
LAB Assignment #4 for Hardware/Software Codesign with FPGAs

Assigned: Mon., Oct 28, 2013

Due: Mon., Nov. 18, 2013

Description: Implement a Bit Generation Engine
Top level signals (ports in your entity) include:

1. clk: 1-bit input signal which drives the sequential elements

2. RESET: 1-bit input signal that resets all sequential elements (synchronously or asynchonously

-- up to you). ‘ready_reg’, ‘bit_gen_success_reg’ and ‘equal_toggle_reg’ should all be initial-

ized to ‘1’, and the other registers to 0 when a RESET is received.

3. TOP_enroll & TOP_authen: 1-bit input flags when ‘1’, do enrollment or authentication, else

do regeneration.

4. volt_diff_f, volt_diff_s: These are the outputs from your SamAnalysis engine (and inputs

here) for two different SMCs. They are 11-bits or whatever you chose to do in SamAnalysis.

5. TOP_flip_frequency: An 8-bit unsigned value that indicates how often the comparison is

flipped.

6. VDT_true_threshold: An 11-bit unsigned value that gives the threshold. Note, this width of

this value is the same as the volt_diff_f/volt_diff_s signals.

7. TOP_XMR: A 4-bit unsigned value that indicates the XMR level.

8. TOP_num_bits: A 24-bit input signal indicating the total number of bits to generate.

9. TOP_valid_bit_ready, TOP_invalid_bit_ready, TOP_redundant_bit_ready: 1-bit output flags

indicating the status of the current comparison.

10. TOP_bit_gen_done: A 1-bit output signal that indicates bitstring generation process is com-

pleted.

11. TOP_bstr_cur_len: A 24-bit input signal that indicates the total number of bits generated so

far.

12. TOP_bstr_buf_ready_int: A 1-bit input signal indicating that 32-bits have been generated (of

the 256, for example). You need to store the bits as they are generated by the BitGen engine in

an interface register and assert this signal when you reach a multiple of 32-bits. When

asserted, this causes the BitGen machine to ‘wait’ for the C program to indicate it has read the

bits. This is done by asserting ‘TOP_bstr_buf_continue’.

(NOTE: TOP_bstr_buf_ready_int needs to be asserted by your VHDL code in the parent mod-
ule in the same clock cycle that the BitGen engine asserts TOP_valid_bit_ready, i.e., it is a
combinational circuit)

13. TOP_bstr_buf_ready: A 1-bit output signal that tells the C code that 32-bits are ready and are

ready for transfer to the microprocessor memory and output over the serial link.

14. TOP_bstr_buf_continue: 1-bit input signal which is asserted by the C program to indicate that

it has read the 32-bit bitstring register.

15. TOP_secret_bit: A 1-bit output signal that represents the secret bit just generated.

16. start: A 1-bit input signal which starts the BitGen engine

17. ready: A 1-bit output signal which indicates that the BitGen engine is in the ‘idle’ state.

18. init_state: A 1-bit input signal that resets a selected set of registers (Note: RESET also resets

all of these registers + some others not listed).

You need to write the state machine that manages the public data. The signals that interface to the

BitGen engine are as follows:

19. PDMC_ready: A 1-bit input from the Public Data Memory Controller (PDMC) indicating it

is ready to carry out an operation. Only writes are issued by the BitGen engine.

20. PDMC_last_bit: A 1-bit output signal that tells the PDMC engine that this is the last write to

public data and to store the partial word if the number of public data bits is not a multiple of 8,

else just save a full word as usual.

21. PDMC_start: A 1-bit output signal to the PDMC to begin a read or write cycle.

22. PDMC_write_bit: A 1-bit output signal to the PDMC to carry out a write cycle.

23. PDMC_vb_in_store: A 1-bit output signal to the PDMC which indicates the bit to store.

Your demo needs to show the secret bitstring generated, in 32-bit chunks as indicated by the

TOP_bstr_buf_ready signal described above. You also need to store the public data as it is gener-

ated by the BitGen engine during enrollment so that it can be ‘played back’ during regeneration.

