
LAB Assignment #5 for ECE 522

Assigned: Mon., Oct 21, 2015

Due: Mon, Nov. 4, 2015

Description: Write a new VHDL module called EvalFUOutputs that general-

izes what you have done in lab4. Simulate as necessary and prepare a hard-

ware demo.

1) LCTest_Driver.vhd should be simplified to only start/stop/synchronize three state machines,

PhaseAdjust, LaunchCapture and the new module EvalFUOutputs. Every time the LCTest_Driver

is started with a new pair of LaunchVals, you should carry out two tasks: First LCTest_Driver

should start the PhaseAdjust engine to run the phase out to 150. It should then start EvalFUOut-

puts to carry out initialization tasks prior to the testing of the FU’s outputs (see below). Once ini-

tialization finishes, you should enter a loop in LCTest_Driver that carries out a series of launch/

capture tests, once for each phase shift value. Here, you start the LC engine, followed by starting

EvalFUOuts again but in launch/capture mode (see below) and then, if necessary start the Phase-

Adjust again if there are still paths that need to be timed (see below). Note that initialization is

only performed ONCE, while the launch/capture will be repeated over and over again until all

FU’s outputs are timed. Note that you need to ‘parameterize’ your VHDL to handle any number

of outputs (by changing a constant in the provided DataTypes_pkg.vhd) and either type of transi-

tion, i.e., the tested path transitons from ‘0’ to ‘1’ (as it does in lab4) or from ‘1’ to ‘0’.

2) EvalFUOutputs can be started in one of two modes:

a) Mode 1 (Initialization): During initialization, it should carry out special launch/capture test that

allows a full clock cycle for the second vector values to propagate to the FU outputs (an example

of this is already provided in lab4). During this special test, you should first record the FU’s initial

values under the first vector and then determine which of the FU outputs change under the second

vector (after waiting a full clock cycle). Create a set of single bit registers (width corresponding to

the number of outputs from the FU -- see DataTypes_pkg.vhd for OutRowType typedef), called

init_FU_vals, that stores the initial values of the path and a second set of single bit registers call

has_trans that stores a ‘0’ if the corresponding path does NOT have a transition and a ‘1’ if it

does. You should also initialize the ‘row_timings’ 2D register array to all ‘0’s (see RowResult-

sType provided DataTypes_pkg.vhd -- first dimension refers to the FU path output, second dimen-

sioin refers to the timing value (phase shift value)). Last, initialize a second set of single bit

registers (width also corrsponding to the number of outputs from the FU), called ‘path_is_timed’

and initialize it to all ‘0’s.

3) Mode 2 (Launch/Capture): During launch/capture mode, inspect the capture FF values

(Capture_vals) for each path (one at a time) to determine if the path succeeded in propagating its

transition to the capture FF in the time allotted by the current value of the phase shift. This can be

determined by xor’ing the Capture_vals(x) with the corresponding init_FU_vals(x) that you ini-

tialized as described above. If the values are different, you should update path_is_timed(x) with a

‘1’ and store the current phase shift value in row_timings(x). The path_is_timed status registers

should be used to prevent further updates to row_timings for those paths that are been timed. Also,

you should skip the inspection and update to row_timings(x) of paths that have no transitions

(has_trans(x) stores a ‘0’), i.e., leave their row_timings(x) values at 0. Also, optionally, you can



keep updating the timing values for paths that have NOT yet propagated their transition with the

current phase value. Once the transition arrives, you would stop updating the timing value (as

described above) because the path_is_timed(x) bit would be set. This allows you to handle over-

flow properly, i.e., paths that are too long and therefore, the transition never makes it to the cap-

ture FF even with the largest phase shift value (1100 in our case). Also, optionally, you can create

a set of single bit registers called glitches that records whether a path has more than one transition.

This information can be used later to filter paths that are ‘unstable’, i.e., those with more than one

transition. Last thing to consider is the ‘done’ condition. LCTest_Driver.vhd has a signal called

all_timings_done, which should be asserted in EvaluFUOutputs when all paths with transtions

have been timed.

Laboratory Report Requirements:

Grading:

The grading from this lab will be based entirely on your in-class demo. Bonus points will be given

to any implementation feature that goes above and beyond the requirements. Please print out and

turn in a copy of your EvalFUOutputs code.


