Xi ntc_tapp_exanple.c Fri Oct 07 16:03:13 2011 1
#defi ne TESTAPP_GEN

/
/

*

T I T T I R i T T T I I . . T I TR R

* $ld: xintc_tapp_exanple.c,v 1.1.2.1 2010/09/17 05:26: 04 svermula Exp $ */

E R Sk Sk Sk Sk Sk Sk Sk Sk S S Sk Sk Sk S Sk kS Sk Sk Sk Sk Sk kS Sk Sk Sk Sk Sk Sk kS R S S Sk S Sk Sk Sk Sk Sk kS Sk S Sk S Sk kS Sk S Sk Sk S S kS S S S S S

(c) Copyright 2002-2009 Xilinx, Inc. Al rights reserved

This file contains confidential and proprietary information of Xilinx, Inc
and is protected under U S. and international copyright and other
intellectual property |aws.

DI SCLAI MER

This disclaimer is not a |license and does not grant any rights to the
materials distributed herewith. Except as otherw se provided in a valid
license issued to you by Xilinx, and to the maxi mum extent pernitted by
applicable law (1) THESE MATERI ALS ARE MADE AVAI LABLE "AS | S" AND WTH ALL
FAULTS, AND XI LI NX HEREBY DI SCLAI M5 ALL WARRANTI ES AND CONDI TlI ONS, EXPRESS,
| MPLI ED, OR STATUTORY, | NCLUDI NG BUT NOT LI M TED TO WARRANTI ES OF
MERCHANTABI LI TY, NON- I NFRI NGEMENT, OR FI TNESS FOR ANY PARTI CULAR PURPCSE;
and (2) Xilinx shall not be liable (whether in contract or tort, including
negl i gence, or under any other theory of liability) for any |oss or damage
of any kind or nature related to, arising under or in connection with these
materials, including for any direct, or any indirect, special, incidental

or consequential |oss or damage (including |oss of data, profits, goodwll,
or any type of |oss or damage suffered as a result of any action brought by
athird party) even if such damage or |0ss was reasonably foreseeable or
Xilinx had been advised of the possibility of the sanme

CRI TI CAL APPLI CATI ONS

Xil'inx products are not designed or intended to be fail-safe, or for use in
any application requiring fail-safe performance, such as |ife-support or
safety devices or systems, Class |Il medical devices, nuclear facilities,
applications related to the depl oynent of airbags, or any other applications
that could lead to death, personal injury, or severe property or

envi ronnment al damage (individually and collectively, "Critical
Applications"). Custoner assunes the sole risk and liability of any use of
Xilinx products in Critical Applications, subject only to applicable | aws
and regul ations governing limtations on product liability

TH' S COPYRI GHT NOTI CE AND DI SCLAI MER MUST BE RETAINED AS PART OF TH' S FILE
AT ALL TI MES

LR R R E R EEREEEEEEEEEEREEEEEEREEEEEEREREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEY)
**/

* %

@ile xintc_tapp_exanple.c

This file contains a self test exanple using the Interrupt Controller driver
(XIntc) and hardware device. Please reference other device driver exanples to
see nore exanples of how the Intc and interrupts can be used by a software
application

Thi s exanpl e shows the use of the Interrupt Controller both with a Power PC405
and M croBl aze processor

The TestApp Gen utility uses this file to performthe self test and setup
of Intc for interrupts

@ot e

None

<pre>

MODI FI CATI ON HI STORY:

Ver Wio Date Changes

1.00a sv 06/29/05 Created for Test App Integration

1.00c sn 05/09/06 Added Interrupt Setup Function

2.00a ktn 10/20/09 Updated to use HAL Processor APls and m nor changes as
per codi ng gui delines

</ pre>

LEE AR R R EEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEY)

Xi ntc_tapp_exanple.c Fri Oct 07 16:03:13 2011 2

/***************************** InCI ude F| I es *********************************/

#i ncl ude "xparaneters. h"
#i ncl ude "xstatus. h"

#i nclude "xintc.h"

#i ncl ude "xil _exception. h"

/************************** Constant mflnltlons *****************************/

/*

* The follow ng constants map to the XPAR paraneters created in the

* xparaneters.h file. They are defined here such that a user can easily
* change all the needed paraneters in one place. This definition is not
* included if the exanple is generated fromthe Test AppCGen test tool.

