
LAB Assignment #4 for ECE 522

Assigned: Mon., Oct 12, 2015

Part I: Due: Wed., Oct. 14, 2015

Part II: Due: Mon, Oct. 19, 2015

Description: Finish the LCTest_Driver.vhd state machine from the starter

code. Simulate it.

Part I:

1) Important Notes: Many of the problems most of you have been having are related to the recent

discovery that Vivado does not support timing simulations of designs described in VHDL (only

verilog designs are supported). It is astonishing that Xilinx had made that decision given the size

of the user base that codes in VHDL. I spent the entire fall break + weekend trying to find

workarounds for this problem and only came up with two:

• Use Vivado 2014.4, which allows you to configure the simulation tool to use other 3rd party

simulators. Since we have Cadence, I used IES (Incisive Enterprise Simulation) and every-

thing worked fine. A student version of ModelSim (vsim) is also available for download if you

are so inclined.

• Run only behavioral simulation in Vivado 2014.2 (FIRST/Top option in the simulation menu

pop-up).

Since I’m giving you the LaunchCaptureEngine.vhd code, you do not need to run timing simula-

tions (Post Implementation) since I’ve worked out all the timing issues for you using IES. The IES

waveform window is shown below along with the behavioral simulation window to illustrate the

differences. Note that all FF and LUT delays in behavioral are ZERO. However, the phase shifted

clock still works so you should be able to code-up the state machine as given by the pseudocode

below.

I’ve also reverted to asynchronous RESET in the FF process blocks and removed the reset on the

MMCM, both of which were causing reset and testbench difficulties.

Pseudo Code for LCTest_Driver.vhd

1) idle:

Check ‘start’, de-assert ready, set target_phase initial value and start PhaseAdjust (FPA_start).
2) set_target_phase:

Check if PhaseAdjust is done, assert Capture_ClkEn to capture initial value on next clock.
3) start_LC:

De-assert Capture_ClkEn, store ‘Capture_vals’ in ‘init_FU_vals’
4) evaluate_FU_outputs:

Check LC is done, if so, compare saved initial values with current values (‘Capture_vals).
Store target_phase in ‘resultx’ if initial values have changed. Check and store each output
value individually since the delays along ‘sum’ and ‘Cout’ will be different. Don’t allow
updates to ‘resultx’ once a value has been assigned.

5) check_done

Check if both ‘resultx’ registers have been assigned values, if not, go to set_target_phase else
go to idle.



Timing Simulation

Behavioral Simulation with Vivado 2014.2:

Fig. 1. IES Timing Simulation showing Launch/Capture event.

Launch Capture

Fig. 2. Vivado 2014.2 Behavioral Simulation showing Launch/Capture
event.



Part II: Hardware Demo:

• Modify your existing Vivado project by adding a Zync processor and GPIO to the existing

MMCM from Part I to the block diagram.

• Delete sys_clock pin in block diagram and route FCLK_CLK0 to the clk_in1 pin on the

clk_wiz_0 instance.

• Enable both channels of the GPIO, make them both ‘custom’ and make the first GPIO channel

‘all inputs’ and the second channel ‘all outputs’.

• Generate wrapper and add an instance of Top.vhd to the design_1_wrapper.vhd file.

See figure:

• Delete LCTD_start, LCTD_ready, Launch_vals1, Launch_vals2, result1 and result2 from the

Top.vhd entity

• Add the two 32-bit ports from the GPIO, GPIO_Ins_tri_i, GPIO_Out_tri_o.

Note that GPIO_Ins_tri_i will be an OUT parameter while GPIO_Outs_tri_o will be an IN
parameter in your Top.vhd module.

• Connect the LCTD_start, Launch_vals1 and Launch_vals2 to bits of your choice on

GPIO_Outs_tri_o, and LCTD_ready, result1 and result2 to bits of your choice on

GPIO_Ins_tri_i.

• Change RESET to reset_mmcm and change its direction to OUT.

Inside your Top.vhd, you should assign 0 to this signal, i.e.,
reset_mmcm <= ‘0’;

• Make the existing RESET a signal within Top.vhd and optionally connect it to a bit of

GPIO_Outs_tri_o so that you can do a ‘software’ reset of your PL logic from your C program.

Otherwise, connect it to ‘0’, similar to reset_mmcm above.

Be sure to delete clk_out1, clk_out2, gpio_ins_tri_i, gpio_outs_tri_o, locked, psdone, psen, psinc-

dec and reset_rtl from the design_1_wrapper entity.

See figure



• Create a C program that uses ‘mmap’ to access the GPIO registers.

• Write a simple program that sets the Launch_vals1 and Launch_vals2 to “000” and “111’ (try

other combinations here as well after you get these two values to work).

• After setting the launch vector values, assert and then immediately de-assert (on the next

instruction) LCTD_start.

• Enter a busy wait loop that loops while LCTD_ready is ‘0’.

• Once LCTD_ready becomes ‘1’, exit loop, read and print the result1 and result2 values.

Laboratory Report Requirements:

Grading:

The grading from this lab will be based entirely on your in-class demo. Bonus points will be given

to any implementation feature that goes above and beyond the requirements. Please print out and

turn in a copy of your VHDL code.

Top entity

design_1_wrapper entity


