
HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 1 (9/22/15)

Concurrency and Race Conditions

(Linux Device Drivers, 3rd Edition (www.makelinux.net/ldd3))

Concurrency refers to the situation when the system tries to do more than one thing at

once

Concurrency-related bugs are some of the easiest to create and some of the hardest to

find

In early Linux kernels, there were relatively few sources of concurrency

Symmetric multiprocessing (SMP) systems were not supported by the kernel,

and the only cause of concurrent execution was the servicing of hardware

interrupts

The Linux kernel has evolved to a point where many more things are going on simul-

taneously

This provides far greater performance and scalability, but unfortunately, signifi-

cantly complicates the task of kernel programming

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 2 (9/22/15)

Concurrency and Race Conditions

Your DD code must handle concurrency and you must have a good understanding of

the facilities provided by the kernel for concurrency management

From the write method of the scull code, there is a check to determine if memory has

been allocated or not:

if (!dptr->data[s_pos])

 {

 dptr->data[s_pos] = kmalloc(quantum, GFP_KERNEL);

 if (!dptr->data[s_pos])

 goto out;

 }

Suppose that two processes, "A" and "B", are independently attempting to write to

the same offset within the same scull device

And each process reaches the first if stmt at the same time

If the pointer in question is NULL, each process will decide to allocate memory and

each will assign the resulting pointer to dptr->data[s_pos]

 Since both processes are assigning to the same variable, the second process wins

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 3 (9/22/15)

Concurrency and Race Conditions

 For example, if process "A" assigns first, scull will ’loose’ the memory allocated by

"A", and will result in a memory leak -- an ever increasing kernel size

We refer to this situation as a race condition, where an ’unlikely’ access pattern

results in corrupting system state

Race conditions result from uncontrolled access to shared data

Here we have a memory leak, but other situations can lead to system crashes, corrupt

data and security problems

Concurrency and its management:

In Linux systems, there are multiple sources of concurrency:

• Multiple user-space processes are running and can access DD code in many differ-

ent possible ways

• Processes running on SMP systems can be executing your DD code SIMULTA-

NEOUSLY

• Kernel code is now preemptible

• Device interrupts are asynchronous events, allowing concurrent access to DD code

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 4 (9/22/15)

Concurrency and Race Conditions

In an environment where anything can happen at any time, how does a DD program-

mer manage the possibility of absolute chaos?

Turns out that most race conditions can be avoided

• Through careful programming

• Through the use of kernel concurrency control primitives

• And through application of some basic principles.

Note that race conditions result from shared access to resources

First rule of thumb is to minimize the amount of shared resources (no sharing, no

race conditions, it’s that simple)

Avoid the use of global variables

Unfortunately, avoiding shared resources is not always possible since hardware

resources, by their nature, are shared

Bear in mind that sharing also occurs when you pass a pointer to another part of

the kernel, so it’s difficult to avoid

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 5 (9/22/15)

Concurrency and Race Conditions

Main rule associated with resource sharing:

If any time that a hardware or software resource is shared beyond a single thread

of execution,

And the possibility exists that one thread can have an inconsistent view of that

resource (in scull, process "B" was unaware that "A" had allocated memory)

Then YOU MUST explicitly manage access to that resource

In the scull example, we must control access to the scull data structure

The usual mechanism for access management is called locking or mutual exclusion,

which ensure that only one thread can manipulate a shared resource at any time

Semaphores and Mutexes

Mechanisms to make operations on a shared resource atomic

This is accomplished by setting up critical sections: code that can be executed by

only one thread at any given time

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 6 (9/22/15)

Concurrency and Race Conditions

Critical sections differ in their requirements, so the kernel provides different primi-

tives for different needs:

• Do all accesses happen within a process context, or are some access by asynchro-

nous process interrupts?

• Are there any response time requirements, i.e., limits on how long a process can

’hold’ a critical section?

• Does the process hold any other critical sections?

