
HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 1 (9/22/15)

Introduction (Linux Device Drivers, 3rd Edition (www.makelinux.net/ldd3))

Device Drivers -> DD

• They are a well defined programming interface between the applications and the

actual hardware

• They hide completely the details of how the device works

Users interact with hardware through a set of standardized calls that are independent

of the specific driver

The device driver (DD) implements these user functions, which translate system calls

into device-specific operations that act on real hardware

Note that some DD functions are NOT callable by the user but instead act on behalf

of the hardware, e.g., interrupt service routines (more on this later)

Also, as we already know, the programming interface for DDs in Linux allows them

to be built separately as a module, and ’plugged in’ at runtime.

This simplifies the development/debug of DDs and improves kernel customiza-

tion capabilities (important for resource constrained systems)

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 2 (9/22/15)

Introduction

Note that DDs should focus on mechanism, i.e., the capabilities to be provided by the

DD, and NOT on policy, on deciding how those capabilites can be used

The focus on mechanism will require that you have an intimate knowledge of

the hardware component that will be controlled

A major challenge of DD developement is supporting concurrency, i.e., simultaneous

use by multiple processes

With SMP, supporting concurrency has become even more important

The kernel is a large executable in charge of handling a variety of tasks:

• Process management: Creating and destroying processes, providing inter-process

communication mechanisms, supporting the notion of concurrency

• Memory management: Implementing virtual memory systems, and providing for

dynamic allocation and de-allocation of memory to programs

• Filesystems

• Device control (the topic of this lecture)

• Networking

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 3 (9/22/15)

Introduction

Overview of the kernel

Loadable modules

enable functionality to

be added at runtime

The figure shows the dif-

ferent classes of mod-

ules that can be loaded

You use functions such

as insmod and rmmod to

add/remove modules at

runtime

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 4 (9/22/15)

Introduction

Three basic classes of modules:

• char(acter) device:

A char device is one that can be accessed as a stream of bytes, similar to a file

Examples include the text console and serial ports

These devices are accessed using filesystem nodes in /dev

Unlike files, char devices usually do not allow random movement within the

stream

• block device:

Also represented as filesystem nodes in /dev, but can host a filesystem

Best example is a hard drive

Block devices support the transfer of entire blocks of data, e.g., 512 bytes, at a

time

All-in-all, block devices are similar to char devices from the user perspective

and differ only in how data is managed internally by the kernel

• network device:

Are stream oriented devices such as eth0 but have no entry in /dev

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 5 (9/22/15)

Introduction

Note that some devices, such as USB, can serve multiple roles, e.g., as a char device

(a USB serial port), a block device (a USB memory card reader) and as a network

device (a USB ethernet interface)

Linux supports other types of modules, including filesystems, that layer on top of

device based modules

Building and Running Modules

Building modules for 2.6.x requires that you have a configured and built kernel tree

on your system

This is a change from previous versions of the kernel, where a current set of

header files was sufficient

2.6 modules are linked against object files found in the kernel source tree

Fortunately for us, the Zedboard provides a ideal platform to experiment with modu-

lues, without the danger of destroying a Linux installation, e.g., on your laptop

As is traditional, we begin with a ’Hello world’ module.

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 6 (9/22/15)

Building and Running Modules

Hello world module:

#include <linux/init.h>

#include <linux/module.h>

MODULE_LICENSE("Dual BSD/GPL"); // Free license

static int hello_init(void)

{

 printk(KERN_ALERT "Hello, world\n");

 return 0;

}

static void hello_exit(void)

{

 printk(KERN_ALERT "Goodbye, cruel world\n");

}

module_init(hello_init);

module_exit(hello_exit);

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 7 (9/22/15)

Building and Running Modules

This module is about as simple as it gets

It has only two functions:

• hello_init: Invoked when the module is loaded into the kernel

• hello_exit: Invoked when the module is removed

module_init and module_exit functions are special kernel macros that tell the kernel

the names of the functions to be used for these two roles

printk is similar to the standard C library function printf

This special version is used with DD code b/c DD code does NOT have access

to the C library

printk provides for a special indicator string, here KERN_ALERT, to indicate the pri-

ority of the message

There are a variety of priorities, each with their own unique symbol

Bear in mind that where the printk writes its message is dependent on the prior-

ity level

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 8 (9/22/15)

Building and Running Modules

To compile and run:

% make

make[1]: Entering directory ‘/usr/src/linux-2.6.10’

 CC [M] /home/ldd3/src/misc-modules/hello.o

 Building modules, stage 2.

