Xintc_selftest.c Thu Cct 06 17:19:40 2011 1
/* $ld: xintc_selftest.c,v 1.1.2.1 2010/09/17 05:26: 04 svemula Exp $ */

AR AR R R R AR EEEEEEEEEEEEEREREEEEEEEEEEEEEEEAEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]

*

(c) Copyright 2002-2009 Xilinx, Inc. Al rights reserved

This file contains confidential and proprietary information of Xilinx, Inc
and is protected under U S. and international copyright and other
intell ectual property |aws.

DI SCLAI MER

This disclaimer is not a license and does not grant any rights to the
materials distributed herewith. Except as otherw se provided in a valid
license issued to you by Xilinx, and to the maxi mum extent permitted by
applicable law (1) THESE MATERI ALS ARE MADE AVAI LABLE "AS | S" AND WTH ALL
FAULTS, AND XI LI NX HEREBY DI SCLAI M5 ALL WARRANTI ES AND CONDI Tl ONS, EXPRESS,
I MPLI ED, OR STATUTORY, | NCLUDI NG BUT NOT LI M TED TO WARRANTI ES OF
MERCHANTABI LI TY, NON- I NFRI NGEMENT, OR FI TNESS FOR ANY PARTI CULAR PURPGCSE;
and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any | oss or damage
of any kind or nature related to, arising under or in connection with these
materials, including for any direct, or any indirect, special, incidental

or consequential |oss or damage (including |oss of data, profits, goodwll,
or any type of |loss or damage suffered as a result of any action brought by
athird party) even if such damage or |oss was reasonably foreseeabl e or

Xi l'inx had been advi sed of the possibility of the sane.

CRI TI CAL APPLI CATI ONS

Xilinx products are not designed or intended to be fail-safe, or for use in
any application requiring fail-safe performance, such as |ife-support or
safety devices or systems, Class |Il medical devices, nuclear facilities,
applications related to the depl oynent of airbags, or any other applications
that could lead to death, personal injury, or severe property or

envi ronnment al damage (individually and collectively, "Critical
Applications"). Customer assunmes the sole risk and liability of any use of
Xilinx products in Critical Applications, subject only to applicable | ans
and regul ations governing limtations on product liability.

TH' S COPYRI GHT NOTI CE AND DI SCLAI MER MUST BE RETAI NED AS PART OF TH S FI LE
AT ALL TI MES

*****************************************************************************/
LR R R E R EEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEY)

* %

@ile xintc_selftest.c

Cont ai ns di agnostic self-test functions for the Xintc conponent. This file
requires other files of the conponent to be linked in also

<pre>
MODI FI CATI ON HI STORY

Ver Wio Date Changes

1.00b jhl 02/21/02 First rel ease

1.10c nta 03/21/07 Updated to new coding style

2.00a ktn 10/20/09 Updated to use HAL Processor APls
</ pre>

EE N S R I N R I e R R R I U R R R I T R R I . S R

LR R R E R EEEEEEREEEEEEEREEEEEEEEEEEEEREREEEEEEEEEEEEREEEEEEEEEEEEEEEEEEY)

[REERK KKK KRR XK Kk kR Rk kkkkkxxkkkk | nolude File@s *¥x**kkkxxkhdkkkrxhhhhkkxhhkkkxxkkk/

#i nclude "xil _types. h"
#i nclude "xil _assert.h"
#i nclude "xintc.h"

#i nclude "xintc_i.h"

/************************** Constant mflnltlons *****************************/

#define XIN_TEST _MASK 1

/**************************** Type mfl r" tl ons *******************************/

[ R EREX KKK KRR XK KKK XX NACT OS (l nli ne Functi OnS) Definiti ons *****xxxkkkkkxkhkkkkxx |



Xintc_selftest.c Thu Cct 06 17:19:40 2011 2

[RERERX KKK KKK XKk KKKk XX KKKk kx* Eyncti on Prototypes LR R EEEEEEEEEEEEEEE LR LY
/************************** Varlable mflnltlons *****************************/

AR R E RS R EEEEEEEEEEEEEEEREEEEREEEEEEREEEEEEREEEEEEEEEEEEEEEEEEEEEEEELY]

/**

* Run a self-test on the driver/device. This is a destructive test.
*

* This involves forcing interrupts into the controller and verifying that they
* are recogni zed and can be acknow edged. This test will not succeed if the

* interrupt controller has been started in real node such that interrupts

* cannot be forced.

* @aram InstancePtr is a pointer to the Xintc instance to be worked on.
* @eturn

* - XST_SUCCESS if self-test is successful.

