
HW/SW Codesign w/ FPGAs The Nature of HW/SW III ECE 522

ECE UNM 1 (6/18/17)

The Dualism of Hardware and Software

The modeling and design processes are very different between hardware and soft-

ware, even using the simple single-clock synch. and single thread sequential models

In fact, HW and SW are the dual of each other in several respects:

• Design Paradigm: Parallel vs. sequential operation

Hardware supports parallel execution of operations, while software supports

sequential execution of operations

The natural parallelism available in hardware enables more work to be accom-

plished by adding more elements

In contrast, adding more operations in software increases its execution time

Designing requires the decomposition of a specification into low level primitives

such as gates (HW) and instructions (SW)

Hardware designers develop solutions using spatial decomposition while soft-

ware designer use temporal decomposition



HW/SW Codesign w/ FPGAs The Nature of HW/SW III ECE 522

ECE UNM 2 (6/18/17)

The Dualism of Hardware and Software

• Resource Cost: Temporal vs. spatial decomposition

The resources of hardware and software are duals

When more resources are allocated in hardware, circuit complexity and area

increase

When more software operations are added, execution time increases

Therefore, resource cost for hardware is circuit area while resource cost for soft-

ware is execution time

• Flexibility

Flexibility is the ease in which an application can be modified or adapted

Software clearly excels over hardware with regard to flexibility

• Flexibility is easily implemented in software and is essentially ’free’

• In hardware, flexibility is non-trivial. It requires the reuse of circuit elements

for different activities/functions in a design



HW/SW Codesign w/ FPGAs The Nature of HW/SW III ECE 522

ECE UNM 3 (6/18/17)

The Dualism of Hardware and Software

• Parallelism

A dual of flexibility is parallelism, i.e., the ease in which parallel implementa-

tions can be created

For hardware, parallelism comes for free as part of the design paradigm

For software, parallelism is a major challenge

For single processor systems, software can only implement concurrency

using special programming constructs called threads

For multi-processor systems, true parallelism can be realized but is compli-

cated by inter-processor communication and synchronization



HW/SW Codesign w/ FPGAs The Nature of HW/SW III ECE 522

ECE UNM 4 (6/18/17)

The Dualism of Hardware and Software

• Modeling

In software, modeling and implementation are similar

A C program is the model, its compilation is its implementation

Compilation produces assembly and then machine code but often the only

representation that software engineers interact with is the programming

language

In hardware, models and implementations of a design are distinct

A circuit is first described (modeled) using HDL or as a schematic

This representation can be simulated but it is not an implementation of the

actual circuit

In order to implement it, hardware synthesis is required

Synthesis transforms the HDL representation to logic gates and then possi-

bly to transistors and wires



HW/SW Codesign w/ FPGAs The Nature of HW/SW III ECE 522

ECE UNM 5 (6/18/17)

The Dualism of Hardware and Software

• Reuse

HW and SW are also different with regard to intellectual property reuse (IP-

reuse)

IP-reuse involves designing a component of a larger circuit or program such that

it can be used in different designs

In software, IP-reuse has proliferated through open source

Today, designers start with a set of standard libraries that are well docu-

mented and implemented on a wide variety of platforms

For hardware, IP-reuse is still maturing

Today, designers are beginning to define standard exchange mechanisms,

e.g., Spirit and Open EDA

In order to work effectively in codesign, you need to develop skills that allow you to

translate easily between hardware and software, while considering the nature of this

dualist relationship



HW/SW Codesign w/ FPGAs The Nature of HW/SW III ECE 522

ECE UNM 6 (6/18/17)

Abstraction

Abstraction refers to the level of detail that is available in a model

Lower levels have more detail, but are often much more complex and difficult to

manage

Abstraction is heavily used to design hardware systems, and the representations

at different levels are very different

A concept of abstraction is well exemplified by time-granularity in simulations

• Continuous time (lowest level):

Here, operations are described as continuous actions, e.g., using differential

equations that model the charging and discharging of circuit nodes

This low level of modeling provides lots of details about circuit behavior, but is

too compute-intensive and slow for codesign



HW/SW Codesign w/ FPGAs The Nature of HW/SW III ECE 522

ECE UNM 7 (6/18/17)

Abstraction

• Discrete-event:

Here, simulators abstract node behavior into discrete, possibly irregularly

spaced, time steps called events

Events represent the changes that occur to circuit nodes when the inputs are

changed in the test bench

The simulator is capable of modeling actual propagation delay of the gates,

similar to what would happen in a hardware instance of the circuit



HW/SW Codesign w/ FPGAs The Nature of HW/SW III ECE 522

ECE UNM 8 (6/18/17)

Abstraction

• Discrete-event: (cont.)