 MODPOST

 CC /home/ldd3/src/misc-modules/hello.mod.o

 LD [M] /home/ldd3/src/misc-modules/hello.ko

make[1]: Leaving directory ‘/usr/src/linux-2.6.10’

% su

root# insmod ./hello.ko

Hello, world

root# rmmod hello

Goodbye cruel world

root#

Note that you must have a properly configured and built kernel tree (here it is located

at ’/usr/src/linux-2.6.10’) in order for this to work

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 9 (9/22/15)

Building and Running Modules

Compiling Modules: There are special considerations in the command ’make’ for

building kernel modules

For the ’hello_world’ program, a makefile with the following line is sufficient:

obj-m := hello.o

This line leverages the extended syntax provided by GNU make and states that there

is one module to be built, hello.ko, from the object file hello.o

If you have more than one source file, this expands to:

obj-m := module.o

module-objs := file1.o file2.o

Type this command from the source directory of the module (change ~/kernel-2.6)

make -C ~/kernel-2.6 M=‘pwd‘ modules

You can write the ’hello.ko’ module to your SD disk (mount it on your host system

and copy it there), so it is available when you boot the Zedboard

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 10 (9/22/15)

Building and Running Modules

Important distinction between DDs and user applications:

• Unlike applications, you can only link to functions that are part of the kernel, i.e.,

never to lib C functions (see header files in ’include/linux’ and ’include/asm’)

• You must be very digilent in the exit function to ’clean up’, e.g., de-allocate mem-

ory, etc. since it is NOT automatic as it is in applications

• Unlike ’seg faults’ in an application, a DD fault can kill the whole kernel

• A module runs in kernel space (highest priviledge level), while applications run in

user space (lowest priviledge level)

Other distinctions:

• Memory in an application is virtual and can be swapped out to disk (kernel memory

is never ’swappable’)

• Most DD functions serve as ’system calls’ for applications, which can copy to and

from the memory in a user space process

• Interrupt service routines (ISRs) (also included in DD modules) are ’asynchronous’

to processes and are NOT system calls

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 11 (9/22/15)

Building and Running Modules

The most important distinction between user applications and DD (kernel) code ->

CONCURRENCY

• Most user applications (except multithreading) run from start to finish, and do not

need to worry about their environment

• Even the simpliest kernel modules must assume many things can be happening at

once

Multiple processes may be accessing a DD simultaneously

ISRs can be invoked through interrupts, and can execute while other DD func-

tions in the same module are executing

The DD functions can be invoked simultaneously on multiple processors (SMP

environments)

Kernel code (as of release 2.6) is preemptible, which makes uniprocessor sys-

tems subject to the same issues as multiprocessor systems

This means that DD code must be reentrant, i.e., it must be capable of running on

behalf of more than one process simultaneously

For example, data structures must be carefully designed to keep multiple threads

of execution separate, and shared data must be protected, e.g., semiphores

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 12 (9/22/15)

Building and Running Modules

Race conditions, i.e., where the results of a computation depend on the relative order

of execution, must be avoided when writing DD code

You can no longer assume that your DD functions are not preemptive, i.e., you can

not assume that a segment of code in a DD function will execute from start to finish

without the possibility of being ’put to sleep’

Concurrency problems are very difficult to debug, so you must learn how to program

for concurrency

There are a set of kernel support functions to assist with concurrency, as we

shall see

Char Drivers

The scull device (simple character utility for loading localities) is used as an example

in the text

http://www.makelinux.net/ldd3/?u=chp-10-sect-5

scull controls a memory area as though it was a device, and is hardware independent

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 13 (9/22/15)

Char Drivers

We will look at several variants of scull

The first variants are referred to as scull0 to scull3

Each has a memory area that is global (can be opened multiple times with data

shared) and persistent (can be opened and closed without loosing contents).

