
HW/SW Codesign w/ FPGAsGeneral Purpose Embedded Cores ECE 495/595

ECE UNM 1 (5/3/10)

G.P. Embedded Cores (A Practical Intro. to HW/SW Codesign, P. Schaumont)

The most successful programmable component on silicon is the microprocessor

 Fueled by a well-balanced mix of efficient implementations, flexibility, and tool sup-

port, microprocessors have grown into a key component for electronic design

The topic of microprocessors is a very broad one; entire books are devoted to its dis-

cussion

Our focus is to investigate the relationship between a C program and the execution

of that C program on a microprocessor, in particular, on the RISC microprocessor

This will establish the cost of the C program in terms of memory footprint and

execution time

The chapter covers four different aspects of C program execution on RISC processors

• We discuss the major architecture elements of a RISC processor, and their role in

C program execution

• We discuss the path from C programs to assembly progs. to machine instructions

• We discuss the runtime organization of a C program at the level of the machine

HW/SW Codesign w/ FPGAsGeneral Purpose Embedded Cores ECE 495/595

ECE UNM 2 (5/3/10)

General Purpose Embedded Cores

• We discuss techniques to evaluate the quality of generated assembly code, and

thus evaluate the quality of the C compiler

Processors

The most successful programmable component of the past decades is, without doubt,

the microprocessor

Just about any electronic device more complicated than a pushbutton seems to con-

tain a microprocessor

There have been a number of drivers for the popularity of the microprocessor:

• Microprocessors, or the stored-program concept in general, separate software

from hardware through the definition of an instruction-set

No other hardware development technique has ever been able to decouple hard-

ware and software in a similar way

For example, micro-programs are really shorthand notations for the control

specification of a specialized datapath

HW/SW Codesign w/ FPGAsGeneral Purpose Embedded Cores ECE 495/595

ECE UNM 3 (5/3/10)

Processors

• Microprocessors come with tools (compilers and assemblers), that help a designer

create applications

The availability of a compiler to automatically translate a code into a binary for

a microprocessor is an enormous advantage for development

An embedded software designer can therefore be proficient in one programming

language like C, and this alone allows him to move seamlessly across different

microprocessor architectures

• There have been very few devices that have been able to cope as efficiently with

reuse as microprocessors have done

A general-purpose embedded core by itself is an excellent example of reuse

Moreover, microprocessors have also dictated the rules of reuse for electronic

system design in general

They have defined bus protocols that enabled the integration of an entire sys-

tem

Their compilers have enabled the development of standard software libs

HW/SW Codesign w/ FPGAsGeneral Purpose Embedded Cores ECE 495/595

ECE UNM 4 (5/3/10)

Processors

• No other programmable components have the same scalability as microprocessors

The same concept (i.e. stored-program computer) has been implemented across

a large range of word-lengths (4-bit ... 64-bit) and basic architecture-types

In addition, microprocessors have also extended their reach to entire chips,

containing many other components, while staying ’in command’ of the system

This approach is commonly called System-On-Chip (SoC).

The Toolchain of a Typical Microprocessor

The following figure illustrates a typical design flow to convert software source code

into instructions for a processor

A compiler or an assembler is used to convert source code in to object code

Each object code file contains a binary representation of the instructions and

data constants corresponding to the source code

Plus supporting information to organize these instructions/constants in memory

HW/SW Codesign w/ FPGAsGeneral Purpose Embedded Cores ECE 495/595

ECE UNM 5 (5/3/10)

The Toolchain of a Typical Microprocessor

HW/SW Codesign w/ FPGAsGeneral Purpose Embedded Cores ECE 495/595

ECE UNM 6 (5/3/10)

The Toolchain of a Typical Microprocessor

A linker is used to combine several object code files into a single, stand-alone execut-

able file

A linker will resolve all unknown elements, such as external data or library

routines, while creating the executable file

A loader program determines how the information in an executable file is organized

into memory locations

Typically, a part of the memory space is reserved for instructions, another part

for constant data, another part for global data with read/write access, and so on

