
xintc.c Fri Oct 07 16:10:43 2011 1

/* $Id: xintc.c,v 1.1.2.1 2010/09/17 05:26:04 svemula Exp $ */
/**
*
* (c) Copyright 2002-2009 Xilinx, Inc. All rights reserved.
*
* This file contains confidential and proprietary information of Xilinx, Inc.
* and is protected under U.S. and international copyright and other
* intellectual property laws.
*
* DISCLAIMER
* This disclaimer is not a license and does not grant any rights to the
* materials distributed herewith. Except as otherwise provided in a valid
* license issued to you by Xilinx, and to the maximum extent permitted by
* applicable law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND WITH ALL
* FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS,
* IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
* MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE;
* and (2) Xilinx shall not be liable (whether in contract or tort, including
* negligence, or under any other theory of liability) for any loss or damage
* of any kind or nature related to, arising under or in connection with these
* materials, including for any direct, or any indirect, special, incidental,
* or consequential loss or damage (including loss of data, profits, goodwill,
* or any type of loss or damage suffered as a result of any action brought by
* a third party) even if such damage or loss was reasonably foreseeable or
* Xilinx had been advised of the possibility of the same.
*
* CRITICAL APPLICATIONS
* Xilinx products are not designed or intended to be fail-safe, or for use in
* any application requiring fail-safe performance, such as life-support or
* safety devices or systems, Class III medical devices, nuclear facilities,
* applications related to the deployment of airbags, or any other applications
* that could lead to death, personal injury, or severe property or
* environmental damage (individually and collectively, "Critical
* Applications"). Customer assumes the sole risk and liability of any use of
* Xilinx products in Critical Applications, subject only to applicable laws
* and regulations governing limitations on product liability.
*
* THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS PART OF THIS FILE
* AT ALL TIMES.
*
**/
/***/
/**
*
* @file xintc.c
*
* Contains required functions for the XIntc driver for the Xilinx Interrupt
* Controller. See xintc.h for a detailed description of the driver.
*
* <pre>
* MODIFICATION HISTORY:
*
* Ver Who Date Changes
* ----- ---- -------- --
* 1.00a ecm 08/16/01 First release
* 1.00b jhl 02/21/02 Repartitioned the driver for smaller files
* 1.00b jhl 04/24/02 Made LookupConfig global and compressed ack before table
* in the configuration into a bit mask
* 1.00c rpm 10/17/03 New release. Support the static vector table created
* in the xintc_g.c configuration table.
* 1.00c rpm 04/23/04 Removed check in XIntc_Connect for a previously connected
* handler. Always overwrite the vector table handler with
* the handler provided as an argument.
* 1.10c mta 03/21/07 Updated to new coding style
* 1.11a sv 11/21/07 Updated driver to support access through a DCR bridge
* 2.00a ktn 10/20/09 Updated to use HAL Processor APIs.
* </pre>
*
**/

/***************************** Include Files *********************************/

#include "xil_types.h"
#include "xil_assert.h"
#include "xintc.h"
#include "xintc_l.h"
#include "xintc_i.h"

xintc.c Fri Oct 07 16:10:43 2011 2

/************************** Constant Definitions *****************************/

/**************************** Type Definitions *******************************/

/***************** Macros (Inline Functions) Definitions *********************/

/************************** Variable Definitions *****************************/

/* Array of masks associated with the bit position, improves performance
 * in the ISR and acknowledge functions, this table is shared between all
 * instances of the driver, this table is not statically initialized because
 * the size of the table is based upon the maximum used interrupt id */
u32 XIntc_BitPosMask[XPAR_INTC_MAX_NUM_INTR_INPUTS];

/************************** Function Prototypes ******************************/

static void StubHandler(void *CallBackRef);

/***/
/**
*
* Initialize a specific interrupt controller instance/driver. The initialization entails:
* - Initialize fields of the XIntc structure
* - Initial vector table with stub function calls
* - All interrupt sources are disabled
* - Interrupt output is disabled
*
* @param InstancePtr is a pointer to the XIntc instance to be worked on.
* @param DeviceId is the unique id of the device controlled by this XIntc
* instance. Passing in a device id associates the generic XIntc
* instance to a specific device, as chosen by the caller or
* application developer.
* @return
* - XST_SUCCESS if initialization was successful
* - XST_DEVICE_IS_STARTED if the device has already been started
* - XST_DEVICE_NOT_FOUND if device configuration information was
* not found for a device with the supplied device ID.
* @note None.
*
**/
int XIntc_Initialize(XIntc * InstancePtr, u16 DeviceId)
 {
 u8 Id;
 XIntc_Config *CfgPtr;
 u32 NextBitMask = 1;

 Xil_AssertNonvoid(InstancePtr != NULL);

