
LAB Assignment #4 for ECE 495/595

Assigned: Wed., Oct 26, 2011

Due: Wed., Nov. 2, 2011

Description: Implement a PLB bus master single beat controller

In this lab, you’ll investigate a bus master interface of the PLB that is in the true spirit of hardware/software codesign. Bus master’s can initiate mem-

ory read and write commands to the bus independently. They also enable the microprocessor(s) and hardware accelerators to ‘share’ memory, an

extremely efficient way to have cooperating processes, both software and hardware, work together on some processing goal. Communication and syn-

chronization can be accomplished using a set of software registers embedded embedded in the bus master interface.

You need to modify the user logic VHDL code for the bus master IP module and write a C program as follows (see drivers/bus_master_v1_00_a/src/

bus_master_selftest.c for example C code):

C Code Sequence:

1) Write SrcBuffer with a value (any value will do -- use the selftest for loop if you want). Initialize the DestBuffer to 0.

2) Write the address of the SrcBuffer to slv_reg1 and the address of the DestBuffer to slv_reg2

3) Write a ‘go’ value into slv_reg0

4) Loop and continuously check for a match between SrcBuffer and DestBuffer. They will be different until the VHDL state machine has completed

it’s update (see below). When they become identical, print a message and exit the C program.

(NOTE: Be sure to declare the SrcBuffer and DestBuffer as ‘volatile’. The default is declaration uses ‘static’).

VHDL Requirements

Implement the following state machine:

Idle

‘go’ bit in slv_reg0
is 0

‘go’ bit in slv_reg0

is 1

ReadSrcBuf

Update the mst_reg with
the SrcBuffer address in
slv_reg1, issue a read
request

‘done’ bit in mst_reg
is 0

WriteDestBuf

‘done’ bit in
mst_reg is 0

‘done’ bit in mst_reg
is 1

‘done’ bit in
mst_reg is 1

Update the mst_reg with
the DestBuffer address in
slv_reg1, issue a write
request with data read in state
ReadSrcBuf

Adding a Bus Master IP module:

The following describes the sequence of steps needed to add a bus master interface.

1) Run BSB and create a base project called bus_master.

2) Run Create Peripheral. At the IP Interfaces Services screen, click ‘User Logic Software Registers’ and ‘Bus Master’ (at the bottom) checkboxes. I

added 3 registers under the User S/W Registers screen to allow the microblaze and the bus master to exchange information (e.g., the base address of

an array).

3) Similar to the single beat PLB slave, the default template provided allows only the microblaze to read/write the master control register. (You will

need to modify this if you want a hardware engine to able to issue commands.) The bus master template is somewhat more complicated than the slave

module (which is also included in user_logic.vhd because you indicated software registers). The following describes the basic components and opera-

tions.

The ‘center piece’ of the bus master logic is the mst_reg, the master register. The layout of the register is shown above. It is 16 bytes in length and

contains the following fields:

Byte 0: Control register (only most significant 4 bits defined)

Rd: read bit, when set, the control logic will initiate a read operation to a slave on the bus

Wr: write bit, when set, the control logic will initiate a write operation to a slave on the bus

Buslock: locks the bus when set (not needed but preserve the contents)

Bust Assert: indicates a burst transfer when set (not needed in a single beat master)

Byte 1: Status register (only most significant 4 bits defined)

Done: Transaction completed

Busy: Transaction in progress

Error: Error in transaction

Tmout: Timeout error

Bytes 2 and 3: Unused

Bytes 4-7: Address register

Memory address to read or write

Bytes 8 and 9: Byte Enables

Master Register (mst_reg) (16 bytes)
Rd

Wr

Buslock

Burst Assert

Done

Busy

Error

Tmout

0 1 2 3 4 5 6 7

Address

8 9 1011

Byte Enable

12

Transfer length
(12 bits)(16 bits)(32 bits)

131415

Go
(8 bits, 0x0A)

Upto 16 byte enables are provided.

Bytes 10 and 11: Unused

Bytes 12 and 13: Transfer length in bytes

For single beat masters, always set to 4

Byte 14: Unused

Byte 15: Go register

Initiates a bus master operation, i.e., starts the state machine described below. This register is write-only (can not be read by microblaze).

The example code in ‘drivers/bus_master_v1_00_a/src/bus_master_selftest.c’ and ‘drivers/bus_master_v1_00_a/src/bus_master.c’ shows how micro-

blaze can control this register for use as a pseudo-DMA controller. The self test module sets up two 4-byte buffers (aligned at 128) SrcBuffer and Dst-

Buffer, loads them with default values using the loop:

 for (Index = 0; Index < BUS_MASTER_CORE_SELFTEST_BUFSIZE; Index++)

 {

 SrcBuffer[Index] = Index;

 DstBuffer[Index] = 0;

 }

It then instructs the master to read a word into the internal FIFO embedded in the master, and then ‘busy-waits’ on the ‘done’ bit in the mst_reg.

