/* $Id: xutil_memtest.c,v 1.10 2007/05/04 21:55:59 wre Exp $ */ /****************************************************************************** * * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS" * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE, * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT, * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE. * * (c) Copyright 2002 Xilinx Inc. * All rights reserved. * ******************************************************************************/ /*****************************************************************************/ /** * * @file xutil_memtest.c * * Contains the memory test utility functions. * *
* MODIFICATION HISTORY:
*
* Ver    Who    Date    Changes
* ----- ---- -------- -----------------------------------------------
* 1.00a ecm  11/01/01 First release
* 1.00a xd   11/03/04 Improved support for doxygen.
* 
* *****************************************************************************/ /***************************** Include Files ********************************/ #include "xbasic_types.h" #include "xstatus.h" #include "xutil.h" /************************** Constant Definitions ****************************/ /************************** Function Prototypes *****************************/ static u32 RotateLeft(u32 Input, u8 Width); /* define ROTATE_RIGHT to give access to this functionality */ /* #define ROTATE_RIGHT */ #ifdef ROTATE_RIGHT static u32 RotateRight(u32 Input, u8 Width); #endif /* ROTATE_RIGHT */ /*****************************************************************************/ /** * * Performs a destructive 32-bit wide memory test. * * @param Addr is a pointer to the region of memory to be tested. * @param Words is the length of the block. * @param Pattern is the constant used for the constant pattern test, if 0, * 0xDEADBEEF is used. * @param Subtest is the test selected. See xutil.h for possible values. * * @return * * - XST_MEMTEST_FAILED is returned for a failure * - XST_SUCCESS is returned for a pass * * @note * * Used for spaces where the address range of the region is smaller than * the data width. If the memory range is greater than 2 ** width, * the patterns used in XUT_WALKONES and XUT_WALKZEROS will repeat on a * boundry of a power of two making it more difficult to detect addressing * errors. The XUT_INCREMENT and XUT_INVERSEADDR tests suffer the same * problem. Ideally, if large blocks of memory are to be tested, break * them up into smaller regions of memory to allow the test patterns used * not to repeat over the region tested. * *****************************************************************************/ int XUtil_MemoryTest32(u32 *Addr, u32 Words, u32 Pattern, u8 Subtest) { u32 i; u32 j; u32 Val = XUT_MEMTEST_INIT_VALUE; u32 FirstVal = XUT_MEMTEST_INIT_VALUE; u32 Word; XASSERT_NONVOID(Words != 0); XASSERT_NONVOID(Subtest <= XUT_MAXTEST); /* * Select the proper Subtest */ switch (Subtest) { case XUT_ALLMEMTESTS: /* this case executes all of the Subtests */ /* fall through case statement */ case XUT_INCREMENT: { /* * Fill the memory with incrementing * values starting from 'FirstVal' */ for (i = 0L; i < Words; i++) { Addr[i] = Val; /* write memory location */ Val++; } /* * Restore the reference 'Val' to the * initial value */ Val = FirstVal; /* * Check every word within the Words * of tested memory and compare it * with the incrementing reference * Val */ for (i = 0L; i < Words; i++) { Word = Addr[i]; if (Word != Val) { return XST_MEMTEST_FAILED; } Val++; } if (Subtest != XUT_ALLMEMTESTS) { return XST_SUCCESS; } } /* end of case 1 */ /* fall through case statement */ case XUT_WALKONES: { /* * set up to cycle through all possible initial * test Patterns