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Mapping DFGs to Single Processors: Multi-Thread Dynamic Schedule

In multi-threaded programming, each actor (implemented as a function) lives in a

separate thread

The threads are time-interleaved by a scheduler in single processor environments

Systems in which threads voluntarily relinquish control back to the scheduler is

referred to as cooperative multithreading

Such a system can be implemented using two functions create() and yield() as shown
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The scheduler can apply different strategies to schedule threads, with the simplest

one shown above as a round-robin schedule

Quickthreads is a cooperative multithreading library

The quickthreads API (Application Programmers Interface) consists of 4 functions

• spt_init(): initializes the threading system

• spt_create(stp_userf_t *F, void *G) creates a thread that will start execution with

user function F, and will be passed a single argument G

• stp_yield() releases control over the thread to the scheduler

• stp_abort() terminates a thread (prevents it from being scheduled)

Here’s an example

#include "../qt/stp.h"

#include <stdio.h>



HW/SW Codesign Data Flow Software Implementation II ECE 522

ECE UNM 3 (6/28/17)

Mapping DFGs to Single Processors: Multi-Thread Dynamic Schedule

void hello(void *null)

   {

int n = 3;

while (n-- > 0)

      {

      printf("hello\n");

      stp_yield();

      }

   }

void world(void *null)

   {

int n = 5;

while (n-- > 0)

      {

      printf("world\n");

      stp_yield();

      } }
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int main(int argc, char **argv)

   {

   stp_init();

   stp_create(hello, 0);

   stp_create(world, 0);

   stp_start();

return 0;

   }

To compile and execute:

gcc -c ex1.c -o ex1 ../qt/libstp.a ../qt/libqt.a

./ex1

hello

world

hello

world

hello

world\nworld\nworld
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A multi-threaded version of the SDF scheduler, using the fft2 actor

void fft2(actorio_t *g) {

 int a, b;

 while (1)

      {

  while (fifo_size(g->in[0]) >= 2)

         {

         a = get_fifo(g->in[0]);

         b = get_fifo(g->in[0]);

         put_fifo(g->out[0], a+b);

         put_fifo(g->out[0], a-b);

         }

      stp_yield();

      }
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void main()

   {

   fifo_t q1, q2, q3, q4;

   actorio_t fft2_io = {{&q2}, {&q3}};

   ...

   stp_create(fft2, &fft2_io); // create thread

   ...

   stp_start();         // start system scheduler

   }

Note, as before, the actor code must enable convergence to the PASS firing rate

(through while loops) in order to avoid queue overflow
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Mapping DFGs to Single Processors: Static Schedule

From the PASS analysis of an SDF graph, we know at least one solution for a feasible

sequential schedule

This solution can be used to optimize the implementation in several ways

• We can remove the firing rules since we know the exact sequential schedule

This yields only a small performance benefit

•We can also determine an optimal interleaving of the actors to minimize the storage

requirements for the queues

•Finally, we can create a fully inlined version of the SDF graph which eliminates the

queues altogether

Here, the relative firing rates of A, B, and C must be 4, 2, and 1 to yield a PASS
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Mapping DFGs to Single Processors: Static Schedule

Given the interleaving schedule on the right, queue AB will need to store at most 4

tokens and queue BC at most 2 tokens in steady-state

However, the interleaving schedule (A,A,B,A,A,B,C) is better because the maximum

# of tokens on any queue is now 2

Therefore, the schedule determined using PASS is not necessarily the optimal (in

fact, finding the best schedule is an optimization problem)

As noted, implementing a truly static schedule means we do NOT need to check fir-

ing rules since the required tokens are guaranteed to be present

Consider optimizing the four-point FFT with a single-thread SDF system and a

static schedule

The 3 actors, reorder, fft2 and fft4mag, have firing rates 1, 2 and 1, which yields a

static, cyclic schedule [reorder, fft2, fft2, fft4mag]
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Software Implementation: Sequential Targets with Static Schedule

There are two simple optimizations that can be applied here

• The firing schedule is static and fixed, and therefore the access order of queues is

also fixed

 This allows the queues to be optimized out and replaced with fixed variables

The queue access can be replaced as shown in the comments

loop {

      ...

      q1.put(value1); // replace with r1 = value1;

      q1.put(value2); // replace with r2 = value2;

      ...

      .. = q1.get(); // replace with .. = r1;

      .. = q1.get(); // replace with .. = r2;

      }
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Software Implementation: Sequential Targets with Static Schedule

• A second optimization involves inline’ing the actor code in the main program

In combination with the above optimization, this eliminates the firing rules and

reduces the entire dataflow graph to a single function

void dftsystem(int in0, in1, in2, in3,

   *out0, *out1, *out2, *out3) {

int reorder_out0, reorder_out1;

int reorder_out2, reorder_out3;

int fft2_0_out0, fft2_0_out1;

int fft2_0_out2, fft2_0_out3;

int fft2_1_out0, fft2_1_out1;

int fft2_1_out2, fft2_1_out3;

int fft4mag_0_out0, fft4mag_0_out1;

int fft4mag_0_out2, fft4mag_0_out3;

// Reorder operation

   reorder_out0 = in0; reorder_out1 = in2;

   reorder_out2 = in1; reorder_out3 = in3;
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Software Implementation: Sequential Targets with Static Schedule

// Two fft2 implementations

fft2_0_out0 = reorder_out0 + reorder_out1;

fft2_0_out1 = reorder_out0 - reorder_out1;

fft2_1_out0 = reorder_out2 + reorder_out3;

fft2_1_out1 = reorder_out2 - reorder_out3;

// fft4 implementation

fft4mag_out0 = (fft2_0_out0 + fft2_1_out0) *

               (fft2_0_out0 + fft2_1_out0);

fft4mag_out1 = (fft2_0_out1 * fft2_0_out1) -

               (fft2_1_out1 * fft2_1_out1);

fft4mag_out2 = (fft2_0_out0 - fft2_1_out0) *

               (fft2_0_out0 - fft2_1_out0);

fft4mag_out3 = (fft2_0_out1 * fft2_0_out1) -

               (fft2_1_out1 * fft2_1_out1);



HW/SW Codesign Data Flow Software Implementation II ECE 522

ECE UNM 12 (6/28/17)

Software Implementation: Sequential Targets with Static Schedule

These optimizations reduce the runtime of the program significantly

For example, we have eliminated testing of the firing rules and calls to the queue

and actor functions

This is possible here because a valid PASS could be determined from the DFG,

as well as fixed schedule to implement the PASS

Note that we have traded some of the runtime flexibility for improved efficiency


