Data-Flow Modeling (A Practical Introduction to HW/SW Codesign, P. Schaumont)

As we discussed, hardware models are used to describe parallel systems while software models target sequential systems.

Fortunately, we can use concurrent models to describe systems that are potentially parallel, and are not forced to opt at the start of a design for one or the other.

Concurrent models can be implemented as either parallel or sequential processes.

Sequential Model
E.g. a C program

Concurrent Model
E.g. Data-Flow Model

Sequential Mapping
E.g. Compile C to Assembly

Sequential Mapping
E.g. Data-Flow Simulation

Sequential Arch.
E.g. a Microprocessor

Concurrent Mapping
Hardware Synthesis

Parallel Arch.
E.g. Custom Hardware

Data-flow models are introduced as a classic and often-used mechanism of concurrent application modeling.
Data-Flow Modeling
Data-flow models have several nice features that are not offered by C:

- Data-flow models are concurrent
 They can describe hardware and software and can be implemented in hardware or in software

- Data-flow models are also distributed
 Components are interconnected without the need for a centralized controller to synchronize the individual components

- Data-flow models are modular
 It is possible to develop a design library of data-flow components and to use that library in a plug-and-play fashion to construct systems

- Data-flow models are well suited for regular data processing
 They are often used in signal processing applications

Data Flow systems are easy to analyze, and properties such as deadlock and stability can be evaluated based on inspection of the model

This is difficult to do with, e.g. C programs or HDLs
Data-Flow Modeling

We first consider the elements that make up a data flow model, and discuss a technique for formal analysis of data flow models called SDF graphs.

We then look into systematic conversion of SDF graphs into a hardware or software implementation.

Basics of Data-Flow Modeling

A simple example:

1 4

5 8

add
Basics of Data-Flow Modeling

A data-flow model is made up of three elements:

- **Actors**: Contain the actual operations

 Actors have *bounded* behavior, and *iterate* that behavior from start to completion

 Each iteration is called a **firing**.

 In above example, an actor firing executes a single addition

- **Tokens**: Carry information from one actor to another

 A token has a *value*, such ’1’ and ’4’ as shown above

- **Queues**: Unidirectional communication links that transport tokens between actors

 Data-flow queues have an *infinite* amount of storage (tokens are never lost)

 Data-flow queues are *first-in, first-out*

 In above example, token ’1’ is entered after token ’4’ -- token ’4’ is operated on first
Basics of Data-Flow Modeling

When a data-flow model executes, actors read tokens from their queues and transform input token values to output token values.

The execution of a data-flow model is expressed as a sequence of possibly concurrent actor firings.

Data-flow models are untimed

The firing of an actor takes zero time (obviously a real implementation requires a finite amount of time), i.e., time is irrelevant.

The execution of data-flow models is guided only by the presence of data, i.e., an actor can not fire until data becomes available on its inputs.

A data-flow graph with tokens is called a marking of a data-flow graph.

A data-flow graph goes through a series of marking when it is executed.
Basics of Data-Flow Modeling

Each marking refers to a different state of the system.

The conditions under which an actor fires are called the firing rule of that actor.
Basics of Data-Flow Modeling

Simple actors, e.g., the *add* actor, fire when there is a token on each of its queues. A firing rule involves testing the number of tokens present on the input queues.

The **required** number of tokens consumed and produced can be annotated on the actors *inputs* and *outputs*, respectively.

With this information, it becomes clear whether or not an actor can fire under a given marking.
Synchronous Data-Flow Graphs

Data-flow actors can also consume *more than one* token per firing. This is referred to as a **multi-rate** data-flow graph.

Synchronous data-flow (SDF) graphs refer to systems where the number of tokens consumed/produced per actor firing is **fixed** and **constant**.

SDFs are the most popular form of data-flowing modeling because of certain properties:

- An **admissible** SDF is one that can run forever without *deadlock* or without storing an infinite number of tokens on a communication queue.
- An admissible SDF is **determinate**, which means the results produced are independent of the actual *firing order* of the actors in the SDF graph.

The dataflow computation is *independent* of the marking sequence.
Synchronous Data-Flow Graphs

An example:

```
1  4
   +
-----
12

5  8
   +
-----
13

1  5
   +
-----
6  12

5
   +
-----
7  13
```
Synchronous Data-Flow Graphs

The **determinate** property is very important, especially for safety-critical embedded system applications.

It makes the results independent of the implementation.

Given the determinism property, it does **not** matter if, e.g., the 'add' actor executes on a fast processor and the 'plus 1' actor on a slow processor.

The first property, **admissible**, can be determined by looking only at the graph topology and the actor production/consumption rates.

There is also a systematic method to determine whether a graph is **admissible**.

The method developed by Lee is called *Periodic Admissible Schedules*.