for walking ones test */ for (j = 0L; j < 32; j++) { /* * Generate an initial value for walking ones test to test for bad * data bits */ Val = 1 << j; /* * START walking ones test * Write a one to each data bit indifferent locations */ for (i = 0L; i < 32; i++) { /* write memory location */ Addr[i] = Val; Val = (u32) RotateLeft(Val, 32); } /* * Restore the reference 'Val' to the * initial value */ Val = 1 << j; /* Read the values from each location that was written */ for (i = 0L; i < 32; i++) { /* read memory location */ Word = Addr[i]; if (Word != Val) { return XST_MEMTEST_FAILED; } Val = (u32) RotateLeft(Val, 32); } } if (Subtest != XUT_ALLMEMTESTS) { return XST_SUCCESS; } } /* end of case 2 */ /* fall through case statement */ case XUT_WALKZEROS: { /* * set up to cycle through all possible * initial test Patterns for walking zeros test */ for (j = 0L; j < 32; j++) { /* * Generate an initial value for walking ones test to test for * bad data bits */ Val = ~(1 << j); /* * START walking zeros test * Write a one to each data bit indifferent locations */ for (i = 0L; i < 32; i++) { /* write memory location */ Addr[i] = Val; Val = ~((u32) RotateLeft(~Val, 32)); } /* * Restore the reference 'Val' to the * initial value */ Val = ~(1 << j); /* Read the values from each location that was written */ for (i = 0L; i < 32; i++) { /* read memory location */ Word = Addr[i]; if (Word != Val) { return XST_MEMTEST_FAILED; } Val = ~((u32) RotateLeft(~Val, 32)); } } if (Subtest != XUT_ALLMEMTESTS) { return XST_SUCCESS; } } /* end of case 3 */ /* fall through case statement */ case XUT_INVERSEADDR: { /* Fill the memory with inverse of address */ for (i = 0L; i < Words; i++) { /* write memory location */ Val = (u32) (~((u32) (&Addr[i]))); Addr[i] = Val; } /* * Check every word within the Words * of tested memory */ for (i = 0L; i < Words; i++) { /* Read the location */ Word = Addr[i]; Val = (u32) (~((u32) (&Addr[i]))); if ((Word ^ Val) != 0x00000000) { return XST_MEMTEST_FAILED; } } if (Subtest != XUT_ALLMEMTESTS) { return XST_SUCCESS; } } /* end of case 4 */ /* fall through case statement */ case XUT_FIXEDPATTERN: { /* * Generate an initial value for * memory testing */ if (Pattern == 0) { Val = 0xDEADBEEF; } else { Val = Pattern; } /* * Fill the memory with fixed pattern */ for (i = 0L; i < Words; i++) { /* write memory location */ Addr[i] = Val; } /* * Check every word within the Words * of tested memory and compare it * with the fixed pattern */ for (i = 0L; i < Words; i++) { /* read memory location */ Word = Addr[i]; if (Word != Val) { return XST_MEMTEST_FAILED; } } if (Subtest != XUT_ALLMEMTESTS) { return XST_SUCCESS; } } /* end of case 5 */ /* this break is for the prior fall through case statements */ break; default: { return XST_MEMTEST_FAILED; } } /* end of switch */ /* Successfully passed memory test ! */ return XST_SUCCESS; } /*****************************************************************************/ /** * * Performs a destructive 16-bit wide memory test. * * @param Addr is a pointer to the region of memory to be tested. * @param Words is the length of the block. * @param Pattern is the constant used for the constant pattern test, if 0, * 0xDEADBEEF is used. * @param Subtest is the test selected. See xutil.h for possible values. * * @return * * - XST_MEMTEST_FAILED is returned for a failure * - XST_SUCCESS is returned for a pass * * @note * * Used for spaces where the address range of the region is smaller than * the data width. If the memory range is greater than 2 ** width, * the patterns used in XUT_WALKONES and XUT_WALKZEROS will repeat on a * boundry of a power of two making it more difficult to detect addressing * errors. The XUT_INCREMENT