* - XST_INTC_FAIL_SELFTEST if the Interrupt controller fails the
* self-test. It will fail the self test if the device has

* previously been started in real node.

* @ote None.

*

*

*****************************************************************************/
int Xintc_SelfTest(XIntc * |InstancePtr)

{

u32 Current M E;

u32 Currentl SR;

u32 Tenp;

/* Assert the argunents */
Xi | _Assert Nonvoi d(I nstancePtr != NULL);
Xi | _Assert Nonvoi d( I nstancePtr->l sReady == XI L_COVPONENT_I| S_READY) ;

CurrentME = Xintc_|l n32(1 nstancePtr->BaseAddress + XI N MER _OFFSET);

/* Acknow edge all pending interrupts by reading the interrupt status register and witing
the value to the acknow edge register */
Tenp = XIntc_In32(I nstancePtr->BaseAddress + XI N_| SR _OFFSET);

Xl ntc_CQut 32(1 nst ancePtr->BaseAddress + XI N_| AR OFFSET, Tenp);

/* Verify that there are no interrupts by reading the interrupt status */
Current!l SR = XIntc_I n32(1 nstancePtr->BaseAddress + Xl N_| SR OFFSET);

/* 1SR should be zero after all interrupts are acknow edged */
if (Currentl SR != 0)
{ return XST_I NTC_FAI L_SELFTEST; }

/* Set a bit in the ISR which sinulates an interrupt */
Xl ntc_Qut 32(I nstancePtr->BaseAddress + XI N_| SR_OFFSET, XIN_TEST_MASK);

/* Verify that it was set */
Current!l SR = XIntc_I n32(1 nstancePtr->BaseAddress + Xl N_| SR OFFSET);

if (CurrentlISR != XI N_TEST_MASK)
{ return XST_INTC FAl L_SELFTEST; }

/* Acknow edge the interrupt */
Xl ntc_Qut 32(I nstancePtr->BaseAddress + XI N_| AR OFFSET, XIN_TEST_MASK);

/* Read back the ISR to verify that the interrupt is gone */
Current| SR = Xlntc_I n32(1 nstancePtr->BaseAddress + Xl N_| SR OFFSET);

if (Currentl SR != 0)
{ return XST_I NTC_FAI L_SELFTEST; }

return XST_SUCCESS;
}

/*****************************************************************************/
/**

* Allows software to sinmulate an interrupt in the interrupt controller. This
function will only be successful when the interrupt controller has been
started in simulation node. Once it has been started in real node,

interrupts cannot be sinmulated. A sinmulated interrupt allows the interrupt
controller to be tested without any device to drive an interrupt input

E



Xintc_selftest.c Thu Cct 06 17:19:40 2011 3

* signal intoit.

* @aram InstancePtr is a pointer to the Xintc instance to be worked on.
* @aram Id is the interrupt ID for which to sinulate an interrupt.

* @eturn

* - XST_SUCCESS if successful

* - XST_FAILURE if the interrupt could not be

* simul at ed because the interrupt controller is or

* has previously been in real npde.

* @ote None.

*
*

*****************************************************************************/

int Xintc_Simulatelntr(Xintc * InstancePtr, u8 |d)

{
u32 Mask;
u32 Mast er Enabl e;

/* Assert the argunents */
Xi | _Assert Nonvoi d(I nstancePtr != NULL);
Xi | _Assert Nonvoi d( I nstancePtr->l sReady == XI L_COVPONENT_I| S_READY) ;
Xi | _Assert Nonvoi d(1d < XPAR_I NTC_MAX_NUM_ | NTR_I NPUTS) ;

/* Get the contents of the naster enable register and determine if hardware interrupts have
al ready been enabled, if so, this is a wite once bit such that sinmulation can’'t be done
at this point because the ISR register is no |longer witable by software */

Mast er Enabl e = Xl ntc_I n32(1 nstancePtr->BaseAddress + Xl N_MER OFFSET);
if (MasterEnable & XI N_| NT_HARDWARE_ENABLE_MASK)
{ return XST_FAILURE;, }

/* The Id is used to create the appropriate nmask for the desired bit position. Id currently
limted to 0 - 31 */
Mask = Xl ntc_Bit PosMask[|d];

/* Enable the selected interrupt source by reading the interrupt enable register and then
nodi fying only the specified interrupt id enable */
Xl ntc_CQut 32(1 nst ancePtr->BaseAddress + XI N_| SR OFFSET, Mask);

/* Indicate the interrupt was successfully sinulated */
return XST_SUCCESS;
}