*

/

#i f ndef TESTAPP_GEN

#define |INTC_DEVICE_I D XPAR | NTC 0_DEVICE ID
#endi f

/**************************** Type mfl r" tl ons *******************************/

[R ERERX KKK KR XX KK KXXX MNACT OS (l nli ne Functi OnS) Definiti Ons *****xxxkkkkkxkhkkkkxx |

/************************** Functl on Prot Otypes ******************************/

int IntcSel f Test Exanpl e(ul6 Deviceld);
int IntclnterruptSetup(Xintc *IntclnstancePtr, ul6 Deviceld);

[REERX K KKKk kXK kkkkkxkkkkxxxx \grjiable Definiti ONs ****xxxkkkkxxkkkkkxxkkkkkxxk k% [

static XIntc InterruptController; /* Instance of the Interrupt Controller */

/***/

/**

*

* This is the main function for the Interrupt Controller exanple. This
* function is not included if the exanple is generated fromthe Test AppGen test
* tool.

*

* @aram None.

*

* @eturn XST_SUCCESS to indicate success, otherw se XST_FAI LURE.
*

* @ote None.

*

LA R E RS EEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEY]

#i f ndef TESTAPP_GEN
int main(void)

int Status;

/* Run the Intc exanple , specify the Device ID generated in xparaneters.h. */
Status = I ntcSel f Test Exanpl e(| NTC_DEVI CE_| D);
if (Status != XST_SUCCESS)
{ return XST_FAILURE;, }

return XST_SUCCESS;
}
#endi f

/***/

[**

This function runs a self-test on the driver/device. This is a destructive

*

* test. This function is an exanple of how to use the interrupt controller

* driver conmponent (XIntc) and the hardware device. This function is designed
* to work without any hardware devices to cause interrupts. |t may not return
* if the interrupt controller is not properly connected to the processor in

* either software or hardware.

* This function relies on the fact that the interrupt controller hardware

* has come out of the reset state such that it will allowinterrupts to be

* simul ated by the software.

* @aram Deviceld is device ID of the Interrupt Controller Device,

*

typically XPAR <INTC_i nstance>_DEVI CE_I D val ue from

Xi ntc_tapp_exanple.c Fri Oct 07 16:03:13 2011 3

* xpar anet ers. h.
* @eturn XST_SUCCESS to indicate success, otherw se XST_FAI LURE.
* @ote None.

LA R EEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEY]

int IntcSel f Test Exanpl e(ul6 Devi cel d)
int Status;

/* Initialize the interrupt controller driver so that it is ready to use. */
Status = Xintc_lInitialize(& nterruptController, Deviceld);
if (Status != XST_SUCCESS)
{ return XST_FAILURE; }

/* Performa self-test to ensure that the hardware was built correctly. */
Status = XIntc_Sel fTest (& nterruptController);
if (Status != XST_SUCCESS)
{ return XST_FAILURE;, }

return XST_SUCCESS;
}

/***/
/**

* This function is used by the Test AppGen generated application to setup

* the interrupt controller.

* @aram IntclnstancePtr is the reference to the Interrupt Controller
* i nst ance.

* @aram Deviceld is device ID of the Interrupt Controller Device,

* typically XPAR <INTC_i nstance>_DEVI CE_I D val ue from

* xpar anet ers. h.

* @eturn XST_SUCCESS to indicate success, otherw se XST_FAlI LURE.

* @ote None.

*

***/

int IntclnterruptSetup(Xintc *IntclnstancePtr, ul6 Devicel d)
int Status;

/* Initialize the interrupt controller driver so that it is ready to use. */
Status = Xintc_lnitialize(lntclnstancePtr, Deviceld);
if (Status != XST_SUCCESS)
{ return XST_FAILURE;, }

/* Performa self-test to ensure that the hardware was built correctly. */
Status = Xintc_Sel f Test (I ntclnstancePtr);
if (Status != XST_SUCCESS)
{ return XST_FAILURE; }

/* Initialize the exception table. */
Xi| _Exceptionlnit();

/* Register the interrupt controller handler with the exception table. */
Xi | _Excepti onRegi st er Handl er (XI L_EXCEPTI ON_I D_I NT, (Xi | _Excepti onHandl er) XI nt c_Devi cel nt errupt Handl er,
id*) 0);

/* Enabl e exceptions. */
Xi | _Excepti onEnabl e();

/* Start the interrupt controller such that interrupts are enabled for all devices that cause interrupts.
Status = XIntc_Start(IntclnstancePtr, X N_REAL_MODE);
if (Status != XST_SUCCESS)
{ return XST_FAILURE;, }

return XST_SUCCESS;
}

(vo

*/