and XUT_INVERSEADDR tests suffer the same * problem. Ideally, if large blocks of memory are to be tested, break * them up into smaller regions of memory to allow the test patterns used * not to repeat over the region tested. * *****************************************************************************/ int XUtil_MemoryTest16(u16 *Addr, u32 Words, u16 Pattern, u8 Subtest) { u32 i; u32 j; u16 Val = XUT_MEMTEST_INIT_VALUE; u16 FirstVal = XUT_MEMTEST_INIT_VALUE; u16 Word; XASSERT_NONVOID(Words != 0); XASSERT_NONVOID(Subtest <= XUT_MAXTEST); /* * selectthe proper Subtest(s) */ switch (Subtest) { case XUT_ALLMEMTESTS: /* this case executes all of the Subtests */ /* fall through case statement */ case XUT_INCREMENT: { /* * Fill the memory with incrementing * values starting from 'FirstVal' */ for (i = 0L; i < Words; i++) { /* write memory location */ Addr[i] = Val; Val++; } /* * Restore the reference 'Val' to the * initial value */ Val = FirstVal; /* * Check every word within the Words * of tested memory and compare it * with the incrementing reference * Val */ for (i = 0L; i < Words; i++) { /* read memory location */ Word = Addr[i]; if (Word != Val) { return XST_MEMTEST_FAILED; } Val++; } if (Subtest != XUT_ALLMEMTESTS) { return XST_SUCCESS; } } /* end of case 1 */ /* fall through case statement */ case XUT_WALKONES: { /* * set up to cycle through all possible initial test * Patterns for walking ones test */ for (j = 0L; j < 16; j++) { /* * Generate an initial value for walking ones test to test for bad * data bits */ Val = 1 << j; /* * START walking ones test * Write a one to each data bit indifferent locations */ for (i = 0L; i < 16; i++) { /* write memory location */ Addr[i] = Val; Val = (u16) RotateLeft(Val, 16); } /* * Restore the reference 'Val' to the * initial value */ Val = 1 << j; /* Read the values from each location that was written */ for (i = 0L; i < 16; i++) { /* read memory location */ Word = Addr[i]; if (Word != Val) { return XST_MEMTEST_FAILED; } Val = (u16) RotateLeft(Val, 16); } } if (Subtest != XUT_ALLMEMTESTS) { return XST_SUCCESS; } } /* end of case 2 */ /* fall through case statement */ case XUT_WALKZEROS: { /* * set up to cycle through all possible initial * test Patterns for walking zeros test */ for (j = 0L; j < 16; j++) { /* * Generate an initial value for walking ones * test to test for bad * data bits */ Val = ~(1 << j); /* * START walking zeros test * Write a one to each data bit indifferent locations */ for (i = 0L; i < 16; i++) { /* write memory location */ Addr[i] = Val; Val = ~((u16) RotateLeft(~Val, 16)); } /* * Restore the reference 'Val' to the * initial value */ Val = ~(1 << j); /* Read the values from each location that was written */ for (i = 0L; i < 16; i++) { /* read memory location */ Word = Addr[i]; if (Word != Val) { return XST_MEMTEST_FAILED; } Val = ~((u16) RotateLeft(~Val, 16)); } } if (Subtest != XUT_ALLMEMTESTS) { return XST_SUCCESS; } } /* end of case 3 */ /* fall through case statement */ case XUT_INVERSEADDR: { /* Fill the memory with inverse of address */ for (i = 0L; i < Words; i++) { /* write memory location */ Val = (u16) (~((u32) (&Addr[i]))); Addr[i] = Val; } /* * Check every word within the Words * of tested memory */ for (i = 0L; i < Words; i++) { /* read memory location */ Word = Addr[i]; Val = (u16) (~((u32) (&Addr[i]))); if ((Word ^ Val) != 0x0000) { return XST_MEMTEST_FAILED; } } if (Subtest != XUT_ALLMEMTESTS) { return XST_SUCCESS; } } /* end of case 4 */ /* fall through case statement */ case XUT_FIXEDPATTERN: { /* * Generate an initial value for * memory testing */ if (Pattern == 0) { Val = 0xDEAD; } else { Val = Pattern; } /* * Fill the memory with fixed pattern */ for (i = 0L; i < Words; i++) { /* write memory location */ Addr[i] = Val; } /* * Check every word within the Words * of tested memory and compare it * with the fixed pattern */ for (i = 0L; i < Words; i++) { /* read memory location */ Word = Addr[i]; if (Word != Val) { return XST_MEMTEST_FAILED; } } if (Subtest != XUT_ALLMEMTESTS) { return XST_SUCCESS; } } /* end of case 5 */ /* this break is for the prior fall through case statements */ break; default: { return XST_MEMTEST_FAILED; } } /* end of switch */ /* Successfully passed memory test ! */ return XST_SUCCESS; } /*****************************************************************************/ /** * * Performs a destructive 8-bit wide memory test. * * @param Addr is a pointer to the region of memory to be tested. * @param Words is the length of the block. * @param Pattern is the constant used for the constant pattern test, if 0, * 0xDEADBEEF is used. * @param Subtest is the test selected. See xutil.h for possible values. * * @return * * - XST_MEMTEST_FAILED is returned for a failure * - XST_SUCCESS is returned for a pass * * @note * * Used for spaces where the address range of the region is smaller than * the data width. If the memory range is greater than 2 ** width, * the patterns used in XUT_WALKONES and XUT_WALKZEROS will repeat on a * boundry of a power of two making it more difficult to detect addressing * errors. The XUT_INCREMENT and XUT_INVERSEADDR tests suffer the same * problem. Ideally, if large blocks of memory are to be tested, break * them up into smaller regions of memory to allow the test patterns used * not to repeat over the region tested. * *****************************************************************************/ int XUtil_MemoryTest8(u8 *Addr, u32 Words, u8 Pattern, u8 Subtest) { u32 i; u32 j; u8 Val = XUT_MEMTEST_INIT_VALUE; u8 FirstVal = XUT_MEMTEST_INIT_VALUE; u8 Word; XASSERT_NONVOID(Words != 0); XASSERT_NONVOID(Subtest <= XUT_MAXTEST); /* * select the proper Subtest(s) */ switch (Subtest) { case XUT_ALLMEMTESTS: /* this case executes all of the Subtests */ /* fall through case statement */ case XUT_INCREMENT: { /* * Fill the memory with incrementing * values starting from 'FirstVal' */ for (i = 0L; i < Words; i++) { /* write memory location */ Addr[i] = Val; Val++; } /* * Restore the reference 'Val' to the * initial value */ Val = FirstVal; /* * Check every word within the Words * of tested memory and compare it * with the incrementing reference * Val */ for (i = 0L; i < Words; i++) { /* read memory location */ Word = Addr[i]; if (Word != Val) { return XST_MEMTEST_FAILED; } Val++; } if (Subtest != XUT_ALLMEMTESTS) { return XST_SUCCESS; } } /* end of case 1 */ /* fall through case statement */ case XUT_WALKONES: { /* * set up to cycle through all possible initial * test Patterns for walking ones test */ for (j = 0L; j < 8; j++) { /* * Generate an initial value for walking ones test to test * for bad data bits */ Val = 1 << j; /* * START walking ones test * Write a one to each data bit indifferent locations */ for (i = 0L; i < 8; i++) { /* write memory location */ Addr[i] = Val; Val = (u8) RotateLeft(Val, 8); } /* * Restore the reference 'Val' to the * initial value */ Val = 1 << j; /* Read the values from each location that was written */ for (i = 0L; i < 8; i++) { /* read memory location */ Word = Addr[i]; if (Word != Val) { return XST_MEMTEST_FAILED; } Val = (u8) RotateLeft(Val, 8); } } if (Subtest != XUT_ALLMEMTESTS) { return XST_SUCCESS; } } /* end of case 2 */ /* fall through case statement */ case XUT_WALKZEROS: { /* * set up to cycle through all possible initial test * Patterns for walking zeros test */ for (j = 0L; j < 8; j++) { /* * Generate an initial value for walking