
HW/SW Codesign w/ FPGAs Data Flow Modeling II ECE 522

ECE UNM 1 (6/21/17)

Synchronous Data Flow Graphs

Synchronous Data Flow (SDF) graphs refer to systems where the number of tokens

consumed and produced per actor firing is fixed and constant

The term synchronous refers to the fixed consumption and production rate of tokens

Note that SDF will not be able to handle control-flow constructs, such as if-then-else

statements in C without adding special operators (which we will discuss)

Despite this significant limitation, SDFs are very powerful (and popular), and more

importantly, mathematical techniques can be used to verify certain properties

The first of these properties is determinism

The entire SDF is deterministic under the condition that all of its actors imple-

ment a deterministic function

Determinism guarantees that the same results will always be produced indepen-

dent of the firing order

HW/SW Codesign w/ FPGAs Data Flow Modeling II ECE 522

ECE UNM 2 (6/21/17)

SDF Graphs

Illustration of determinism:

add

1 4

plus
1

add plus
1

12

5 8

1

5

add plus
1

1

5

13
add plus

1

126

add plus
1

137

HW/SW Codesign w/ FPGAs Data Flow Modeling II ECE 522

ECE UNM 3 (6/21/17)

SDF Graphs

A significant benefit of determinism is that it allows arbitrary mappings of the actors

onto parallel architectures while guaranteeing the same results

For example, correct results are obtained even if we execute the add actor on a

fast processor and the plus1 actor on a slow processor

The second important property of SDF relates to an admissible schedule

An admissible SDF is one that can run forever without deadlock (unbounded execu-

tion) or without overflowing any of the communication queues (bounded buffer)

Deadlock occurs when an SDF graph progresses to marking that prevents firings

Overflow occurs when tokens are produced faster than they are consumed

2 1 1 2

Graph is deadlocked Infinite # of tokens produced

HW/SW Codesign w/ FPGAs Data Flow Modeling II ECE 522

ECE UNM 4 (6/21/17)

SDF Graphs

There is also a systematic method to determine whether a SDF graph is admissible

The method provides a closed form solution, i.e., no simulation is required

Lee proposed a method called Periodic Admissible Schedules (PASS), defined as:

• A schedule is the order in which the actors must fire

• An admissible schedule is a firing order that is deadlock-free with bounded buffers

• A periodic admissible schedule is a schedule that supports unbounded execution,

i.e., is periodic in the sense that the same markings will recur

We also consider a special case called Periodic Admissible Sequential Sched-

ules (PASSs) that supports a microprocessor implementation with one actor fir-

ing at a time

There are four steps to creating a PASS for an SDF graph:

• Create the topology matrix G of the SDF graph

• Verify the rank of the matrix to be one less than the number of nodes in the graph

• Determine a firing vector

• Try firing each actor in a round robin fashion, until the firing count given by the fir-

ing vector is reached

HW/SW Codesign w/ FPGAs Data Flow Modeling II ECE 522

ECE UNM 5 (6/21/17)

SDF Graphs

Consider the following example:

Step 1: Create a topology matrix for this graph:

The topology matrix has as many rows as there are edges (FIFO queues) and as

many columns as there are nodes

The entry (i, j) will be positive if the node j produces tokens onto the edge i and

negative if it consumes tokens

2

4

1

1

2

1

A

B

C

G

+2 4– 0

+1 0 2–

0 +1 1–

=

edge(A,B)

edge(A,C)

edge(B,C)

NOTE: This matrix
do NOT need to be
square

HW/SW Codesign w/ FPGAs Data Flow Modeling II ECE 522

ECE UNM 6 (6/21/17)

SDF Graphs

Step 2: The condition for a PASS to exist is that the rank of G has to be one less than

the number of nodes in the graph

The rank of the matrix is the number of independent equations in G

For our graph, the rank is 2 -- verify by multiplying the first column by -2 and

the second column by -1, and adding them to produce the third column

Given that there are three nodes in the graph and the rank of the matrix is 2, a

PASS is possible

This step effectively verifies that tokens can NOT accumulate on any edge of the

graph

The actual number of tokens can be determined by choosing a firing vector and

carrying out a matrix multiplication

G

+2 4– 0

+1 0 2–

0 +1 1–

= G

4– +4 0

2– 0 2–

0 1– 1–

=

HW/SW Codesign w/ FPGAs Data Flow Modeling II ECE 522

ECE UNM 7 (6/21/17)