Major and Minor Numbers

Char devices are accessed through ’special’ files that are traditionally located in

/dev, and have a ’c’ as the first character in a long list (ls -ltra /dev)

 crw-rw-rw- 1 root root 1, 3 Apr 11 2002 null

 crw------- 1 root root 10, 1 Apr 11 2002 psaux

 crw------- 1 root root 4, 1 Oct 28 03:04 tty1

The major device numbers in the above listing are 1, 10 and 4 while the minor num-

bers are 3 and 1.

The major number identifies the DD associated with the device (in rare cases, several

drivers may be associated with a major number)

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 14 (9/22/15)

Char Drivers

The minor number is used by the kernel to determine the actual device

You can either get a direct pointer to your device from the kernel, or you can use

the minor number yourself as an index into a local array of devices

Within the kernel, the dev_t type defines device numbers

Given a dev_t or the numbers, you can convert between them in your DD:

maj_num = MAJOR(dev_t dev);

min_num = MINOR(dev_t dev);

my_dev_t = MKDEV(int major, int minor);

You must setup a char device within your DD using:

int register_chrdev_region(dev_t first, unsigned int count,

 char *name);

where first is the first number you want to allocate and name is the name that

shows up in /proc/devices and /sys

There is also an ’alloc_chrdev_region’ version that allows the kernel to choose the

number

As is almost always the case, the kernel returns ’0’ if the call is successful

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 15 (9/22/15)

Char Drivers

The directory /proc/devices is populated first with the device number

If the /dev nodes do not exist, then there is a script (run as root) that can be used to

create them. See section 3.2.3 in http://www.makelinux.net/ldd3/?u=chp-10-sect-5

Important Data Structures: file_operations, file, and inode

• file_operations:

Used to connect device numbers to the DD system call functions

It is a structure with fields for function pointers (a jump table) which implement

systems calls such as ’open’, ’read’, etc.

Each time a device is opened, the kernel creates a file structure with a field f_op,

that points to this file_operations structure

The types of system calls supported are provided as a ’function pointers’ in the

file_operations structure -- here are a few:

int (*open) (struct inode *, struct file *);

ssize_t (*read) (struct file *, char _ _user *, size_t, loff_t *);

ssize_t (*write) (struct file *, const char _ _user *, size_t, loff_t

*);

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 16 (9/22/15)

Char Drivers

scull implements the following functions:

struct file_operations scull_fops = {

 .owner = THIS_MODULE,

 .llseek = scull_llseek,

 .read = scull_read,

 .write = scull_write,

 .ioctl = scull_ioctl,

 .open = scull_open,

 .release = scull_release,

};

THIS_MODULE is a pointer to the module that "owns" the structure

• struct file: Usually referred to as filp for ’file pointer’ in code

Has no relation to user space FILE (which is a C library structure)

The kernel creates it when the device is first ’opened’

Some of its fields

mode_t f_mode;

struct file_operations *f_op;

void *private_data;

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 17 (9/22/15)

Char Drivers

• inode: Used by the kernel internally to represent files

The major and minor numbers can be obtained from inode using:

unsigned int iminor(struct inode *inode);

unsigned int imajor(struct inode *inode);

Character device registration:

The kernel uses structures of type struct cdev to represent char devices internally

Before the kernel invokes your device’s operations, you must allocate and regis-

ter one of these structures

First let’s cover how scull manages its data, using a struct scull_dev

struct scull_dev {

 struct scull_qset *data; /* Pointer to first quantum set */

 int quantum; /* the current quantum size */

 int qset; /* the current array size */

 unsigned long size; /* amount of data stored here */

 unsigned int access_key; /* used by sculluid and scullpriv */

 struct semaphore sem; /* mutual exclusion semaphore */

 struct cdev cdev; /* Char device structure */

};

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 18 (9/22/15)

Char Drivers

The initialization function which interfaces the scull device to the kernel:

static void scull_setup_cdev(struct scull_dev *dev, int index)

 {

 int err, devno = MKDEV(scull_major, scull_minor + index);

 cdev_init(&dev->cdev, &scull_fops);

 dev->cdev.owner = THIS_MODULE;

 dev->cdev.ops = &scull_fops;

 err = cdev_add (&dev->cdev, devno, 1);

/* Fail gracefully if need be */

 if (err)

 printk(KERN_NOTICE "Error %d adding scull%d", err, index);

 }

A kernel struct cdev is initialized using:

void cdev_init(struct cdev *cdev, struct file_operations *fops);

Once the cdev structure is set up, the final step is to tell the kernel about it:

int cdev_add(struct cdev *dev, dev_t num, unsigned int count);

Here, dev is the cdev structure, num is the first device number, and count is usually 1

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 19 (9/22/15)

Char Drivers

Notes:

• cdev_add can fail with a negative return value (usually doesn’t but you need to

check)

• When cdev_add returns, your device is "live" and its operations can be called by the

kernel immediately!

