEADDR + 2;

These give you pointers to the three hardware registers. Note that you add ‘1’ and ‘2’, not ‘4’ and ‘8’ -- the compiler knows these point to 32-bit loca-

tions.

Declare the following array:

 int vals[3];

 vals[0] = 0x12;

 vals[1] = 0x20;

 vals[2] = 0x40;

Issue the ‘go’ command (note: the most significant bits in the hardware correspond to the least significant bits in the software!):

 *dft_command_reg = (unsigned int) 0x00000001;

Then, enter a ‘while(1)’ loop and ‘busy wait’ on the value of the Command register, waiting for one of the three commands, 0x3, 0x5 and 0x9. (Note:

since the state machine MUST keep the ‘go’ bit set, 0x3 indicates a read, 0x5 indicates a write and 0x9 indicates done.

IMPORTANT: BE SURE TO DECLARE ALL VARIABLES THAT ARE UPDATED BY THE RECONFIGURABLE LOGIC AS ‘volatile’ or the

compiler may ‘optimize’ some statements out.

NOTEs: (Will be updated as needed)

a) After creating the project using BSB, set the BRAM memory size to 128K as we did in the last lab.

b) After creating and importing the IP (see UNM tutorial 2), set the memory size of the registers to 256 (smallest value) and press ‘Generate

addresses’. The base address of my registers was set to 0xfffd0000.

c) The directory ‘drivers/micro_assist_dft_v1_00_a/src’ contains some useful functions (I didn’t need to use any for this project, but you should be

aware of them).

Laboratory Report Requirements:

1) No written report required for this laboratory. Be prepared to demonstrate your project in class on the due date.

Grading:

Coding style and comments: 20%

Proper operation: 80%

