
HW/SW Codesign FSM I ECE 522

ECE UNM 1 (8/7/17)

FSM

In this lecture, we begin looking at the options for mapping algorithms into hardware

We begin at the behavioral level of abstraction with a register-transfer-level (RTL)

description of hardware using VHDL

At the heart of RTL descriptions is the finite state machine with datapath (FSMD)

The finite state machine component is constructed (usually by the synthesis tools) to

realize the control flow components of the algorithm

The datapath is synthesized into a set of mathematical hardware operations, e.g., add

and multiply, that process the data

We begin with algorithms that are largely characterized as control-only algorithms

We consider full-blown FSMD in future lectures

Our goal is to become proficient at translating software algorithms (and other high-

level specifications) into hardware implementations

HW/SW Codesign FSM I ECE 522

ECE UNM 2 (8/7/17)

FSM

An FSM is designed to control the execution of a sequence of operations over multi-

ple clock cycles, which makes it ideal for emulating software execution

It usually incorporates decision constructs, including if-else and case statements,

which are used extensively in software execution for implementing control flow

Advanced FSMs can be designed to implement pipelines, recursion, out-of-order

execution and exception handling

An FSM is a sequential digital machine, which is defined using:

• A set of states

• A set of inputs and outputs

• A state transition function

• An output function

HW/SW Codesign FSM I ECE 522

ECE UNM 3 (8/7/17)

FSM

The Mealy form of an FSM (as you’ve seen in previous classes) allows the inputs to

effect both the next state logic and outputs

Both Mealy and Moore outputs can be present in an FSM, and usually are

Moore outputs depend only on the current state

VHDL descriptions of the FFs and combinational logic (next state logic and output

logic) are separated into two process blocks using two segment style

next state

state_next
d q

state

clk

Mealy

inputs

output

Moore
output
logic

logic

Mealy

outputs

Moore

outputs

FFslogic

state_reg

HW/SW Codesign FSM I ECE 522

ECE UNM 4 (8/7/17)

ASM

State diagrams are the most common graphical representation of FSMs, but algorith-

mic state machine (ASMs) diagrams can also be used

ASMs provide a more explicit representation of control and data path elements

Each state box has only one exit and is usually followed by a decision box

Conditional output boxes can only follow decision boxes and are used to define the

values of Mealy outputs as a function of the Boolean conditions

EVERYTHING that follows a state box (to the next state) is combinational logic

that is active in the current clock cycle

moore <= val

state_name

boolean cond.
T F

mealy <= val
conditional
output box

decision box

state box

HW/SW Codesign FSM I ECE 522

ECE UNM 5 (8/7/17)

Secure Memory Access Controller

Let’s consider a control algorithm that is designed to provide a secure access control

mechanism to an on-chip memory

We discussed the architecture and provided instruction on how to create a

project with GPIO and BRAM IP blocks in the laboratory screencasts

The general purpose I/O is configured to implement two memory-mapped 32-bit

registers located between the PS and PL sides of the Zynq SoC

The BRAM is configured as a stand-alone memory and is embedded within the

PL side

Our memory controller’s primary function is to allow C programs running on

the ARM microprocessor to load and unload the BRAM in a restricted manner

HW/SW Codesign FSM I ECE 522

ECE UNM 6 (8/7/17)

High Level Algorithm for a Secure Memory Access Controller

Let’s start with at level of abstraction of the FSM running in the hardware, e.g.,

if (’start’ == 1)

 store ’base addr’ and ’upper limit’

while (’base addr’ != ’upper limit’ and ’done’ == 0)

if (’load_unload’ == 0)

 PNL_BRAM[’base addr’] = GPIO

else

 GPIO = BRAM_PNL[’base addr’]

 ’base addr’ = ’base addr’ + 1

One of the first issues we’ll need to deal with is setting up a communication mecha-

nism between the C program and the FSM

The GPIOs are visible to both the C program and the VHDL, and will be used for this

purpose

HW/SW Codesign FSM I ECE 522

ECE UNM 7 (8/7/17)

GPIO Register Definitions for Secure Memory Access Controller

We will define the bit-fields within the two 32-bit GPIO registers as follows:

Some of the high order 16-bits are designated for control while all of the lower order

16-bits are designated for data transfers

Note that the GPIOs cross clock domains, with the PL side running at 50 or 100 MHz

and the PS side running at more than 600 MHz

Therefore, we need a reliable protocol to allow transfers between PL and PS

31

GPIO_Ins
16

16-bits of input data

15 0

PS sideGPIO_Outs

ports renamed
in design_1_wrapper

GPIO_Ins

31 16

16-bits of output data

15 0

R
E

S
E

T
_
E

X
T

25

L
M

_
U

L
M

_
d
o
n
e

L
M

_
U

L
M

_
co

n
ti

n
u
e

L
M

_
U

L
M

_
st

o
p
p
ed

28

PL side GPIO_Outs

L
M

_
U

L
M

_
re

ad
y

D
at

aI
n

D
at

aO
u
t

L
M

_
U

L
M

_
st

ar
t

L
M

_
U

L
M

_
lo

ad
_
u
n
lo

ad

HW/SW Codesign FSM I ECE 522

ECE UNM 8 (8/7/17)