E. Lee, "Static Scheduling of Synchronous Data Flow Graphs"
Synchronous Data-Flow Graphs

First some definitions:

• A *schedule* is the order in which the actors must fire
• An *admissible schedule* is a firing order that will not cause deadlock nor token build-up
• A *periodic admissible schedule* is a schedule that can continue forever (is periodic and therefore will restart)

We consider *Periodic Admissible Sequential Schedules* (PASS), which requires that only one actor at a time fires

A PASS can be used to execute an SDF model on top of a microprocessor

There are four steps to creating a PASS for an SDF graph (this also tests to see if one exists):

• Create the topology matrix G of the SDF graph
• Verify the *rank* of the matrix to be one less than the number of nodes in the graph
• Determine a firing vector
• Try firing each actor in a *round robin* fashion, until the *firing count* given by the firing vector is reached
Synchronous Data-Flow Graphs

Consider the following example:

Step 1: Create a topology matrix for this graph:

The topology matrix has as many rows as there are edges (FIFO queues) and as many columns as there are nodes.

The entry (i,j) will be positive if the node j produces tokens onto the edge i and negative if it consumes tokens.

$$G = \begin{bmatrix} +2 & -4 & 0 \\ +1 & 0 & -2 \\ 0 & +1 & -1 \end{bmatrix}$$

NOTE: This matrix do NOT need to be square.
Synchronous Data-Flow Graphs

Step 2: The condition for a PASS to exist is that the *rank* of G has to be one less than the number of nodes in the graph (see Lee’s paper for proof)

The *rank* of the matrix is the number of **independent equations** in G

For our graph, the rank is 2 -- verify by multiplying the first column by -2 and the second column by -1, and adding them to produce the third column

$$G = \begin{bmatrix} +2 & -4 & 0 \\ +1 & 0 & -2 \\ 0 & +1 & -1 \end{bmatrix} \Rightarrow G = \begin{bmatrix} -4 & +4 & 0 \\ -2 & 0 & -2 \\ 0 & -1 & -1 \end{bmatrix}$$

Given that there are *three* nodes in the graph and the rank of the matrix is 2, a PASS is **possible**

This step effectively verifies that tokens cannot accumulate on any edge of the graph

A firing vector is used to produce/consume tokens

The tokens produced/consumed can be computed using matrix multiplication
Synchronous Data-Flow Graphs

For example, the tokens produced/consumed by firing A twice and B and C zero times is given by:

\[
\begin{bmatrix}
2 \\
0 \\
0
\end{bmatrix}
\rightarrow
\begin{bmatrix}
+2 & -4 & 0 \\
+1 & 0 & -2 \\
0 & +1 & -1
\end{bmatrix}
\begin{bmatrix}
2 \\
0 \\
0
\end{bmatrix}
= \begin{bmatrix}
4 \\
2 \\
0
\end{bmatrix}
\]

This vector produces 4 tokens on edge(A,B) and 2 tokens on edge(A,C)

Step 3: Determine a periodic firing vector

The firing vector given above is not a good choice to obtain a PASS because it leaves tokens in the system.

We are instead interested in a firing vector that leaves no tokens:

\[
Gq_{\text{PASS}} = 0
\]

Note that since the rank is less than the number of nodes, there are an infinite number of solutions to the matrix equation.
Synchronous Data-Flow Graphs

Step 3: Determine a periodic firing vector (cont.)

This is true b/c, intuitively, if firing vector \((a, b, c)\) is a PASS, then so should be firing vectors \((2a, 2b, 2c)\), \((3a, 3b, 3c)\), etc.

Our task is to find the simplest one -- for this example, it is:

\[
q_{\text{PASS}} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}
\]

\[
Gq_{\text{PASS}} = \begin{bmatrix} +2 & -4 & 0 \\ +1 & 0 & -2 \\ 0 & +1 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}
\]

Note that the existence of a PASS firing vector does \textbf{not} guarantee that a PASS will also exist

Here, we reversed the (A,C) edge

We would find the same \(q_{\text{PASS}}\) but the resulting graph is \textbf{deadlocked} -- all nodes are waiting for each other
Synchronous Data-Flow Graphs

Step 4: Construct a valid PASS.

Here, we fire each node up to the number of times specified in q_{PASS}.

Each node that is able to fire, i.e., has an adequate number of tokens, will fire.

If we find that we can fire NO more nodes, and the firing count is less than the number in q_{PASS}, the resulting graph is **deadlocked**.

Trying this out on our graph, we fire A once, and then B and C.

<table>
<thead>
<tr>
<th>Node</th>
<th>Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1, 2</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>2, 1</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>1, 2</td>
<td>1</td>
</tr>
</tbody>
</table>

Fire A (succeeds) Fire B (Fails -- not enough tokens) Fire C (Fails)
Synchronous Data-Flow Graphs

Step 4: Construct a *valid* PASS.

So the PASS is \((A, A, B, C)\)

Try this out on the *deadlocked* graph -- it aborts immediately on the first iteration because no node is able to fire successfully.

