/****************************************************************************** * * (c) Copyright 2009 Xilinx, Inc. All rights reserved. * * This file contains confidential and proprietary information of Xilinx, Inc. * and is protected under U.S. and international copyright and other * intellectual property laws. * * DISCLAIMER * This disclaimer is not a license and does not grant any rights to the * materials distributed herewith. Except as otherwise provided in a valid * license issued to you by Xilinx, and to the maximum extent permitted by * applicable law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND WITH ALL * FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, * IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF * MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; * and (2) Xilinx shall not be liable (whether in contract or tort, including * negligence, or under any other theory of liability) for any loss or damage * of any kind or nature related to, arising under or in connection with these * materials, including for any direct, or any indirect, special, incidental, * or consequential loss or damage (including loss of data, profits, goodwill, * or any type of loss or damage suffered as a result of any action brought by * a third party) even if such damage or loss was reasonably foreseeable or * Xilinx had been advised of the possibility of the same. * * CRITICAL APPLICATIONS * Xilinx products are not designed or intended to be fail-safe, or for use in * any application requiring fail-safe performance, such as life-support or * safety devices or systems, Class III medical devices, nuclear facilities, * applications related to the deployment of airbags, or any other applications * that could lead to death, personal injury, or severe property or * environmental damage (individually and collectively, "Critical * Applications"). Customer assumes the sole risk and liability of any use of * Xilinx products in Critical Applications, subject only to applicable laws * and regulations governing limitations on product liability. * * THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS PART OF THIS FILE * AT ALL TIMES. * * ******************************************************************************/ /*****************************************************************************/ /** * * @file xil_testmem.c * * Contains the memory test utility functions. * *
* MODIFICATION HISTORY:
*
* Ver    Who    Date    Changes
* ----- ---- -------- -----------------------------------------------
* 1.00a hbm  08/25/09 First release
* 
* *****************************************************************************/ /***************************** Include Files ********************************/ #include "xil_testmem.h" #include "xil_io.h" #include "xil_assert.h" /************************** Constant Definitions ****************************/ /************************** Function Prototypes *****************************/ static u32 RotateLeft(u32 Input, u8 Width); /* define ROTATE_RIGHT to give access to this functionality */ /* #define ROTATE_RIGHT */ #ifdef ROTATE_RIGHT static u32 RotateRight(u32 Input, u8 Width); #endif /* ROTATE_RIGHT */ /*****************************************************************************/ /** * * Perform a destructive 32-bit wide memory test. * * @param Addr is a pointer to the region of memory to be tested. * @param Words is the length of the block. * @param Pattern is the constant used for the constant pattern test, if 0, * 0xDEADBEEF is used. * @param Subtest is the test selected. See xil_testmem.h for possible * values. * * @return * * - 0 is returned for a pass * - -1 is returned for a failure * * @note * * Used for spaces where the address range of the region is smaller than * the data width. If the memory range is greater than 2 ** Width, * the patterns used in XIL_TESTMEM_WALKONES and XIL_TESTMEM_WALKZEROS will * repeat on a boundry of a power of two making it more difficult to detect * addressing errors. The