Remember, during regeneration, you do NOT start the BitGen engine when the public data valid

bit for a given comparison is ‘0’.

You do not need to include the PDMC FSMD in this lab. Use C code to emulate the LFSR and

SamAnalysis engine as we discussed in class.

TOP_num_bits

0

1
num_bits_XMR_scaled(23:0)

resize(XMR_times_num_bits, 24)

0

0

1
XMR_times_num_bits(20:0)

TOP_XMR = 0 or TOP_authen = ‘1’

(resize(unsigned(TOP_num_bits), 16) * resize(XMR_num_copies, 5)

0

0

1
XMR_num_copies(4:0)

TOP_XMR = 0 or TOP_authen = ‘1’

(resize(unsigned(TOP_XMR), 5) sll 1) - 1

TOP_XMR = 0 or TOP_authen = ‘1’

ready <= ready_reg;

PDMC_vb_in_store <= bit_gen_success_reg;

TOP_bstr_cur_len <= bstrcnt_next;

TOP_secret_bit <= secret_bit_next;
TOP_bstr_buf_ready <= bstr_buf_ready_reg;

ASMD diagram

idle

gen_bit

N

ready_next = 1

init_state?

flip_compare_next = 0
bstrcnt_next = 0

start?

ready_next = 0
bit_gen_success_next = 1

volt_diff_f >= volt_diff_s

PN_diff = volt_diff_s - volt_diff_f
t_bit_val = 0

PN_diff = volt_diff_f - volt_diff_s
t_bit_val = 1

YN

TOP_flip_frequency = 0 or flip_compare_reg = 0

secret_bit_next = t_bit_valsecret_bit_next = not t_bit_val

Y

TOP_enroll?

bit_gen_success_next = 0

Y

bit_gen_success_next = 1

ff_cnt_next++
Y

ff_cnt_reg = TOP_flip_frequency - 1
ff_cnt_next = 0
flip_compare_next = not flip_compare_reg

N

N

N

N

Y

N

bit_gen_done_next = 0

XMR_copy_cnt_next = 0

PN_diff < VDT_true_threshold
Y

XMR_copy_cnt_reg = 0
N

bit_to_match_next = secret_bit_next bit_to_match_reg /= secret_bit_next

Y

N

bit_gen_success_next = 0

Y

N

num_zeros_next = 0
num_ones_next = 0

Y

secret_bit_next = 0

num_ones_next++num_zeros_next++

Y N

ff_cnt_next = 0

(next page)

BitGen (part I)

bstrcnt_next++

TOP_enroll = 1

save_valid_bit

PDMC_start = 1
PDMC_write_bit = 1

bit_gen_success_reg = 1

PDMC_last_bit = 1

Y

NOTE: No wait for this
operation to finish!

N

PDMC_ready?
N

Y

wait_save_valid_bit

PDMC_ready?
N

TOP_bit_gen_done_next = 1

do_valid

Y

bstrcnt_reg = num_bits_XMR_scaled - 1

Y

N

Y
num_zeros_reg > num_ones_reg

Y N

secret_bit_next = 1

num_zeros_next = 0
num_ones_next = 0
XMR_copy_cnt_next = 0

N

BitGen (part II)

bit_gen_success_next = 1
N

Y

ready_next = 1
TOP_invalid_bit_ready = 1

bstrcnt_reg = num_bits_XMR_scaled - 1

XMR_num_copies = 0 or XMR_copy_cnt_reg = XMR_num_copies - 1

secret_bit_next = 0

N

Y

TOP_valid_bit_ready = 1

N

TOP_redundant_bit_ready = 1
XMR_copy_cnt_next++

ready_next = 1

TOP_bstr_buf_ready_int = 1?

bstr_buf_ready_next = 1

Y N

wait_continue

TOP_bstr_buf_continue = 1?
Y

bstr_buf_ready_next = 0

N

ready_next = 1