Note that the *determinate* property allows any ordering to be tried freely, e.g., \(B, C\) and then \(A\)

In some graphs (not ours), this may lead to additional PASS solutions.
Example

Consider an SDF that models *Euclid’s Greatest Common Divisor* (GCD):

```
sort
out1 = (a > b) ? a : b;
out2 = (a > b) ? b : a;

diff
out1 = (a != b) ? a - b : a;
out2 = b;
```

This SDF evaluates the GCD of two numbers, a and b

The *sort* actor reads two numbers, sorts them and copies them to the output

The *diff* actor subtracts the smaller number from the larger one (when they are different)

After a couple of iterations, the value of the tokens converge to the GCD
Example

For example, the following sequence is produced when \((a,b) = (16,12)\) are the initial values:

\[
\begin{align*}
(a, b) &= (4, 12) \\
(a, b) &= (8, 4) \\
(a, b) &= (4, 4) \\
(a, b) &= (4, 4) \ldots
\end{align*}
\]

Yielding 4 as the GCD of 12 and 16

We will derive a PASS for this system:

\[
G = \begin{bmatrix}
1 & -1 \\
1 & -1 \\
-1 & 1 \\
-1 & 1
\end{bmatrix}
\]

It is easy to determine that the rank is 1 (columns complement each other), so we satisfy condition 1, e.g., \(\text{rank}(G) = \text{nodes} - 1\)
Example

A valid firing vector is one in which each actor fires exactly once per iteration

\[
q = \begin{bmatrix}
1 \\
1
\end{bmatrix}
\]

A working schedule for this firing vector is to fire each of the actors in sequence using the order \((\text{sort, diff})\)

Note that in the graph as shown, there is only a single, strictly sequential schedule possible

For now, we will also ignore the stopping condition, i.e. detecting that \(a\) and \(b\) are equal

In conclusion, SDFs have very powerful properties

They allow a designer to determine up-front certain important system properties, such as the determinism, deadlock, and storage requirements

Unfortunately, SDFs are not a universal specification mechanism, i.e., they are not a good model for any possible hardware/software system.
Control Flow Modeling: Limitations of Data-Flow Models

SDF systems are *distributed, data-driven* systems -- they execute when there is data to process and remain idle otherwise.

However, SDF have trouble modeling *control* mechanisms.

Control appears in many different forms in system design:

- **Stopping and re-starting**: An SDF model never terminates -- it keeps running.

 Stopping/re-starting is a control-flow property not addressed well with SDFs.
- **Mode-switching**: When a cell-phone switches from one standard to the other, the baseband processing (modeled as an SDF) needs to be reconfigured.

 The topology of an SDF graph is fixed and **cannot** be modified at runtime.
- **Exceptions**: When catastrophic events happen, processing may need to be altered.

 SDFs cannot model exceptions that affect the entire graph, e.g., empty queues.
- **Run-time conditions**: A simple *if-then-else* stmt cannot be modeled by SDFs.

 An SDF node cannot simply disappear or become *inactive* - it is always there.
Control Flow Modeling: Limitations of Data-Flow Models

There are two solutions to the problem of control flow modeling in SDFs

Solution 1: simulate control flow on top of the SDF semantics at the expense of adding modeling overhead

Consider the stmt: if (c) then A else B

The selector-actor on the right chooses either A or B to output

But note that this does NOT model the if-then-else in, for example, C because BOTH the if branch (A) and the else (B) must execute

This approach models a multiplexer approach in hardware
Control Flow Modeling: Limitations of Data-Flow Models

Solution 2: extend SDF semantics -- Boolean Data Flow (BDF)

BDFs make the production and consumption rate of a token dependent on the value of an external control token.

The condition token is distributed to two BDF conditional fork and merge nodes, Fc and Sc.
Control Flow Modeling: Limitations of Data-Flow Models

The rules are that the *conditional fork* will fire when there is an *input* token AND a *condition* token.

A token is produced on EITHER the upper or lower edge, dependent on the *condition* token.

This is indicated by the variable p -- a conditional production rate -- which can ONLY be determined at runtime.

The *conditional merge* works similarly -- it fires when there is a *condition* token and will consume a token on EITHER the upper or lower edge.

Unfortunately, using BDF jeopardizes the basic properties of SDFs.

For example, we now have data-flow graphs that are *conditionally admissible*.

Also, the topology matrix now includes symbolic values, p, and become quickly **impractical** to analyze.

For a graph with 5 conditions, we would have a matrix with 5 symbols or expand the single matrix into 32 variants -- one for each combination.
Control Flow Modeling: Limitations of Data-Flow Models

Beyond BDF, other flavors of control-oriented data-flow graphs have been proposed, such as:

• Dynamic Data Flow (DDF) which allows variable production and consumption rates
• Cyclo-Static Data Flow (CSDF) which allows a fixed, iterative variation on production and consumption rates

Unfortunately, these extensions reduce the elegance of SDF graphs

SDF remains very popular for modeling in DSP applications

BDF, DDF, etc. have not enjoyed widespread acceptance as alternatives