A very simple microprocessor system contains at least two elements: the processor,

and a memory holding instructions for the processor

• The memory is initialized with processor instructions by the loader

• The processor will then fetch these instructions from memory and execute them on

the processor datapath

HW/SW Codesign w/ FPGAsGeneral Purpose Embedded Cores ECE 495/595

ECE UNM 7 (5/3/10)

The Toolchain of a Typical Microprocessor

Consider the following C program:

 1 int gcd(int a[5], int b[5]) {

 2 int i, m, n, max;

 3 max = 0;

 4 for (i=0; i<5; i++) {

 5 m = a[i];

 6 n = b[i];

 7 while (m != n) {

 8 if (m > n)

 9 m = m - n;

10 else

11 n = n - m;

12 }

13 if (max > m)

14 max = m;

15 }

16 return max;

17 }

HW/SW Codesign w/ FPGAsGeneral Purpose Embedded Cores ECE 495/595

ECE UNM 8 (5/3/10)

From C to Assembly Instructions

18

19 int a[] = {26, 3,33,56,11};

20 int b[] = {87,12,23,45,17};

21

22 int main() {

23 return gcd(a, b);

24 }

This C program that evaluates the largest among the common divisors of 5 pairs of

numbers

We will inspect the C program at two lower levels of abstraction

• At the level of assembly code generated by the compiler

• At the level of the machine code stored in the executable generated by the linker

We consider embedded microprocessor architectures such as ARM or Microblaze

We will use of a cross-compiler to generate the executable for these microproces-

sors, i.e., for an ARM processor using a PC workstation

HW/SW Codesign w/ FPGAsGeneral Purpose Embedded Cores ECE 495/595

ECE UNM 9 (5/3/10)

From C to Assembly Instructions

A cross-compiler generates an executable for a processor different than the machine

used to run the compiler

We use the GNU compiler toolchain to generate an ARM assembly listing is as fol-

lows:

> arm-linux-gcc -c -S -O2 gcd.c -o gcd.s

The command to generate the ARM ELF executable is as follows.

> /usr/local/arm/bin/arm-linux-gcc -O2 gcd.c -o gcd

Assembly dump of the GCD program:

 1 gcd:

 2 str lr, [sp, #-4]!

 3 mov lr, #0

 4 mov ip, lr

 5 .L13:

 6 ldr r3, [r0, ip, asl #2]

 7 ldr r2, [r1, ip, asl #2]

HW/SW Codesign w/ FPGAsGeneral Purpose Embedded Cores ECE 495/595

ECE UNM 10 (5/3/10)

From C to Assembly Instructions

 8 cmp r3, r2

 9 beq .L17

10 .L11:

11 cmp r3, r2

12 rsbgt r3, r2, r3

13 rsble r2, r3, r2

14 cmp r3, r2

15 bne .L11

16 .L17:

17 add ip, ip, #1

18 cmp lr, r3

19 movge lr, r3

20 cmp ip, #4

21 movgt r0, lr

22 ldrgt pc, [sp], #4

23 b .L13

HW/SW Codesign w/ FPGAsGeneral Purpose Embedded Cores ECE 495/595

ECE UNM 11 (5/3/10)

From C to Assembly Instructions

24 a:

25 .word 26, 3, 33, 56, 11

26 b:

27 .word 87, 12, 23, 45, 17

28 main:

29 str lr, [sp, #-4]!