SDF Graphs

For example, the tokens produced/consumed by firing A twice and B and C zero

times is given by:

This vector produces 4 tokens on edge(A,B) and 2 tokens on edge(A,C)

Step 3: Determine a periodic firing vector

The firing vector given above is not a good choice to obtain a PASS because it

leaves tokens in the system

We are instead interested in a firing vector that leaves no tokens:

Note that since the rank is less than the number of nodes, there are an infinite

number of solutions to the matrix equation

Gq

+2 4– 0

+1 0 2–

0 +1 1–

2

0

0

4

2

0

= =q

2

0

0

=firing vector

Gq
PASS

0=

HW/SW Codesign w/ FPGAs Data Flow Modeling II ECE 522

ECE UNM 8 (6/21/17)

SDF Graphs

Step 3: Determine a periodic firing vector (cont.)

This is true b/c, intuitively, if firing vector (a, b, c) is a PASS, then so should be

firing vectors (2a, 2b, 2c), (3a, 3b, 3c), etc.

Our task is to find the simplest one -- for this example, it is:

Note that the existence of a PASS firing vector does not guarantee that a PASS

will also exist

Gq
PASS

+2 4– 0

+1 0 2–

0 +1 1–

2

1

1

0

0

0

= =q
PASS

2

1

1

=

2

4

1

1

2

1

A

B

C

Here, we reversed the (A,C) edge

We would find the same qPASS but

the resulting graph is deadlocked
-- all nodes are waiting for each other

HW/SW Codesign w/ FPGAs Data Flow Modeling II ECE 522

ECE UNM 9 (6/21/17)

SDF Graphs

Step 4: Construct a valid PASS.

Here, we fire each node up to the number of times specified in qPASS

Each node that is able to fire, i.e., has an adequate number of tokens, will fire

If we find that we can fire NO more nodes, and the firing count is less than the

number in qPASS, the resulting graph is deadlocked

Trying this out on our graph, we fire A once, and then B and C

2

4

1

1

2

1

A

B

C

2

4

1

1

2

1

A

B

C

2

4

1

1

2

1

A

B

C

Fire A (succeeds) Fire B (FAILS -- not enough tokens) Fire C (FAILS)

HW/SW Codesign w/ FPGAs Data Flow Modeling II ECE 522

ECE UNM 10 (6/21/17)

SDF Graphs

Step 4: Construct a valid PASS.

So the PASS is (A, A, B, C)

Try this out on the deadlocked graph -- it aborts immediately on the first iteration

because no node is able to fire successfully

Note that the determinate property allows any ordering to be tried freely, e.g., B, C

and then A

In some graphs (not ours), this may lead to additional PASS solutions

2

4

1

1

2

1

A

B

C

2

4

1

1

2

1

A

B

C

2

4

1

1

2

1

A

B

C

Fire A AGAIN (succeeds) Fire B (succeeds) Fire C (succeeds)

HW/SW Codesign w/ FPGAs Data Flow Modeling II ECE 522

ECE UNM 11 (6/21/17)

SDF Graphs: PAM-4 Example

Consider the digital pulse-amplitude modulation system (PAM-4) discussed earlier

The SDF for this system consists of 4 actors, and is a multi-rate Data Flow system:

The first step is to construct the topology matrix G

The queues correspond to the 3 rows and actors to the 4 columns

The second step is to verify the rank is the number of actors minus 1

It is easy to show that the 3 rows are independent, i.e., are not linear combina-

tions of any other rows

This confirms that a PASS is possible

HW/SW Codesign w/ FPGAs Data Flow Modeling II ECE 522

ECE UNM 12 (6/21/17)

