xintc_|.c Thu Cct 06 17:50:29 2011 1
/* $ld: xintc_l.c,v 1.1.2.1 2010/09/17 05:26:04 svemula Exp $ */

AR AR R R R AR EEEEEEEEEEEEEREREEE]

*

(c) Copyright 2002-2009 Xilinx, Inc. Al rights reserved.

This file contains confidential and proprietary information of Xilinx, Inc.
and is protected under U S. and international copyright and other
intell ectual property |aws.

DI SCLAI MER

This disclaimer is not a license and does not grant any rights to the
materials distributed herewith. Except as otherw se provided in a valid
license issued to you by Xilinx, and to the maxi mum extent permitted by
applicable law (1) THESE MATERI ALS ARE MADE AVAI LABLE "AS | S" AND WTH ALL
FAULTS, AND XI LI NX HEREBY DI SCLAI M5 ALL WARRANTI ES AND CONDI Tl ONS, EXPRESS,
I MPLI ED, OR STATUTORY, | NCLUDI NG BUT NOT LI M TED TO WARRANTI ES OF
MERCHANTABI LI TY, NON- I NFRI NGEMENT, OR FI TNESS FOR ANY PARTI CULAR PURPGCSE;
and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any | oss or damage
of any kind or nature related to, arising under or in connection with these
materials, including for any direct, or any indirect, special, incidental,
or consequential |oss or damage (including |oss of data, profits, goodwll,
or any type of |loss or damage suffered as a result of any action brought by
athird party) even if such damage or |oss was reasonably foreseeabl e or

Xi l'inx had been advi sed of the possibility of the sane.

CRI TI CAL APPLI CATI ONS

Xilinx products are not designed or intended to be fail-safe, or for use in
any application requiring fail-safe performance, such as |ife-support or
safety devices or systems, Class |Il medical devices, nuclear facilities,
applications related to the depl oynent of airbags, or any other applications
that could lead to death, personal injury, or severe property or

envi ronnment al damage (individually and collectively, "Critical
Applications"). Customer assunmes the sole risk and liability of any use of
Xilinx products in Critical Applications, subject only to applicable | ans
and regul ations governing limtations on product liability.

TH' S COPYRI GHT NOTI CE AND DI SCLAI MER MUST BE RETAI NED AS PART OF TH S FI LE
AT ALL TI MES.

***/
LR R R E R EEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEY)

* %

@ile xintc_Il.c

This file contains |owlevel driver functions that can be used to access the
device. The user should refer to the hardware device specification for nore
details of the device operation.

<pre>
MODI FI CATI ON HI STORY:

Ver Wio Date Changes
1.00b jhl 04/24/02 First rel ease
1.00c rpm 10/17/03 New rel ease. Support the static vector table created

in the xintc_g.c configuration table.
1.00c rpm 04/09/04 Added conditional conpilation around the old handl er
XIntc_LowLevel InterruptHandl er(). This handler will only
be include/conpiled if XPAR_INTC SINGLE DEVICE ID is
defi ned.
.10c nta 03/21/07 Updated to new coding style
1.10c ecm 07/09/07 Read the ISR after the Acknow edge in the interrupt
handl er to support architectures with posted wite bus
access issues.
2.00a ktn 10/20/09 Updated t use HAL Processor APlIs and _mis renoved
fromall the macro definitions.

[N

</ pre>

E N R S N R R T e R R R . S I I I I R S N . N I

***/

[REERK KKK KRR KKk kR kX kkkkkxxkkkk | nolude Fil@s *¥x*xkkkrxkhdkkkrxhhhhkkxhhkkkxxkkk/

#i ncl ude "xparaneters. h"
#i nclude "xil _types. h"

xintc_|.c Thu Cct 06 17:50:29 2011 2

#i nclude "xil _assert.h"
#i nclude "xintc.h"
#i nclude "xintc_i.h"

/************************** Constant mflnltlons *****************************/

AR R EE R EEEEEE LR Type Definiti ONg *****xxxkkdkkkkkkhkkkkkhhkkkkxkkx [

/***************** '\/acros (Inllne Functlons) mflnltlons *********************/

[RERERX KKK KKK XK KKKk kXX KKKk kX% Eyncti on Prototypes LR EEEEEEEEEEEEEEEEEEEEE LY

static XIntc_Config *LookupConfi gByBaseAddress(u32 BaseAddress);

[REERX KKk KRRk kkkkkkxkkkkxxxx \grjiable Definiti ONs ***xxxkkkkxxkkkkkkxkhkkkxxk k% [

/***/
/**

* This is the interrupt handler for the driver interface provided in this file
when there can be no argunent passed to the handler. In this case, we just
use the globally defined device ID for the interrupt controller. This function
is provided nostly for backward conpatibility. The user should use

XI'ntc_Devi cel nterruptHandl er() if possible.