30 ldr r0, .L19

31 ldr r1, .L19+4

32 ldr lr, [sp], #4

33 b gcd

34 .align 2

35 .L19:

36 .word a

37 .word b

Use man gcc or gcc --help on the command line will list and clarify the avail-

able command-line options

HW/SW Codesign w/ FPGAsGeneral Purpose Embedded Cores ECE 495/595

ECE UNM 12 (5/3/10)

From C to Assembly Instructions

Comparing the assembly program to the C program will help you to understand low-

level implementation details of the C program

• Program Structure

The overall structure of the assembly program preserves the structure of the C

program

The gcd function is on lines 1-23, the main function is on lines 28-34

The loop structure of the C program can be identified by inspection

In the gcd function, the inner for loop is on lines 10-15, and the outer while

loop is on line 5-23

• Storage

The constant arrays a and b are directly encoded as constants on lines 24-27

The assembly code uses pointers to these arrays

For example, the storage location at label .L19 will hold a pointer to array a

HW/SW Codesign w/ FPGAsGeneral Purpose Embedded Cores ECE 495/595

ECE UNM 13 (5/3/10)

From C to Assembly Instructions

• Function Calls

Function calls in assembly code need to handle the same semantics as a C func-

tion call

The function call gcd(a,b) has two parameters which need to be passed from

main to gcd

Lines 30-32 show how the C function call is implemented

The assembly program copies the address of these arrays into r0 and r1

The assembly version of gdc can make use of r0 and r1 as a pointer to array

a and b respectively

Assembly is the starting point to study the implementation details of software on a

micro-processor

Later, we will also discuss other implementation issues, such as handling of local

variables, data types, memory allocation, and compiler optimizations

HW/SW Codesign w/ FPGAsGeneral Purpose Embedded Cores ECE 495/595

ECE UNM 14 (5/3/10)

From C to Assembly Instructions

The micro-processor works with object code, which are binary opcodes generated

from assembly programs

Compiler tools can re-create (de-assemble) the assembly code from the executable

> /usr/local/arm/bin/arm-linux-objdump -d gcd

1 Disassembly of section .text:

2

3 00008380 <gcd>:

4 8380: e52de004 str lr, [sp, -#4]!

5 8384: e3a0e000 mov lr, #0 ; 0x0

6 8388: e1a0c00e mov ip, lr

7 838c: e790310c ldr r3, [r0, ip, lsl #2]

8 8390: e791210c ldr r2, [r1, ip, lsl #2]

9 8394: e1530002 cmp r3, r2

10 8398: 0a000004 beq 83b0 <gcd+0x30>

11 839c: e1530002 cmp r3, r2

12 83a0: c0623003 rsbgt r3, r2, r3

HW/SW Codesign w/ FPGAsGeneral Purpose Embedded Cores ECE 495/595

ECE UNM 15 (5/3/10)

From C to Assembly Instructions

13 83a4: d0632002 rsble r2, r3, r2

14 83a8: e1530002 cmp r3, r2

15 83ac: 1afffffa bne 839c <gcd+0x1c>

16 83b0: e28cc001 add ip, ip, #1 ;0x1

17 83b4: e15e0003 cmp lr, r3

18 83b8: a1a0e003 movge lr, r3

19 83bc: e35c0004 cmp ip, #4 ;0x4

20 83c0: c1a0000e movgt r0, lr

21 83c4: c49df004 ldrgt pc, [sp], #4

22 83c8: eaffffef b 838c <gcd+0xc>

23 000083cc <main>:

24 83cc: e52de004 str lr, [sp, -#4]!

25 83d0: e59f0008 ldr r0, [pc, #8]

 ;83e0 <main+0x14>

26 83d4: e59f1008 ldr r1, [pc, #8]

 ;83e4 <main+0x18>

27 83d8: e49de004 ldr lr, [sp], #4

28 83dc: eaffffe7 b 8380 <gcd>

HW/SW Codesign w/ FPGAsGeneral Purpose Embedded Cores ECE 495/595

ECE UNM 16 (5/3/10)