/* If the device is started, disallow the initialize and return a status indicating it is started.
 This allows the user to stop the device and reinitialize, but prevents a user from inadvertently initializ
ing */
 if (InstancePtr->IsStarted == XIL_COMPONENT_IS_STARTED)
 { return XST_DEVICE_IS_STARTED; }

/* Lookup the device configuration in the CROM table. Use this configuration info down below when initializin
g this component. */
 CfgPtr = XIntc_LookupConfig(DeviceId);
 if (CfgPtr == NULL)
 { return XST_DEVICE_NOT_FOUND; }

/* Set some default values */
 InstancePtr->IsReady = 0;
 InstancePtr->IsStarted = 0; /* not started */
 InstancePtr->CfgPtr = CfgPtr;

 InstancePtr->CfgPtr->Options = XIN_SVC_SGL_ISR_OPTION;

/* Save the base address pointer such that the registers of the interrupt can be accessed */
#if (XPAR_XINTC_USE_DCR_BRIDGE != 0)
 InstancePtr->BaseAddress = ((CfgPtr->BaseAddress >> 2)) & 0xFFF;
#else
 InstancePtr->BaseAddress = CfgPtr->BaseAddress;
#endif

xintc.c Fri Oct 07 16:10:43 2011 3

/* Initialize all the data needed to perform interrupt processing for each interrupt ID up to the maximum
 used */
 for (Id = 0; Id < XPAR_INTC_MAX_NUM_INTR_INPUTS; Id++)
 {

/* Initalize the handler to point to a stub to handle an interrupt which has not been connected to a
 handler. Only initialize it if the handler is 0 or XNullHandler, which means it was not initialized
 statically by the tools/user. Set the callback reference to this instance so that unhandled interrupts
 can be tracked. */
 if ((InstancePtr->CfgPtr->HandlerTable[Id].Handler == 0) ||
 (InstancePtr->CfgPtr->HandlerTable[Id].Handler == XNullHandler))
 { InstancePtr->CfgPtr->HandlerTable[Id].Handler = StubHandler; }
 InstancePtr->CfgPtr->HandlerTable[Id].CallBackRef = InstancePtr;

/* Initialize the bit position mask table such that bit positions are lookups only for each interrupt id, wit
h 0
 * being a special case (XIntc_BitPosMask[] = { 1, 2, 4, 8, ... }) */
 XIntc_BitPosMask[Id] = NextBitMask;
 NextBitMask *= 2;
 }

/* Disable IRQ output signal -- Disable all interrupt sources -- Acknowledge all sources */
 XIntc_Out32(InstancePtr->BaseAddress + XIN_MER_OFFSET, 0);
 XIntc_Out32(InstancePtr->BaseAddress + XIN_IER_OFFSET, 0);
 XIntc_Out32(InstancePtr->BaseAddress + XIN_IAR_OFFSET, 0xFFFFFFFF);

/* Indicate the instance is now ready to use, successfully initialized */
 InstancePtr->IsReady = XIL_COMPONENT_IS_READY;

 return XST_SUCCESS;
 }

/***/
/**
* Starts the interrupt controller by enabling the output from the controller
* to the processor. Interrupts may be generated by the interrupt controller
* after this function is called.
*
* It is necessary for the caller to connect the interrupt handler of this
* component to the proper interrupt source.
* @param InstancePtr is a pointer to the XIntc instance to be worked on.
* @param Mode determines if software is allowed to simulate interrupts or
* real interrupts are allowed to occur. Note that these modes are
* mutually exclusive. The interrupt controller hardware resets in
* a mode that allows software to simulate interrupts until this
* mode is exited. It cannot be reentered once it has been exited.
*
* One of the following values should be used for the mode.
* - XIN_SIMULATION_MODE enables simulation of interrupts only
* - XIN_REAL_MODE enables hardware interrupts only
* @return
* - XST_SUCCESS if the device was started successfully
* - XST_FAILURE if simulation mode was specified and it could not
* be set because real mode has already been entered.
*
* @note Must be called after XIntc initialization is completed.
*
**/
int XIntc_Start(XIntc * InstancePtr, u8 Mode)
 {
 u32 MasterEnable = XIN_INT_MASTER_ENABLE_MASK;

/* Assert the arguments */
 Xil_AssertNonvoid(InstancePtr != NULL);
 Xil_AssertNonvoid((Mode == XIN_SIMULATION_MODE) || (Mode == XIN_REAL_MODE))
 Xil_AssertNonvoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY);

/* Check for simulation mode */
 if (Mode == XIN_SIMULATION_MODE)
 {
 if (MasterEnable & XIN_INT_HARDWARE_ENABLE_MASK)
 { return XST_FAILURE; }
 }
 else
 { MasterEnable |= XIN_INT_HARDWARE_ENABLE_MASK; }

xintc.c Fri Oct 07 16:10:43 2011 4

/* Indicate the instance is ready to be used and is started before we enable the device. */
 InstancePtr->IsStarted = XIL_COMPONENT_IS_STARTED;

