
HW/SW Codesign Analysis of Control & Data Flow I ECE 522

ECE UNM 1 (7/6/17)

Control and Data Edges

C programs (and pseudo-code) are often used as prototypes because they represent

high-level descriptions of system behavior

However, C is sequential and cannot be directly mapped into parallel hardware

Nonetheless, codesigners must develop skills to carry out this task (it is listed as one

of our course objectives)

A solid understanding of C program structure and the relationships that exist between

C operations is foundational to this process

In this lecture, we consider two fundamental relationships between C operations

• Data edge: is a relationship between operations where data produced by one opera-

tion is consumed by another

• Control edge: is a relationship between operations that relates to the order in which

the operations are performed

HW/SW Codesign Analysis of Control & Data Flow I ECE 522

ECE UNM 2 (7/6/17)

Control and Data Edges

Consider the following example that returns the max of a or b

int max(int a, b) // operation 1 - enter the function

 {

 int r;

 if (a > b) // operation 2 - if-then-else

 r = a; // operation 3

 else

 r = b; // operation 4

 return r; // operation 5 - return max

 }

As you can see, our analysis treats each of the C statements as individual operations

To find the control edges in this program, we need to identify all possible paths

through this program

HW/SW Codesign Analysis of Control & Data Flow I ECE 522

ECE UNM 3 (7/6/17)

Control and Data Edges

 For example, operation 2 will always execute after operation 1

 We can use a control flow graph (CFG) to capture this relationship, by adding a

directed edge between these operations (which are represented as bubbles)

The if-then-else operation includes two out-going edges to represent each of the two

execution paths

Control Flow Graph (CFG)

HW/SW Codesign Analysis of Control & Data Flow I ECE 522

ECE UNM 4 (7/6/17)

Control and Data Edges

The data flow graph (DFG) is constructed by analyzing the data production (writes)

and consumption (reads) patterns for each of the variables

int max(int a, b) { // operation 1 - produce a, b

 int r;

 if (a > b) // operation 2 - consume a, b

 r = a; // operation 3 - consume a and (a>b),

 // produce r

 else

 r = b; // operation 4 - consume b and (a>b),

 // produce r

 return r; // operation 5 - consume r

}

Data edges are added between operations which write and then read a variable

For example, operation 1 defines (writes) the values of a and b

Variable a is read by operation 2 and 3 while b is read by operation 2 and 4

This produces data edges from 1 to 2 for a and b, and to 3 for a and 4 for b

HW/SW Codesign Analysis of Control & Data Flow I ECE 522

ECE UNM 5 (7/6/17)

Control and Data Edges

Control statements in C also generate data edges

For example, the if-then-else statement evaluates a flag (a > b), which reads a

and b

The boolean flag carries the value of (a > b) from operation 2 to operations 3

and 4

Note that unlike CFGs, edges in DFGs are labeled with a specific variable

Data Flow Graph (DFG)

HW/SW Codesign Analysis of Control & Data Flow I ECE 522

ECE UNM 6 (7/6/17)

Implementation Issues

CFGs and DFGs capture the behavior of the C program graphically

This leads naturally to the following question:

What are the important parts of a C program that MUST be preserved in any

implementation of that program?

• Data edges reflect requirements on the flow of information

Important note: If you change the flow of data, you change the meaning of the

algorithm

• Control edges, on the other hand, provide a nice mechanism to break down the algo-

rithm into a sequence of operations (a recipe)

They are not fundamental to preserving correct functional behavior in an imple-

mentation

It follows then that data edges MUST be preserved while control edges can be

removed and/or manipulated

HW/SW Codesign Analysis of Control & Data Flow I ECE 522

ECE UNM 7 (7/6/17)

Implementation Issues

Parallelism in the underlying architecture can be leveraged to remove control edges,

e.g., superscalar processors can execute instructions out-of-order

On the other hand, parallel architectures MUST always preserve data dependen-

cies otherwise, the results will be erroneous

int sum(int a, b, c) { // operation 1

 int v1;

 v1 = a + b; // operation 2

 v2 = v1 + c; // operation 3

 return v2; } // operation 4

A fully parallel hardware implementation

of this program can in fact carry out both

additions in a single clock cycle

The sequential order specified by the CFG

is eliminated in the hardware implementa-

tion

HW/SW Codesign Analysis of Control & Data Flow I ECE 522

ECE UNM 8 (7/6/17)

Construction of the Control Flow Graph

Let’s define a systematic method to convert a C program to a CFG assuming:

• Each node in the graph represents a single operation (or C statement)

• Each edge of the graph represents an execution order for the two operations con-

nected by that edge

Since C executes sequentially, this conversion is straightforward in most cases

The only exception occurs when multiple control edges originate from a single

operation

Consider the for loop in C

for (i = 0; i < 20; i++) {

 // body of the loop

}

This statement includes four distinct parts:

• loop initialization

• loop condition

• loop-counter increment operation

• body of the loop

HW/SW Codesign Analysis of Control & Data Flow I ECE 522

ECE UNM 9 (7/6/17)

Construction of the Control Flow Graph

The for loop introduces three nodes to the CFG

Dashed components, entry, exit and body, are other CFGs of the C program which

have single-entry and single-exit points

The do-while loop and the while-do loop are similar iterative structures

for loop contributes
multiple operations

HW/SW Codesign Analysis of Control & Data Flow I ECE 522

ECE UNM 10 (7/6/17)

Construction of the Control Flow Graph

Consider the CFG for the GCD algorithm.

A control path is defined as a sequence of control edges that traverse the CFG

For example, each non-terminating iteration of the while loop will follow the

path 2->3->4->2 or else 2->3->5->2

Control paths are useful in constructing the DFG

1: int gcd (int a, int b) {

2: while (a != b) {

3: if (a > b)

4: a = a - b;

else

5: b = b - a;

 }

6: return a;

 }

1

2 6

3

4 5

HW/SW Codesign Analysis of Control & Data Flow I ECE 522

ECE UNM 11 (7/6/17)

Construction of the Data Flow Graph

Let’s also define a systematic method to convert a C program to a DFG assuming

• Each node in the graph represents a single operation (or C statement)

• Each edge of the graph represents a data dependency

Note that the CFG and the DFG will contain the same set of nodes -- only the edges

will be different

While it is possible to derive the DFG directly from a C program, it is easier to create

the CFG first and use it to derive the DFG

 The method involves tracing control paths in the CFG while simultaneously identif-

ing corresponding read and write operations of the variables

Our analysis focuses on C programs that do NOT have arrays or pointers

Text includes discussion and examples on how to handle these more complex

data structures

HW/SW Codesign Analysis of Control & Data Flow I ECE 522

ECE UNM 12 (7/6/17)

Construction of the Data Flow Graph

 Ad-hoc method:

• Start at the node where a variable is read (which is referred to as a read-node)

• Identify the CFG nodes that assign to that variable (referred to as write-nodes)

• Introduce a data edge between a read and write node under the condition that the

control path does NOT pass through another write-node for that variable

• Repeat for all read nodes

This procedure identifies all data edges related to assignment statements, but not

those originating from conditional expressions in control flow statements

However, these data edges are easy to find

They originate from the condition evaluation and affect all the operations whose

execution depends on that condition

Let’s derive the DFG of the GCD program

We first pick a node where a variable is read

HW/SW Codesign Analysis of Control & Data Flow I ECE 522

ECE UNM 13 (7/6/17)

Construction of the Data Flow Graph

Consider stmt 5:

There are two variable-reads in this statement, one for a and one for b

Consider b first

Find all nodes that reference b by tracing backwards through predecessors

of node 5 in the CFG -- this produces the ordered sequence 3, 2, 1, 4, and 5

Both nodes 1 and 5 write b and there is a direct path from 1 to 5 (e.g. 1, 2, 3,

5), and from 5 to 5 (e.g. 5, 2, 3, 5)

Therefore, we need to add data edges for b from 1 to 5 and from 5 to 5

1: int gcd (int a, int b) {

2: while (a != b) {

3: if (a > b)

4: a = a - b;

else

5: b = b - a;

 }

6: return a; }

1

2 6

3

4 5

HW/SW Codesign Analysis of Control & Data Flow I ECE 522

ECE UNM 14 (7/6/17)

Construction of the Data Flow Graph

A similar process can be carried out for variable-read of a in node 5

Nodes 1 and 4 write into a and there is a direct control path from 1 to 5 and from

4 to 5

Hence, data edges are added for a from 1 to 5 and from 4 to 5

To complete the set of data edges into node 5, we also need to identify all conditional

expressions that affect the outcome of node 5

From the CFG, node 5 depends on the condition evaluated in node 3 (a > b)

AND the condition evaluated in node 2 (a != b)

Partial DFG
for node 5

HW/SW Codesign Analysis of Control & Data Flow I ECE 522

ECE UNM 15 (7/6/17)

Construction of the Data Flow Graph

The final DFG for all nodes and all variable-reads for GCD is shown below.

Note: this DFG leaves out the data edges originating from conditional expressions

Being able to abstract a complex C program to a DFG is essential for codesign

1: int gcd (int a, int b) {

2: while (a != b) {

3: if (a > b)

4: a = a - b;

else

5: b = b - a;

 }

6: return a; }

1

2 6

3

4 5

a,b
a,b

a,b

a,b

a

a

a

a
a

a b

b

b

b