Discrete-event simulation is very popular for modeling hardware at the lowest

layer of abstraction in codesign

This level of abstraction is much less compute-intensive than continuous time

but accurate enough to capture details of circuit behavior including glitches

• Cycle-accurate:

In this case, simulators model events only at regularly-spaced intervals, i.e., the

rising edge of the clk (we talked about this earlier)

A cycle-accurate model does not model propagation delays and glitches, i.e., all

signals propagate with zero delay in combinational circuits

This level of abstraction is considered the golden reference in HW/SW code-

sign



HW/SW Codesign w/ FPGAs The Nature of HW/SW III ECE 522

ECE UNM 9 (6/18/17)

Abstraction

• Instruction-accurate:

Simulation of RTL models may be too slow for complex systems, e.g., your lap-

top has a processor that probably clocks over 1 GHz (one billion cycles/second)

Instruction-accurate modeling expresses activities in steps of one microproces-

sor instruction (not cycle count)

If you need to determine the real-time performance of a model, you need to

translate instruction count to clk cycle count to obtain execution time

Instruction-accurate simulators are used extensively to verify complex software

systems

• Transaction-accurate:

For very complex systems, even instruction-accurate models may be too slow or

require too much modeling effort

In transaction-accurate modeling, only the interactions (transactions) that occur

between components of a system are of interest



HW/SW Codesign w/ FPGAs The Nature of HW/SW III ECE 522

ECE UNM 10 (6/18/17)

Abstraction

• Transaction-accurate (cont.):

For example, suppose you want to model a system in which a user process is

performing hard disk operations, e.g., writing a file

The simulator simulates commands exchanged between the disk drive and

the user application

The sequence of instruction-level operations between two transactions can

number in the millions but the simulator instead simulates a single function

call

Transaction-accurate models are important in the exploratory phases of a

design, before effort is spent on developing detailed models

For this course, we are interested in instruction-accurate and cycle-accurate levels



HW/SW Codesign w/ FPGAs The Nature of HW/SW III ECE 522

ECE UNM 11 (6/18/17)

Concurrency and Parallelism

Both concurrency and parallelism occur often in HW/SW codesign, and they mean

very different things

• Concurrency refers to simultaneous execution where the individual operations are

completely independent

• Parallelism, on the other hand, refers to simultaneous execution where the opera-

tions are run on different processors or circuit elements

Therefore, concurrency refers to an application model while parallelism refers to the

implementation of that model

Hardware is always parallel

Software can be sequential, concurrent or parallel

Sequential or concurrent software require only a single processor, while parallel

software requires multiple processors

Software running on your laptop, e.g., WORD, email, etc. is concurrent

Software running on a 65536-processor IBM Blue Gene/L is parallel



HW/SW Codesign w/ FPGAs The Nature of HW/SW III ECE 522

ECE UNM 12 (6/18/17)

Concurrency and Parallelism

A key objective of HW/SW codesign is to allow designers to leverage the benefits of

true parallelism in cases where concurrency exists in the application

There is a well-known Comp. Arch principle called Amdahl’s law

The maximum speedup of any application that contains q% sequential code is:

For example, if your application spends 33% of its time running sequentially,

the maximum speedup is 3

This means that no matter how fast you make the parallel component run, the

maximum speedup you will ever be able to achieve is 3

The task of making your application take advantage of parallelism is not obvious

C programs are sequential, and so are typical instruction set architectures

1

q

100
--------- 

 
--------------



HW/SW Codesign w/ FPGAs The Nature of HW/SW III ECE 522

ECE UNM 13 (6/18/17)

Concurrency and Parallelism

Consider an application that performs addition, and assume it is implemented on a

Connection Machine (from the’80s)

The Connection Machine (CM) is a massively parallel processor, with a network of

processors, each with its own local memory

How hard is it to write programs for this machine?

It’s possible to write individual C programs for each node, but this is really

not practical with 64K nodes!

1

2

3

4

5

6

7

8

Completely connected

Original machine
contained 65556
processors, each

Connection Machine:

with 4Kbits of
local memory



HW/SW Codesign w/ FPGAs The Nature of HW/SW III ECE 522

ECE UNM 14 (6/18/17)

Concurrency and Parallelism

The authors of the CM, Hellis and Steele, show that it is possible to express algo-

rithms in a concurrent fashion so that they map neatly onto a CM

Consider the problem of summing an array of numbers

The array can be distributed across the CM by assigning one number to each

processor

The sum is computed in log(n) steps, i.e., in only 3 time steps in this example

The same algorithm running on a sequential processor would take 7 steps

T
im

e

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Processors



HW/SW Codesign w/ FPGAs The Nature of HW/SW III ECE 522

ECE UNM 15 (6/18/17)

Concurrency and Parallelism

Even through the parallel sum speeds up the computation significantly, there remains

a lot of wasted compute power

Compute power of a smaller 8-node CM for 3 times steps is 3*8 = 24 computation

time-steps of which only 7 are being used

On the other hand, if the application requires all partial sums, i.e., the sum of the first

two, three, four, etc. numbers, then the full power of the parallel machine is used

Here, 17 computation time-steps are used

T
im

e

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Processors



HW/SW Codesign w/ FPGAs The Nature of HW/SW III ECE 522

ECE UNM 16 (6/18/17)

Concurrency and Parallelism

There are many other data-parallel versions of algorithms that are intuitively sequen-

tial (see Hillis and Steele)

Key Take-Away: You can ONLY leverage the full power of the underlying parallel-

ism in the hardware if you develop a concurrent specification

If you restrict yourself to a sequential specification, it will be much harder to

leverage the underlying parallel hardware

You should not settle for sequential programming languages such as C when devel-

oping codesign solutions

There are existing concurrent specification mechanisms, such as data-flow (to

be discussed), that are much better suited for parallel implementations