 XIntc_Out32(InstancePtr->BaseAddress + XIN_MER_OFFSET, MasterEnable);

 return XST_SUCCESS;
 }

/***/
/**
* Stops the interrupt controller by disabling the output from the controller
* so that no interrupts will be caused by the interrupt controller.
* @param InstancePtr is a pointer to the XIntc instance to be worked on.
* @return None.
* @note None.
*
**/
void XIntc_Stop(XIntc * InstancePtr)
 {
/* Assert the arguments */
 Xil_AssertVoid(InstancePtr != NULL);
 Xil_AssertVoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY);

/* Stop all interrupts from occurring thru the interrupt controller by disabling all
 interrupts in the MER register */
 XIntc_Out32(InstancePtr->BaseAddress + XIN_MER_OFFSET, 0);

 InstancePtr->IsStarted = 0;
 }

/***/
/**
* Makes the connection between the Id of the interrupt source and the
* associated handler that is to run when the interrupt is recognized. The
* argument provided in this call as the Callbackref is used as the argument
* for the handler when it is called.
* @param InstancePtr is a pointer to the XIntc instance to be worked on.
* @param Id contains the ID of the interrupt source and should be in the
* range of 0 to XPAR_INTC_MAX_NUM_INTR_INPUTS - 1 with 0 being the
* highest priority interrupt.
* @param Handler to the handler for that interrupt.
* @param CallBackRef is the callback reference, usually the instance
* pointer of the connecting driver.
* @return
* - XST_SUCCESS if the handler was connected correctly.
* @note
*
* WARNING: The handler provided as an argument will overwrite any handler
* that was previously connected.
*
**/
int XIntc_Connect(XIntc * InstancePtr, u8 Id, XInterruptHandler Handler, void *CallBackRef)
 {
/* Assert the arguments */
 Xil_AssertNonvoid(InstancePtr != NULL);
 Xil_AssertNonvoid(Id < XPAR_INTC_MAX_NUM_INTR_INPUTS);
 Xil_AssertNonvoid(Handler != NULL);
 Xil_AssertNonvoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY);

/* The Id is used as an index into the table to select the proper handler */
 InstancePtr->CfgPtr->HandlerTable[Id].Handler = Handler;
 InstancePtr->CfgPtr->HandlerTable[Id].CallBackRef = CallBackRef;

 return XST_SUCCESS;
 }

/***/
/**
* Updates the interrupt table with the Null Handler and NULL arguments at the
* location pointed at by the Id. This effectively disconnects that interrupt
* source from any handler. The interrupt is disabled also.
* @param InstancePtr is a pointer to the XIntc instance to be worked on.
* @param Id contains the ID of the interrupt source and should be in the
* range of 0 to XPAR_INTC_MAX_NUM_INTR_INPUTS - 1 with 0 being the
* highest priority interrupt.
* @return None.
* @note None.

xintc.c Fri Oct 07 16:10:43 2011 5

**/
void XIntc_Disconnect(XIntc * InstancePtr, u8 Id)
 {
 u32 CurrentIER;
 u32 Mask;

/* Assert the arguments */
 Xil_AssertVoid(InstancePtr != NULL);
 Xil_AssertVoid(Id < XPAR_INTC_MAX_NUM_INTR_INPUTS);
 Xil_AssertVoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY);

/* Disable the interrupt such that it won’t occur while disconnecting
 * the handler, only disable the specified interrupt id without
 * modifying the other interrupt ids */
 CurrentIER = XIntc_In32(InstancePtr->BaseAddress + XIN_IER_OFFSET);

 Mask = XIntc_BitPosMask[Id];/* convert from integer id to bit mask */

 XIntc_Out32(InstancePtr->BaseAddress + XIN_IER_OFFSET, (CurrentIER & ˜Mask));

/* Disconnect the handler and connect a stub, the callback reference
 * must be set to this instance to allow unhandled interrupts to be
 * tracked */
 InstancePtr->CfgPtr->HandlerTable[Id].Handler = StubHandler;
 InstancePtr->CfgPtr->HandlerTable[Id].CallBackRef = InstancePtr;
 }

/***/
/**
* Enables the interrupt source provided as the argument Id. Any pending
* interrupt condition for the specified Id will occur after this function is
* called.
* @param InstancePtr is a pointer to the XIntc instance to be worked on.
* @param Id contains the ID of the interrupt source and should be in the
* range of 0 to XPAR_INTC_MAX_NUM_INTR_INPUTS - 1 with 0 being the
* highest priority interrupt.
* @return None.
* @note None.
**/
void XIntc_Enable(XIntc * InstancePtr, u8 Id)
 {
 u32 CurrentIER;
 u32 Mask;