XIL_TESTMEM_INCREMENT and XIL_TESTMEM_INVERSEADDR * tests suffer the same problem. Ideally, if large blocks of memory are to be * tested, break them up into smaller regions of memory to allow the test * patterns used not to repeat over the region tested. * *****************************************************************************/ int Xil_TestMem32(u32 *Addr, u32 Words, u32 Pattern, u8 Subtest) { u32 I; u32 J; u32 Val; u32 FirtVal; u32 Word; Xil_AssertNonvoid(Words != 0); Xil_AssertNonvoid(Subtest <= XIL_TESTMEM_MAXTEST); /* * variable initialization */ Val = XIL_TESTMEM_INIT_VALUE; FirtVal = XIL_TESTMEM_INIT_VALUE; /* * Select the proper Subtest */ switch (Subtest) { case XIL_TESTMEM_ALLMEMTESTS: /* this case executes all of the Subtests */ /* fall through case statement */ case XIL_TESTMEM_INCREMENT: /* * Fill the memory with incrementing * values starting from 'FirtVal' */ for (I = 0L; I < Words; I++) { Addr[I] = Val; Val++; } /* * Restore the reference 'Val' to the * initial value */ Val = FirtVal; /* * Check every word within the words * of tested memory and compare it * with the incrementing reference * Val */ for (I = 0L; I < Words; I++) { Word = Addr[I]; if (Word != Val) { return -1; } Val++; } if (Subtest != XIL_TESTMEM_ALLMEMTESTS) { return 0; } /* end of case 1 */ /* fall through case statement */ case XIL_TESTMEM_WALKONES: /* * set up to cycle through all possible initial * test Patterns for walking ones test */ for (J = 0L; J < 32; J++) { /* * Generate an initial value for walking ones test * to test for bad data bits */ Val = 1 << J; /* * START walking ones test * Write a one to each data bit indifferent locations */ for (I = 0L; I < 32; I++) { /* write memory location */ Addr[I] = Val; Val = (u32) RotateLeft(Val, 32); } /* * Restore the reference 'val' to the * initial value */ Val = 1 << J; /* Read the values from each location that was * written */ for (I = 0L; I < 32; I++) { /* read memory location */ Word = Addr[I]; if (Word != Val) { return -1; } Val = (u32)RotateLeft(Val, 32); } } if (Subtest != XIL_TESTMEM_ALLMEMTESTS) { return 0; } /* end of case 2 */ /* fall through case statement */ case XIL_TESTMEM_WALKZEROS: /* * set up to cycle through all possible * initial test Patterns for walking zeros test */ for (J = 0L; J < 32; J++) { /* * Generate an initial value for walking ones test * to test for bad data bits */ Val = ~(1 << J); /* * START walking zeros test * Write a one to each data bit indifferent locations */ for (I = 0L; I < 32; I++) { /* write memory location */ Addr[I] = Val; Val = ~((u32)RotateLeft(~Val, 32)); } /* * Restore the reference 'Val' to the * initial value */ Val = ~(1 << J); /* Read the values from each location that was * written */ for (I = 0L; I < 32; I++) { /* read memory location */ Word = Addr[I]; if (Word != Val) { return -1; } Val = ~((u32)RotateLeft(~Val, 32)); } } if (Subtest != XIL_TESTMEM_ALLMEMTESTS) { return 0; } /* end of case 3 */ /* fall through case statement */ case XIL_TESTMEM_INVERSEADDR: /* Fill the memory with inverse of address */ for (I = 0L; I < Words; I++) { /* write memory location */ Val = (u32) (~((u32) (&Addr[I]))); Addr[I] = Val; } /* * Check every word within the words * of tested memory */ for (I = 0L; I < Words; I++) { /* Read the location */ Word = Addr[I]; Val = (u32) (~((u32) (&Addr[I]))); if ((Word ^ Val) != 0x00000000) { return -1; } } if (Subtest != XIL_TESTMEM_ALLMEMTESTS) { return 0; } /* end of case 4 */ /* fall through case statement */ case XIL_TESTMEM_FIXEDPATTERN: /* * Generate an initial value for * memory testing */ if (Pattern == 0) { Val = 0xDEADBEEF; } else { Val = Pattern; } /* * Fill the memory with fixed Pattern */ for (I = 0L; I < Words; I++) { /* write memory location */ Addr[I] = Val; } /* * Check every word within the words * of tested memory and compare it * with the fixed Pattern */ for (I = 0L; I < Words; I++) { /* read memory location */ Word = Addr[I]; if (Word != Val) { return -1; } } if (Subtest != XIL_TESTMEM_ALLMEMTESTS) { return 0; } /* end