ones test to test * for bad data bits */ Val = ~(1 << j); /* * START walking zeros test * Write a one to each data bit indifferent locations */ for (i = 0L; i < 8; i++) { /* write memory location */ Addr[i] = Val; Val = ~((u8) RotateLeft(~Val, 8)); } /* * Restore the reference 'Val' to the * initial value */ Val = ~(1 << j); /* Read the values from each location that was written */ for (i = 0L; i < 8; i++) { /* read memory location */ Word = Addr[i]; if (Word != Val) { return XST_MEMTEST_FAILED; } Val = ~((u8) RotateLeft(~Val, 8)); } } if (Subtest != XUT_ALLMEMTESTS) { return XST_SUCCESS; } } /* end of case 3 */ /* fall through case statement */ case XUT_INVERSEADDR: { /* Fill the memory with inverse of address */ for (i = 0L; i < Words; i++) { /* write memory location */ Val = (u8) (~((u32) (&Addr[i]))); Addr[i] = Val; } /* * Check every word within the Words * of tested memory */ for (i = 0L; i < Words; i++) { /* read memory location */ Word = Addr[i]; Val = (u8) (~((u32) (&Addr[i]))); if ((Word ^ Val) != 0x00) { return XST_MEMTEST_FAILED; } } if (Subtest != XUT_ALLMEMTESTS) { return XST_SUCCESS; } } /* end of case 4 */ /* fall through case statement */ case XUT_FIXEDPATTERN: { /* * Generate an initial value for * memory testing */ if (Pattern == 0) { Val = 0xA5; } else { Val = Pattern; } /* * Fill the memory with fixed pattern */ for (i = 0L; i < Words; i++) { /* write memory location */ Addr[i] = Val; } /* * Check every word within the Words * of tested memory and compare it * with the fixed pattern */ for (i = 0L; i < Words; i++) { /* read memory location */ Word = Addr[i]; if (Word != Val) { return XST_MEMTEST_FAILED; } } if (Subtest != XUT_ALLMEMTESTS) { return XST_SUCCESS; } } /* end of case 5 */ /* this break is for the prior fall through case statements */ break; default: { return XST_MEMTEST_FAILED; } } /* end of switch */ /* Successfully passed memory test ! */ return XST_SUCCESS; } /*****************************************************************************/ /** * * Rotates the provided value to the left one bit position * * @param Input is value to be rotated to the left * @param Width is the number of bits in the input data * * @return * * The resulting unsigned long value of the rotate left * * @note * * None. * *****************************************************************************/ static u32 RotateLeft(u32 Input, u8 Width) { u32 Msb; u32 ReturnVal; u32 WidthMask; u32 MsbMask; /* * set up the WidthMask and the MsbMask */ MsbMask = 1 << (Width - 1); WidthMask = (MsbMask << 1) - 1; /* * set the width of the Input to the correct width */ Input = Input & WidthMask; Msb = Input & MsbMask; ReturnVal = Input << 1; if (Msb != 0x00000000) { ReturnVal = ReturnVal | 0x00000001; } ReturnVal = ReturnVal & WidthMask; return (ReturnVal); } #ifdef ROTATE_RIGHT /*****************************************************************************/ /** * * Rotates the provided value to the right one bit position * * @param Input is value to be rotated to the right * @param Width is the number of bits in the input data * * @return * * The resulting u32 value of the rotate right * * @note * * None. * *****************************************************************************/ static u32 RotateRight(u32 Input, u8 Width) { u32 Lsb; u32 ReturnVal; u32 WidthMask; u32 MsbMask; /* * set up the WidthMask and the MsbMask */ MsbMask = 1 << (Width - 1); WidthMask = (MsbMask << 1) - 1; /* * set the width of the Input to the correct width */ Input = Input & WidthMask; ReturnVal = Input >> 1; Lsb = Input & 0x00000001; if (Lsb != 0x00000000) { ReturnVal = ReturnVal | MsbMask; } ReturnVal = ReturnVal & WidthMask; return (ReturnVal); } #endif /* ROTATE_RIGHT */