Let’s start looking at the system calls registered in struct file_operations

• The open method

Preps the driver for later operations

int (*open)(struct inode *inode, struct file *filp);

The inode argument has a pointer to cdev structure just setup above, but we really

want the scull_dev structure that ’contains’ a pointer to the cdev structure

struct scull_dev *dev; /* device information */

dev = container_of(inode->i_cdev, struct scull_dev, cdev);

filp->private_data = dev; /* for other methods */

The macro container_of returns a pointer to its ’parent’ struct scull_dev

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 20 (9/22/15)

Char Drivers

The entire scull_open routine:

int scull_open(struct inode *inode, struct file *filp)

 {

 struct scull_dev *dev; /* device information */

 dev = container_of(inode->i_cdev, struct scull_dev, cdev);

 filp->private_data = dev; /* for other methods */

/* Trim to 0 the length of the device if open was write-only */

 if ((filp->f_flags & O_ACCMODE) = = O_WRONLY)

 scull_trim(dev); /* ignore errors */

 return 0; /* success */

}

Not a whole lot is done here b/c scull uses memory as the device

• The release method

 Deallocate anything that open allocated in filp->private_data and shut down the

device on last close

int scull_release(struct inode *inode, struct file *filp)

 { return 0;}

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 21 (9/22/15)

Char Drivers

• The read and write methods

These functions copy data to and from user space into memory allocated by scull

ssize_t read(struct file *filp, char __user *buff,

 size_t count, loff_t *offp);

ssize_t write(struct file *filp, const char __user *buff,

 size_t count, loff_t *offp);

For both methods, filp is the file pointer and count is the size of the requested data

transfer

(See Section 3.6 of http://www.makelinux.net/ldd3/?u=chp-10-sect-5 for details

on scull memory allocation model)

The buff argument points to the user buffer holding the data to be written or the empty

buffer where the newly read data should be placed

offp is a pointer to a "long offset type" object that indicates the file position the user is

accessing

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 22 (9/22/15)

Char Drivers

It is important to realize that buff is a user-space pointer, and therefore, cannot be

directly dereferenced by kernel code

The buff pointer may be:

• Invalid or

• The user-space page may be in swap (generating a page fault results in an "oops"

and the death of the process making the sys call)

• The pointer may be malicious, allowing memory to overwritten anywhere in the

system, opening a security hole

Access to user-space must be done using kernel-supplied functions:

unsigned long copy_to_user(void __user *to,

 const void *from,

 unsigned long count);

unsigned long copy_from_user(void *to,

 const void __user *from,

 unsigned long count);

These functions behave like the memcpy C library function

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 23 (9/22/15)

Char Drivers

Couple of important notes:

• The user-space memory may be in swap, and therefore, the process will be put to

sleep, requiring the DD code to be reentrant and in a position where it can legally

sleep

• These kernel functions also check whether the user-space pointer is valid

If invalid, no copy is performed

If it becomes invalid during the copy, only part of the data is copied and the

return value is the amount of memory still to be copied

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 24 (9/22/15)

Char Drivers

The read and write DD methods return -1 if an error occurs (user processes use errno

to determine the reason), while a value >= 0 tells the user-space process how many

bytes were successfully transferred

Interestingly, if the value returned by the DD method is >= 0 but not equal to count, C

library routines, such as fread reissue the system call until it succeeds

But what about the case "this is no data, but it may arrive later"

Here, the read system call should block (covered later)

Interesting things can happen for example if process A is reading the device while

process B opens it for writing, which truncates the file to 0

Process A suddenly finds itself past end-of-file and next read call returns 0

The read and write methods are given in the on-line text

With those included, you have a complete driver that can be compiled and run as a

module