This function does not support multiple interrupt controller instances to be
handl ed.

The user nust connect this function to the interrupt systemsuch that it is
cal | ed whenever the devices which are connected to it cause an interrupt.
@eturn None.

@ot e

The constant XPAR | NTC SI NGLE_DEVI CE_I D nust be defined for this handler

* to be included in the driver conpilation.
**/
#i f def XPAR_I NTC_SI NGLE_DEVI CE_I D

void Xl ntc_LowLevel | nterruptHandl er (voi d)

ok ok ok Ok Ok kK ¥ F %

/* A level of indirection here because the interrupt handler used with
* the driver interface given in this file needs to remain void - no
* arguments. So we need the globally defined device ID of THE
* interrupt controller. */
Xl nt c_Devi cel nterrupt Handl er ((void *) XPAR_I NTC_SI NGLE_DEVI CE_I D);
}
#endi f

/***/

/**

* This function is the primary interrupt handler for the driver. It nust be
connected to the interrupt source such that is called when an interrupt of
the interrupt controller is active. It will resolve which interrupts are
active and enabled and call the appropriate interrupt handler. It uses
the AckBeforeService flag in the configuration data to determi ne when to
acknow edge the interrupt. Highest priority interrupts are serviced first.
The driver can be configured to service only the highest priority interrupt
or all pending interrupts using the {XIntc_SetOptions()} function or
the {XIntc_SetIntrSrvOption()} function.

*
*
*
*
*
*
*
*
*
* This function assunes that an interrupt vector table has been previously

* initialized. It does not verify that entries in the table are valid before

* calling an interrupt handler.

* @aram Deviceld is the zero-based device ID defined in xparaneters.h

* of the interrupting interrupt controller. It is used as a direct
* index into the configuration data, which contains the vector

* table for the interrupt controller. Note that even though the

* argunment is a void pointer, the value is not a pointer but the
* actual device ID. The void pointer type is necessary to neet

* the XInterruptHandl er typedef for interrupt handlers.

* @eturn None.

* @ote

* The constant XPAR_| NTC_MAX_NUM | NTR_I NPUTS nust be setup for this to conpile.
* Interrupt IDs range fromO - 31 and correspond to the interrupt input signals
* for the interrupt controller. XPAR_INTC_MAX_NUM I NTR_I NPUTS specifies the

* hi ghest nunbered interrupt input signal that is used.

*
*

LEE AR R R EEEEEEREEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEY)

voi d Xl ntc_Devi cel nterruptHandl er (voi d *Devi cel d)

xintc_|.c Thu Cct 06 17:50:29 2011 3

/

/

/
/

/

/

/

/

/
/

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

u32 IntrStatus;

u32 IntrMask = 1;

int |ntrNunber;

vol atil e u32 Register; /* used as bit bucket */
XIntc_Config *CfgPtr;

* Get the configuration data using the device ID */
CfgPtr = &XIntc_ConfigTabl e[(u32) Deviceld];

* Get the interrupts that are waiting to be serviced */
IntrStatus = Xintc_GetlntrStatus(CfgPtr->BaseAddress);

* Service each interrupt that is active and enabl ed by checki ng each
* bit in the register fromLSB to MSB which corresponds to an interrupt
* intput signal */
for (IntrNunmber = 0; IntrNunber < XPAR_ | NTC MAX_NUM | NTR_| NPUTS; | ntr Nunber ++)

{
if (IntrStatus & 1)

{
XI'ntc_VectorTabl eEntry *Tabl ePtr;

* |f the interrupt has been setup to acknow edge it before servicing the interrupt,
then ack it */
if (CfgPtr->AckBeforeService & | ntrMask)
{ Xintc_Acklntr(CfgPtr->BaseAddress, |ntrMask); }

* The interrupt is active and enabled, call the interrupt handler that was setup with
the specified paranmeter */
Tabl ePtr = & Cf gPtr->Handl er Tabl e[I ntr Nurmber]);
Tabl ePt r - >Handl er (Tabl ePt r - >Cal | BackRef) ;