SDF Graphs: PAM-4 Example

The third step is to derive a feasible firing for the system

The firing vector, qPASS, must yield a zero-vector when multiplied by the topol-

ogy matrix

The fourth step is to derive a schedule -- there are two possibilities

• The first one is trivial, fire each actor in succession, from left to right

Note that the queue (FIFO) sizes are 16 and 2048

• Alternatively, we can fire FileSource and Map once and then repeat the following

sequence: Fire PulseShape once and then fire DA 128 times

The benefit here is the reduced queue sizes, i.e., the PulseShape input queue

reduces from 16 to 1 while the DA input queue reduces from 2048 to 128

In general, deriving the optimal schedule is a difficult problem for complex systems

Gq
PASS

+1 -1 0 0

0 +16 -1 0

0 0 +128 -1

1

1

16

2048

0

0

0

0

= =q
PASS

1

1

16

2048

=

HW/SW Codesign w/ FPGAs Data Flow Modeling II ECE 522

ECE UNM 13 (6/21/17)

Limits of SDF Models

In conclusion, SDFs are very useful

They allow a designer to determine certain important system properties, such as

the determinism, deadlock, and storage requirements

Unfortunately, SDFs are not a universal specification mechanism, in particular, SDFs

do not have constructs to allow control-flow modeling

Control appears in different forms in system design:

• Stopping and re-starting: An SDF model runs forever

Stopping/re-starting is a control-flow property not addressed with SDFs

• Mode-switching: When a cell-phone switches from one standard to the other, the

baseband processing (modeled as an SDF) needs to be reconfigured

The topology of an SDF graph is fixed and cannot be modified at runtime

• Exceptions: Error conditions arrise in applications

SDFs cannot model exceptions that affect the entire graph, e.g., empty queues

• Run-time conditions: A simple if-then-else stmt cannot be modeled by SDFs

An SDF node does not support conditional execution -- it is always active

HW/SW Codesign w/ FPGAs Data Flow Modeling II ECE 522

ECE UNM 14 (6/21/17)

Limits of SDF Models

There are two solutions to the problem of control flow modeling in SDFs

Solution 1: emulate control flow on top of the SDF semantics

Consider the stmt if (c) then A else B

The selector-actor on the right routes either A or B to the output

Note that this is not an exact match to the if-then-else in C because BOTH the if

branch (A) and the else (B) must execute and produce tokens

However, it is a good match to hardware, which uses a multiplexer to select

among one of several input results

1

1

1

1

1

Fork

A

B

input

1
Sel1

1

1 c(condition)

1

HW/SW Codesign w/ FPGAs Data Flow Modeling II ECE 522

ECE UNM 15 (6/21/17)

Limits of SDF Models

Solution 2: extend the SDF semantics using Boolean Data Flow (BDF)

BDFs ’tune’ the production and consumption rate of a actor according to the value of

an external control token

The condition token is distributed to two BDF conditional fork and merge nodes, Fc

and Sc

Fork

c(condition)

p

1

1

1

1-p

Fc

A

B

input

1
Sc

1-p

p

1

1

if (condition)
then p = 1
else p = 0

11

HW/SW Codesign w/ FPGAs Data Flow Modeling II ECE 522

ECE UNM 16 (6/21/17)

Limits of SDF Models

Here, the conditional fork will fire when there is an input token AND a condition

token

A token is produced on EITHER the upper or lower edge, dependent on the condition

token

This is indicated by a dynamic variable p, which signifies a conditional produc-

tion rate

The conditional merge works similarly, i.e., it fires when there is a condition token

and will consume a token on EITHER the upper or lower edge

Unfortunately, BDFs detract from the usefulness of SDFs

For example, we now have Data Flow graphs that are conditionally admissible

Also, the topology matrix now includes symbolic values, p, which complicates

the closed form math

For a SDF with 5 conditions, we would have a matrix with 5 symbols or

would need to expand the single matrix into 32 variants (25)

HW/SW Codesign w/ FPGAs Data Flow Modeling II ECE 522

ECE UNM 17 (6/21/17)

Limits of SDF Models

Beyond BDF, other flavors of control-oriented Data Flow graphs have been proposed

that have similar challenges, such as:

• Dynamic Data Flow (DDF) which allows variable production and consumption

rates

• Cyclo-Static Data Flow (CSDF) which allows a fixed, iterative variation on produc-

tion and consumption rates