HandShake Synchronization for Secure Memory Access Controller

Synchronization between our VHDL controller (PL) and the C program (PS) is done

using a 2-way handshake, which makes use of two signals

LM_ULM_stopped and LM_ULM_continue

The following defines the protocol for data transfers from the C program to BRAM:

Data transfer from BRAM to C program is similar except for direction of data flow

This protocol ensures a reliable communication channel between the PS and PL side

VHDL asserts
’stopped’ to
tell C program

LM_ULM_stopped

it’s ready to
receive data

LM_ULM_continue

C program puts
data in register
and simultaneously
asserts ’continue’

VHDL deasserts
’stopped’ to tell C
program it got the
data and waits for

C program deasserts
’continue’

’continue’ to go low

C program waits
for ’stopped’ to
be asserted

VHDL
busy-waits for
’continue’
to be asserted

C program waits
for ’stopped’ to
go low

C program waits
for ’stopped’ to
be asserted

HW/SW Codesign FSM I ECE 522

ECE UNM 9 (8/7/17)

Low Level Algorithm for Secure Memory Access Controller

We are now ready to describe the FSM at a lower level of detail

Some parts of the following pseudo-code may seem irrelevant, but in fact will make

the algorithm more versatile

For example, we provide a done flag that the C program will assert to allow it to ter-

minate the memory operations

In fact, done will allow the C program to terminate before doing any reads or

writes whatsoever!

In our version, the C program starts the secure memory access controller (SMAC)

FSM, but other usage scenarios may have other state machines start SMAC

In this case, the C program may need to inform SMAC that it has no read or

write requests for the memory at that point in time

The C program operations in the following are designed to provide context, and are

not part of the FSM

HW/SW Codesign FSM I ECE 522

ECE UNM 10 (8/7/17)

Algorithm for Secure Memory Access Controller

1) C program checks ’ready’, sets ’load_unload’ flag and

issues ’start’ signal

2) C program waits for ’stopped’

3) idle: SMAC waits in idle for ’start’

 if (start = ’1’)

 Store ’base address’ and ’upper limit’ registers

 Check ’load_unload’, if 0, Goto load_mem

 Check ’load_unload’, if 1, Goto unload_mem

4) load_mem: Process write requests from C program

 Assert ’stopped’ signal

 If ’done’ is 0

 Check ’continue’, if asserted, update BRAM

 Assert ’PNL_BRAM_we’

 Assign ’PNL_BRAM_din’ GPIO data

 Goto wait_load_unload

 else

 Goto wait_done

HW/SW Codesign FSM I ECE 522

ECE UNM 11 (8/7/17)

Algorithm for Secure Memory Access Controller

5) unload_mem: Process read requests from C program

 Drive GPIO register with ’PNL_BRAM_dout’ data

 Assert ’stopped’

 If ’done’ is 0

 Check ’continue’, if asserted, C program has data

 Goto wait_load_unload

 else

 Goto wait_done

6) wait_load_unload: Finish handshake and update addr

 Check ’continue’, if 0

 If ’done’, if 1

 Goto wait_done

 Elsif ’base addr’ = ’upper_limit’

 Goto idle

 Else

 Inc ’base addr’

 Goto load_mem if ’load_unload’ is 0

 Goto unload_mem if ’load_unload’ is 1

HW/SW Codesign FSM I ECE 522

ECE UNM 12 (8/7/17)

Algorithm for Secure Memory Access Controller

7) wait_done: Wait for C program to deassert ’done’

 Check ’done’, if 0

 Goto idle

I was able to structure the pseudo-code directly into a form compatible with an FSM

As you can see, the lower level of abstraction has much more detail, with a ’goto-

like’ structure to implementing the state transition diagram

It also reveals elements of control in hardware design not found in software design,

e.g., the ’write enable’ (PNL_BRAM_we) associated with the memory

HW/SW Codesign FSM I ECE 522

ECE UNM 13 (8/7/17)

ASM For LoadUnloadMem.vhd
idle

ready_next <= ’1’

start = ’1’
F

T

PNL_BRAM_addr_next <= unsigned(base_address)
PNL_BRAM_upper_limit_next <= unsigned(upper_limit)

load_unload = ’0’
T

load_mem

stopped <= ’1’

continue = ’1’

stopped <= ’1’

CP_out_word <= PNL_BRAM_dout(WORD_SIZE_NB-1 downto 0)

PNL_BRAM_we <= ’1’

PNL_BRAM_din <= (PNL_BRAM_DBITS_WIDTH_NB-1 downto WORD_SIZE_NB => ’0’ & CP_in_word

done = ’0’

F

T

wait_load_unload

continue = ’0’

T

wait_done

done = ’0’
F T

F T

PNL_BRAM_addr_reg = PNL_BRAM_upper_limit_reg

done = ’1’F

PNL_BRAM_addr_next <= PNL_BRAM_addr_reg + 1

load_unload = ’0’

F

unload_mem

continue = ’1’

done = ’1’
F T

T

F

F

T

T

T F

F