of case 5 */ /* this break is for the prior fall through case statements */ break; default: return -1; } /* end of switch */ /* Successfully passed memory test ! */ return 0; } /*****************************************************************************/ /** * * Perform a destructive 16-bit wide memory test. * * @param Addr is a pointer to the region of memory to be tested. * @param Words is the length of the block. * @param Pattern is the constant used for the constant Pattern test, if 0, * 0xDEADBEEF is used. * @param Subtest is the test selected. See xil_testmem.h for possible * values. * * @return * * - -1 is returned for a failure * - 0 is returned for a pass * * @note * * Used for spaces where the address range of the region is smaller than * the data width. If the memory range is greater than 2 ** Width, * the patterns used in XIL_TESTMEM_WALKONES and XIL_TESTMEM_WALKZEROS will * repeat on a boundry of a power of two making it more difficult to detect * addressing errors. The XIL_TESTMEM_INCREMENT and XIL_TESTMEM_INVERSEADDR * tests suffer the same problem. Ideally, if large blocks of memory are to be * tested, break them up into smaller regions of memory to allow the test * patterns used not to repeat over the region tested. * *****************************************************************************/ int Xil_TestMem16(u16 *Addr, u32 Words, u16 Pattern, u8 Subtest) { u32 I; u32 J; u16 Val; u16 FirtVal; u16 Word; Xil_AssertNonvoid(Words != 0); Xil_AssertNonvoid(Subtest <= XIL_TESTMEM_MAXTEST); /* * variable initialization */ Val = XIL_TESTMEM_INIT_VALUE; FirtVal = XIL_TESTMEM_INIT_VALUE; /* * selectthe proper Subtest(s) */ switch (Subtest) { case XIL_TESTMEM_ALLMEMTESTS: /* this case executes all of the Subtests */ /* fall through case statement */ case XIL_TESTMEM_INCREMENT: /* * Fill the memory with incrementing * values starting from 'FirtVal' */ for (I = 0L; I < Words; I++) { /* write memory location */ Addr[I] = Val; Val++; } /* * Restore the reference 'Val' to the * initial value */ Val = FirtVal; /* * Check every word within the words * of tested memory and compare it * with the incrementing reference val */ for (I = 0L; I < Words; I++) { /* read memory location */ Word = Addr[I]; if (Word != Val) { return -1; } Val++; } if (Subtest != XIL_TESTMEM_ALLMEMTESTS) { return 0; } /* end of case 1 */ /* fall through case statement */ case XIL_TESTMEM_WALKONES: /* * set up to cycle through all possible initial test * Patterns for walking ones test */ for (J = 0L; J < 16; J++) { /* * Generate an initial value for walking ones test * to test for bad data bits */ Val = 1 << J; /* * START walking ones test * Write a one to each data bit indifferent locations */ for (I = 0L; I < 16; I++) { /* write memory location */ Addr[I] = Val; Val = (u16)RotateLeft(Val, 16); } /* * Restore the reference 'Val' to the * initial value */ Val = 1 << J; /* Read the values from each location that was written */ for (I = 0L; I < 16; I++) { /* read memory location */ Word = Addr[I]; if (Word != Val) { return -1; } Val = (u16)RotateLeft(Val, 16); } } if (Subtest != XIL_TESTMEM_ALLMEMTESTS) { return 0; } /* end of case 2 */ /* fall through case statement */ case XIL_TESTMEM_WALKZEROS: /* * set up to cycle through all possible initial * test Patterns for walking zeros test */ for (J = 0L; J < 16; J++) { /* * Generate an initial value for walking ones * test to test for bad * data bits */ Val = ~(1 << J); /* * START walking zeros test * Write a one to each data bit indifferent locations */ for (I = 0L; I < 16; I++) { /* write memory location */ Addr[I] = Val; Val = ~((u16)RotateLeft(~Val, 16)); } /* * Restore the reference 'Val' to the * initial value */ Val = ~(1 << J); /* Read the values from each location that was written */ for (I = 0L; I < 16; I++) { /* read memory location */ Word = Addr[I]; if (Word != Val) { return -1; } Val = ~((u16)RotateLeft(~Val, 16)); } } if (Subtest != XIL_TESTMEM_ALLMEMTESTS) { return 0; } /* end of case 3 */ /* fall through case statement */ case XIL_TESTMEM_INVERSEADDR: /* Fill the memory with inverse of address */ for (I = 0L; I < Words; I++) { /* write memory location */ Val = (u16) (~((u32) (&Addr[I]))); Addr[I] = Val; } /* * Check every word within the words * of tested memory */ for (I = 0L; I < Words; I++) { /* read memory location */ Word = Addr[I]; Val = (u16) (~((u32) (&Addr[I]))); if ((Word ^ Val) != 0x0000) { return -1; } } if (Subtest != XIL_TESTMEM_ALLMEMTESTS) { return 0; } /* end of case 4 */ /* fall through case statement */ case XIL_TESTMEM_FIXEDPATTERN: /* * Generate an initial value for * memory testing */ if (Pattern == 0) { Val = 0xDEAD; } else { Val = Pattern; } /* * Fill the memory with fixed pattern */ for (I = 0L; I < Words; I++) { /* write memory location */ Addr[I] = Val; } /* * Check every word within the words * of tested memory and compare it * with the fixed pattern */ for (I = 0L; I < Words; I++) { /* read memory location */ Word = Addr[I]; if (Word != Val) { return -1; } } if (Subtest != XIL_TESTMEM_ALLMEMTESTS) { return 0; } /* end of case 5 */ /* this break is for the prior fall through case statements */ break; default: return -1; } /* end of switch */ /* Successfully passed memory test ! */ return 0; } /*****************************************************************************/ /** * * Perform a destructive 8-bit wide memory test. * * @param Addr is a pointer to the region of memory to be tested. * @param Words is the length of the block. * @param Pattern is the constant used for the constant pattern test, if 0, * 0xDEADBEEF is used. * @param Subtest is the test selected. See xil_testmem.h for possible * values. * * @return * * - -1 is returned for a failure * - 0 is returned for a pass * * @note * * Used for spaces where the address range of the region is smaller than * the data width. If the memory range is greater than 2 ** Width, * the patterns used in XIL_TESTMEM_WALKONES and XIL_TESTMEM_WALKZEROS will * repeat on a boundry of a power of two making it more difficult to detect * addressing errors. The XIL_TESTMEM_INCREMENT and XIL_TESTMEM_INVERSEADDR * tests suffer the same problem. Ideally, if large blocks of memory are to be * tested, break them up into smaller regions of memory to allow the test * patterns used not to repeat over the region tested. * *****************************************************************************/ int Xil_TestMem8(u8 *Addr, u32 Words, u8 Pattern, u8 Subtest) { u32 I; u32 J; u8 Val; u8 FirtVal; u8 Word; Xil_AssertNonvoid(Words != 0); Xil_AssertNonvoid(Subtest <= XIL_TESTMEM_MAXTEST); /* * variable initialization */ Val = XIL_TESTMEM_INIT_VALUE; FirtVal = XIL_TESTMEM_INIT_VALUE; /* * select the proper Subtest(s) */ switch (Subtest) { case XIL_TESTMEM_ALLMEMTESTS: /* this case executes all of the Subtests */ /* fall through case statement */ case XIL_TESTMEM_INCREMENT: /* * Fill the memory with incrementing * values starting from 'FirtVal' */ for (I = 0L; I < Words; I++) { /* write memory location */ Addr[I] = Val; Val++; } /* * Restore the reference 'Val' to the * initial value */ Val = FirtVal; /* * Check every word within the words * of tested memory and compare it * with the incrementing reference * Val */ for (I = 0L; I < Words; I++) { /* read memory location */ Word = Addr[I]; if (Word != Val) { return -1; } Val++; } if (Subtest != XIL_TESTMEM_ALLMEMTESTS) { return 0; } /* end of case 1 */ /* fall through case statement */ case XIL_TESTMEM_WALKONES: /* * set up to cycle through all possible initial * test Patterns for walking ones test */ for (J = 0L; J < 8; J++) { /* * Generate an initial value for walking ones test * to test for bad data bits */ Val = 1 << J; /* * START walking ones test * Write a one to each data bit indifferent locations */ for (I = 0L; I < 8; I++) { /* write memory location */ Addr[I] = Val; Val = (u8)RotateLeft(Val, 8); } /* * Restore the reference 'Val' to the * initial value */ Val = 1 << J; /* Read the values from each location that was written */ for (I = 0L; I < 8; I++) { /* read