From C to Assembly Instructions

29 83e0: 00010444 andeq r0, r1, r4, asr #8

30 83e4: 00010458 andeq r0, r1, r8, asr r4

The instructions are mapped to sections of memory, and the .text section holds the

instructions of the program

Each function as a particular starting address, measured relative to the beginning of

the executable

For example, the gcd function starts at 0x8380 and the main functions starts at

0x83cc

In addition to the opcode, the listing shows the binary representation of instructions

As part of generating the executable, the address value of each label is added to each

instruction

For example, the b .L13 instruction on line 23 of the original assembly is

encoded as a branch to address 0x838c on line 22 of the de-assembled code

HW/SW Codesign w/ FPGAsGeneral Purpose Embedded Cores ECE 495/595

ECE UNM 17 (5/3/10)

Simulating a C program Executing on a Microprocessor

Here, we briefly explain how to simulate an embedded micro-processor on a standard

workstation

Such simulations are very common in hardware-software codesign

They are used to test the executables created with a cross-compiler, and to eval-

uate the performance of the resulting program

Micro-processors such as ARM can be simulated with an instruction-set simulator

The GEZEL cosimulation environment integrates several instruction-simulation

engines, including

• ARM processor (SimIt-ARM was developed by Wei Qin)

• 8051 micro-controller (Dalton 8051 developed by the team of Frank Vahid)

• picoblaze micro-controller (Picoblaze simulator was developed by Mark Six)

These simulation engines are open-source software projects

HW/SW Codesign w/ FPGAsGeneral Purpose Embedded Cores ECE 495/595

ECE UNM 18 (5/3/10)

Simulating a C program Executing on a Microprocessor

The figure below shows how instruction-set simulators are integrated into the GEZEL

cosimulation engine, gplatform

The software part of the application is written in C, and compiled into executable for-

mat using a cross compiler

HW/SW Codesign w/ FPGAsGeneral Purpose Embedded Cores ECE 495/595

ECE UNM 19 (5/3/10)

Simulating a C program Executing on a Microprocessor

The hardware part is written in GEZEL, and it specifies the platform architecture, i.e.,

the microprocessor, and its interaction with other hardware modules

The combination of the GEZEL program and the cross-compiled executable format is

used in a cosimulation

All the instruction-set simulation engines in GEZEL are cycle-accurate simulators

They reflect the behavior of a processor clock-cycle by clock-cycle

Instruction-set simulation engines can also be instruction-accurate

They run faster than cycle-accurate simulation engines b/c they handle less

detail

Here is a GEZEL program that simulates a stand-alone ARM core that executes the

gcd program given earlier

 1 ipblock myarm {

 2 iptype "armsystem";

 3 ipparm "exec = gcd";

HW/SW Codesign w/ FPGAsGeneral Purpose Embedded Cores ECE 495/595

ECE UNM 20 (5/3/10)

Simulating a C program Executing on a Microprocessor

 4 }

 5

 6 dp top {

 7 use myarm;

 8 }

 9

10 system S {

11 top;

12 }

Lines 1-4 define an ARM core which runs an executable program called gcd

The ipblock is a special type of GEZEL module which represents a black-box simu-

lation model (a simulation model without internal details)

It does not have any input/output ports (I/O ports will be introduced later)

Lines 6-12 of the GEZEL program configure the myarm module for execution

HW/SW Codesign w/ FPGAsGeneral Purpose Embedded Cores ECE 495/595

ECE UNM 21 (5/3/10)

Simulating a C program Executing on a Microprocessor

To simulate the program, we need to cross-compile the C application software for the

ARM instruction-set simulator

To generate output through the cosimulation, the main function of the C program is

modified as follows:

int main() {

 printf("gcd(a, b)= %d\n", gcd(a,b));

return 0;

}

The compilation and co-simulation is now done through the following commands:

> /usr/local/arm/bin/arm-linux-gcc -static gcd.c -o gcd

> gplatform top.fdl

core myarm

armsystem: loading executable [gcd]

gcd(a,b)=3

Total Cycles: 14338

The output of the simulation shows that the program takes 14338 cycles to execute