 BUS_MASTER_MasterRecvByte(baseaddr, (Xuint32) SrcBuffer, BUS_MASTER_CORE_SELFTEST_BUFSIZE);

 while (! BUS_MASTER_mMasterDone(baseaddr)) {}

It then instructs the bus master to write the 4-bytes read into it’s FIFO to the destination buffer.

 BUS_MASTER_CORE_MasterSendByte(baseaddr, (Xuint32) DstBuffer, BUS_MASTER_CORE_SELFTEST_BUFSIZE);

 while (! BUS_MASTER_mMasterDone(baseaddr)) {}

The ‘RecvByte’ code performs 5 operations:

a) Write ‘1’ into the ‘Rd’ bit of mst_reg.

b) Write SrcBuffer address into ‘addr’ of mst_reg.

c) Write 0xFFFF into ‘byte enable’ of mst_reg.

d) Write 4 into ‘transfer length’ of mst_reg.

e) Write ‘go’ byte.

The MST Register Implementation figure gives the schematic of the template code in ‘user_logic.vhd’ for implementing microblaze updates to the

master register. You’ll need to modify this if you want to enable your hardware engine to issue bus commands.

Although you will not need to modify the generated Bus Master’s State Machine, it is instructive to understand how it works (see schematic above).

The machine remains in IDLE until the ‘go’ signal. It sets the busy bit to ‘1’ and the go bit to ‘0’ on the rising edge. If the complete bit (‘Cmplt’) is not

set and the controller (parent) has not acknowledged a command, then issue a command based on the contents of the master register. If the complete bit

is not set but the command is acknowledged, then go to the ‘wait for data’ state. If ‘complete’ bit is set and we are still in this state, set error/timeout

and proceed to ‘done’, resetting ‘busy’ to 0. So to succeed, the command must be acknowledged before the controller sets the ‘complete’ bit.

The last component of the VHDL is a FIFO buffer. Incoming and outgoing data are normally stored there (when the microblaze issues commands to

the master reg). The incoming data is placed on Bus2IP_MstRd_d and is acknowledged on Bus2IP_MstRd_src_rdy_n. Outgoing data is placed on a

separate bus, Bus2IP_MstWr_d, and acknowledged with Bus2IP_MstWr_dst_rdy_n. Again, you can choose to add to the functionality that exists or

change it, i.e., eliminate the FIFO.

Laboratory Report Requirements:

1) No written report required for this laboratory. Be prepared to demonstrate your project in class on the due date.

Grading:

32

4

slv_reg_read_sel

4

MST Register ImplementationPLB

mst_reg_write_reqBus2IP_WrCE(3:6)

32-bit word select signals

Bus2IP_BE

byte select signals

4

16 mst_byte_we

0 1 2 3 4 5 6 7 8 9 1011121314

Bus2IP_Data

15

Logic

Logic

8

busy (always written)

3

4 4

mst_go

Bus2IP_Reset

mst_cmd_sm_clr_go

From state machine
0
1

“0”
“1”

0
1

(one hot for each byte)

bit 15

=X”0A”

high order byte

GO bit update

logic

Proper operation: 100%

PLB
IP2Bus_MstRd_Req

IP2Bus_MstWr_Req

CMD_IDLE

mst_go = ‘1’
F

mst_cmd_sm_busy = ‘1’

T

mst_cmd_sm_clr_go = ‘1’

CMD_RUN

mst_cmd_sm_busy = ‘1’

Bus2IP_Mst_CmdAck = ‘1’

Bus2IP_Mst_Cmplt = ‘1’

CMD_WAIT_FOR_DATA

mst_cmd_sm_busy = ‘1’

F

T

T

Bus2IP_Mst_Cmd_Timeout = ‘1’

mst_cmd_sm_set_error = ‘1’
mst_cmd_sm_set_timeout = ‘1’

T

Bus2IP_Mst_Cmd_Error = ‘1’

F

T

mst_cmd_sm_set_error = ‘1’

CMD_DONE

mst_cmd_sm_rd_req = mst_rd_bit
mst_cmd_sm_wr_req = mst_wr_bit
mst_cmd_sm_ip2bus_addr = mst_addr
mst_cmd_sm_ip2bus_be = mst_be(12:15)
mst_cmd_sm_bus_lock = mst_bl_bit

mst_cmd_sm_set_done = ‘1’Bus2IP_Mst_Cmplt = ‘1’
TF

F

mst_cmd_sm_rd_req

mst_cmd_sm_wr_req

mst_cmd_sm_ip2bus_addr IP2Bus_Mst_Addr

mst_cmd_sm_ip2bus_be IP2Bus_Mst_BE

mst_cmd_sm_bus_lock IP2Bus_Mst_Lock

mst_cmd_sm_reset IP2Bus_Mst_Reset

See master
register

Bus Master’s
State Machine