memory location */ Word = Addr[I]; if (Word != Val) { return -1; } Val = (u8)RotateLeft(Val, 8); } } if (Subtest != XIL_TESTMEM_ALLMEMTESTS) { return 0; } /* end of case 2 */ /* fall through case statement */ case XIL_TESTMEM_WALKZEROS: /* * set up to cycle through all possible initial test * Patterns for walking zeros test */ for (J = 0L; J < 8; J++) { /* * Generate an initial value for walking ones test to test * for bad data bits */ Val = ~(1 << J); /* * START walking zeros test * Write a one to each data bit indifferent locations */ for (I = 0L; I < 8; I++) { /* write memory location */ Addr[I] = Val; Val = ~((u8)RotateLeft(~Val, 8)); } /* * Restore the reference 'Val' to the * initial value */ Val = ~(1 << J); /* Read the values from each location that was written */ for (I = 0L; I < 8; I++) { /* read memory location */ Word = Addr[I]; if (Word != Val) { return -1; } Val = ~((u8)RotateLeft(~Val, 8)); } } if (Subtest != XIL_TESTMEM_ALLMEMTESTS) { return 0; } /* end of case 3 */ /* fall through case statement */ case XIL_TESTMEM_INVERSEADDR: /* Fill the memory with inverse of address */ for (I = 0L; I < Words; I++) { /* write memory location */ Val = (u8) (~((u32) (&Addr[I]))); Addr[I] = Val; } /* * Check every word within the words * of tested memory */ for (I = 0L; I < Words; I++) { /* read memory location */ Word = Addr[I]; Val = (u8) (~((u32) (&Addr[I]))); if ((Word ^ Val) != 0x00) { return -1; } } if (Subtest != XIL_TESTMEM_ALLMEMTESTS) { return 0; } /* end of case 4 */ /* fall through case statement */ case XIL_TESTMEM_FIXEDPATTERN: /* * Generate an initial value for * memory testing */ if (Pattern == 0) { Val = 0xA5; } else { Val = Pattern; } /* * Fill the memory with fixed Pattern */ for (I = 0L; I < Words; I++) { /* write memory location */ Addr[I] = Val; } /* * Check every word within the words * of tested memory and compare it * with the fixed Pattern */ for (I = 0L; I < Words; I++) { /* read memory location */ Word = Addr[I]; if (Word != Val) { return -1; } } if (Subtest != XIL_TESTMEM_ALLMEMTESTS) { return 0; } /* end of case 5 */ /* this break is for the prior fall through case statements */ break; default: return -1; } /* end of switch */ /* Successfully passed memory test ! */ return 0; } /*****************************************************************************/ /** * * Rotates the provided value to the left one bit position * * @param Input is value to be rotated to the left * @param Width is the number of bits in the input data * * @return * * The resulting unsigned long value of the rotate left * * @note * * None. * *****************************************************************************/ static u32 RotateLeft(u32 Input, u8 Width) { u32 Msb; u32 ReturnVal; u32 WidthMask; u32 MsbMask; /* * set up the WidthMask and the MsbMask */ MsbMask = 1 << (Width - 1); WidthMask = (MsbMask << 1) - 1; /* * set the Width of the Input to the correct width */ Input = Input & WidthMask; Msb = Input & MsbMask; ReturnVal = Input << 1; if (Msb != 0x00000000) { ReturnVal = ReturnVal | 0x00000001; } ReturnVal = ReturnVal & WidthMask; return ReturnVal; } #ifdef ROTATE_RIGHT /*****************************************************************************/ /** * * Rotates the provided value to the right one bit position * * @param Input is value to be rotated to the right * @param Width is the number of bits in the input data * * @return * * The resulting u32 value of the rotate right * * @note * * None. * *****************************************************************************/ static u32 RotateRight(u32 Input, u8 Width) { u32 Lsb; u32 ReturnVal; u32 WidthMask; u32 MsbMask; /* * set up the WidthMask and the MsbMask */ MsbMask = 1 << (Width - 1); WidthMask = (MsbMask << 1) - 1; /* * set the width of the input to the correct width */ Input = Input & WidthMask; ReturnVal = Input >> 1; Lsb = Input & 0x00000001; if (Lsb != 0x00000000) { ReturnVal = ReturnVal | MsbMask; } ReturnVal = ReturnVal & WidthMask; return ReturnVal; } #endif /* ROTATE_RIGHT */