* |f the interrupt has been setup to acknow edge it after it has been serviced then ack it */
if ((CfgPtr->AckBeforeService & I ntrMask) == 0)
{ Xintc_Acklntr(CfgPtr->BaseAddress, |ntrMask); }

* Read the ISR again to handle architectures with posted wite bus access issues. */
Regi ster = Xintc_Getl|ntrStatus(CfgPtr->BaseAddress);

* |f only the highest priority interrupt is to be serviced, exit loop and return after servicing
* the interrupt */
if (CfgPtr->0ptions == XIN_SVC SG._| SR _CPTI ON)
{ return; }
}

* Move to the next interrupt to check */
I ntrMask <<= 1,
IntrStatus >>= 1,

* |f there are no other bits set indicating that all interrupts have been serviced, then exit
the 1 oop */
if (IntrStatus == 0)
{ break; }
}
}

***/
* %

Set the interrupt service option, which can configure the driver so that it

services only a single interrupt at a tinme when an interrupt occurs, or
services all pending interrupts when an interrupt occurs. The default
behavi or when using the driver interface given in xintc.h file is to service
only a single interrupt, whereas the default behavi or when using the driver
interface given in this file is to service all outstanding interrupts when an
interrupt occurs.
@ar am BaseAddress is the unique identifier for a device.
@ar am Option is XIN.SVC SG_I SR OPTION i f you want only a single
interrupt serviced when an interrupt occurs, or
XIN_SVC_ALL_I SRS_OPTION i f you want all pending interrupts
servi ced when an interrupt occurs.
@eturn None.
@ot e

Note that this function has no effect if the input base address is invalid.

LR R R E R EEEEEEREEEEEEEREEEEEEREEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEY)

void XIntc_SetlntrSvcOption(u32 BaseAddress, int Option)

{
XIntc_Config *CfgPtr;

xintc_|.c Thu Cct 06 17:50:29 2011 4

CfgPtr = LookupConfi gByBaseAddr ess(BaseAddr ess);
if (CfgPtr 1= NULL)

{ CfgPtr->Options = Option; }
}

/***/
[**

* Register a handler function for a specific interrupt ID. The vector table

* of the interrupt controller is updated, overwiting any previous handler.

* The handl er function will be called when an interrupt occurs for the given
* interrupt ID.

* This function can al so be used to renove a handler fromthe vector table

* by passing in the XIntc_Defaul tHandl er() as the handler and NULL as the

* cal | back reference.

* @aram BaseAddress is the base address of the interrupt controller
* whose vector table will be nodified.

* @aram Interruptlid is the interrupt 1D to be associated with the input
* handl er.

* @aram Handl er is the function pointer that will be added to

* the vector table for the given interrupt ID.

* @aram Cal | BackRef is the argument that will be passed to the new

* handl er function when it is called. This is user-specific.

* @eturn None.

* @ote

* Note that this function has no effect if the input base address is invalid.
*

***/

voi d Xl ntc_Regi sterHandl er (u32 BaseAddress, int Interruptld, Xl nterruptHandl er Handl er,
voi d *Cal | BackRef)

{
XIntc_Config *CfgPtr;

CfgPtr = LookupConfi gByBaseAddr ess(BaseAddr ess);
if (CfgPtr !'= NULL)

CfgPtr->Handl er Tabl e[I nterrupt|d]. Handl er = Handl er;
CfgPtr->Handl er Tabl e[I nterrupt|d]. Cal | BackRef = Cal | BackRef;
}

}

/***/
[**

* Looks up the device configuration based on the base address of the device.

A table contains the configuration info for each device in the system
@ar am BaseAddress is the unique identifier for a device.
@eturn

A pointer to the configuration structure for the specified device, or
NULL if the device was not found.
@ot e None.

LA R E RS EEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEY]

static XIntc_Config *LookupConfi gByBaseAddress(u32 BaseAddress)

N

{
XIntc_Config *CfgPtr = NULL;
int |ndex;

for (Index = 0; Index < XPAR_XI NTC_NUM | NSTANCES; | ndex++)

{
if (XIntc_ConfigTabl e[l ndex].BaseAddress == BaseAddress)

{
CrgPtr = &XlIntc_ConfigTabl e[| ndex] ;
br eak;

}
}

return CfgPtr;
}