/* Assert the arguments */
 Xil_AssertVoid(InstancePtr != NULL);
 Xil_AssertVoid(Id < XPAR_INTC_MAX_NUM_INTR_INPUTS);
 Xil_AssertVoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY);

/* The Id is used to create the appropriate mask for the desired bit position.
 Id currently limited to 0 - 31 */
 Mask = XIntc_BitPosMask[Id];

/* Enable the selected interrupt source by reading the interrupt enable
 * register and then modifying only the specified interrupt id enable */
 CurrentIER = XIntc_In32(InstancePtr->BaseAddress + XIN_IER_OFFSET);
 XIntc_Out32(InstancePtr->BaseAddress + XIN_IER_OFFSET, (CurrentIER | Mask));
 }

/***/
/**
* Disables the interrupt source provided as the argument Id such that the
* interrupt controller will not cause interrupts for the specified Id. The
* interrupt controller will continue to hold an interrupt condition for the
* Id, but will not cause an interrupt.
* @param InstancePtr is a pointer to the XIntc instance to be worked on.
* @param Id contains the ID of the interrupt source and should be in the
* range of 0 to XPAR_INTC_MAX_NUM_INTR_INPUTS - 1 with 0 being the
* highest priority interrupt.
* @return None.
* @note None.
**/
void XIntc_Disable(XIntc * InstancePtr, u8 Id)
 {
 u32 CurrentIER;
 u32 Mask;

xintc.c Fri Oct 07 16:10:43 2011 6

/* Assert the arguments */
 Xil_AssertVoid(InstancePtr != NULL);
 Xil_AssertVoid(Id < XPAR_INTC_MAX_NUM_INTR_INPUTS);
 Xil_AssertVoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY);

/* The Id is used to create the appropriate mask for the desired bit position.
 Id currently limited to 0 - 31 */
 Mask = XIntc_BitPosMask[Id];

/* Disable the selected interrupt source by reading the interrupt enable
 * register and then modifying only the specified interrupt id */
 CurrentIER = XIntc_In32(InstancePtr->BaseAddress + XIN_IER_OFFSET);
 XIntc_Out32(InstancePtr->BaseAddress + XIN_IER_OFFSET, (CurrentIER & ˜Mask));
 }

/***/
/**
* Acknowledges the interrupt source provided as the argument Id. When the
* interrupt is acknowledged, it causes the interrupt controller to clear its
* interrupt condition.
* @param InstancePtr is a pointer to the XIntc instance to be worked on.
* @param Id contains the ID of the interrupt source and should be in the
* range of 0 to XPAR_INTC_MAX_NUM_INTR_INPUTS - 1 with 0 being the
* highest priority interrupt.
* @return None.
* @note None.
**/
void XIntc_Acknowledge(XIntc * InstancePtr, u8 Id)
 {
 u32 Mask;

/* Assert the arguments */
 Xil_AssertVoid(InstancePtr != NULL);
 Xil_AssertVoid(Id < XPAR_INTC_MAX_NUM_INTR_INPUTS);
 Xil_AssertVoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY);

/* The Id is used to create the appropriate mask for the desired bit position.
 Id currently limited to 0 - 31 */
 Mask = XIntc_BitPosMask[Id];

/* Acknowledge the selected interrupt source, no read of the acknowledge
 * register is necessary since only the bits set in the mask will be
 * affected by the write */
 XIntc_Out32(InstancePtr->BaseAddress + XIN_IAR_OFFSET, Mask);
 }

/***/
/**
* A stub for the asynchronous callback. The stub is here in case the upper
* layers forget to set the handler.
* @param CallBackRef is a pointer to the upper layer callback reference
* @return None.
* @note None.
**/
static void StubHandler(void *CallBackRef)
 {
/* Verify that the inputs are valid */
 Xil_AssertVoid(CallBackRef != NULL);

/* Indicate another unhandled interrupt for stats */
 ((XIntc *) CallBackRef)->UnhandledInterrupts++;
 }

/***/
/**
* Looks up the device configuration based on the unique device ID. A table
* contains the configuration info for each device in the system.
* @param DeviceId is the unique identifier for a device.
* @return A pointer to the XIntc configuration structure for the specified
* device, or NULL if the device was not found.
* @note None.
**/
XIntc_Config *XIntc_LookupConfig(u16 DeviceId)
 {
 XIntc_Config *CfgPtr = NULL;
 int Index;

xintc.c Fri Oct 07 16:10:43 2011 7

 for (Index = 0; Index < XPAR_XINTC_NUM_INSTANCES; Index++)
 {
 if (XIntc_ConfigTable[Index].DeviceId == DeviceId)
 {
 CfgPtr = &XIntc_ConfigTable[Index];
 break;
 }
 }

 return CfgPtr;
 }