Care must be taken on the last one b/c the system can deadlock if it is true

Sleep: When a Linux process reaches a point where it cannot make any further pro-

cesses, it yields the processor to another process (happens frequently with I/O)

There are situations where a process cannot sleep, as we shall see

For scull, none of the above are relevant so we can use a semaphore that puts the

process to sleep

Note that requesting memory through kmalloc can put the process to sleep

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 7 (9/22/15)

Concurrency and Race Conditions

Semaphores:

A semaphore is a single integer variable combined with a pair of functions,

called P and V

A process wishing to enter a critical section calls P on the semaphore

• If the semaphore’s value is > 0, the value is decremented by 1 and the process

continues

• If the semaphore’s value is <= 0, the process must wait for another process to

release the semaphore, which is accomplished by calling V

Calling V increments the semaphore and, if necessary, wkes up processes that

are waiting to enter the critical section

When semaphores are used for mutual exclusion, their initial value is set to 1 (in this

case, they are called mutex)

This is by far the most common case

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 8 (9/22/15)

Concurrency and Race Conditions

Linux Semaphores (must include <asm/semaphore.h>)

• First step is to initialize a semaphore -- for mutex types, the following will initialize

the semphore to 1 and 0, resp.

void init_MUTEX(struct semaphore *sem);

void init_MUTEX_LOCKED(struct semaphore *sem);

• To obtain access to a share resource, a process calls one of the following:

void down(struct semaphore *sem);

int down_interruptible(struct semaphore *sem);

int down_trylock(struct semaphore *sem);

down decrements the value of the semaphore and waits (possibly forever)

Do not use noninterruptible operations unless there is no alternative -- Non-

interruptible operations are a good way to create unkillable processes (the

dreaded "D state" seen in ps), and annoy your users.

down_interruptible does the same, but the operation is interruptible

This one allows a user-space process that is waiting on a semaphore to be inter-

rupted by the user, which causes the semaphore to return a nonzero value

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 9 (9/22/15)

Concurrency and Race Conditions

down_trylock never sleeps -- if the semaphore is not available at the time of the call,

down_trylock returns immediately with a nonzero return value

If ’down’ succeeds, the process is said to have taken out the semaphore

The Linux equivalent to V is up

void up(struct semaphore *sem);

Note that if an error occurs while the semaphore is held, the process must release the

semaphore before returning an error status to the caller

In scull, the struct scull_dev data structure contained a semaphore:

struct scull_dev {

 struct scull_qset *data; /* Pointer to first quantum set */

 int quantum; /* the current quantum size */

 int qset; /* the current array size */

 unsigned long size; /* amount of data stored here */

 unsigned int access_key; /* used by sculluid and scullpriv */

 struct semaphore sem; /* mutual exclusion semaphore */

 struct cdev cdev; /* Char device structure */

};

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 10 (9/22/15)

Concurrency and Race Conditions

This provided a ’per data structure’ mutual exclusion mechanism

A global mechanism can also be used but would limit concurrency since each

scull data structure is independent of the others

The initialization code initialized the semaphores:

 for (i = 0; i < scull_nr_devs; i++) {

 scull_devices[i].quantum = scull_quantum;

 scull_devices[i].qset = scull_qset;

 init_MUTEX(&scull_devices[i].sem);

 scull_setup_cdev(&scull_devices[i], i);

 }

It is important to note that this initialization occurs BEFORE the device is made

available with scull_setup_cdev (described earlier)

The code for scull_write (see on-line text) begins by acquiring the semaphore:

 if (down_interruptible(&dev->sem))

 return -ERESTARTSYS;

If the user ’interrupts’, the nonzero return value causes the kernel to restart the call or

return an error to the user

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 11 (9/22/15)

Concurrency and Race Conditions

SpinLocks: (must include <linux/spinlock.h>)

Semaphores are useful but most locking uses a ’spinlock’ instead

Spinlocks provide mutual exclusion by providing two values, "locked" and

"unlocked", that is usually implemented using a single bit in an integer value

Code wishing to ’take out’ a particular lock tests the relevant bit

If lock is available, the ’locked’ bit is set and the code continues into the critical

section

If not available, the code goes into a tight loop where it repeatedly checks the

lock (it spins)

The primitive is implemented such that the ’test and set’ operation is atomic

Note that these only work on SMP systems and preemptive kernels, otherwise

deadlock occurs

spinlocks on uniprocessor systems without preemption are coded to do nothing

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 12 (9/22/15)

Concurrency and Race Conditions

Initialization:

void spin_lock_init(spinlock_t *lock);

Before the critical section:

void spin_lock(spinlock_t *lock);

After the critical section:

void spin_unlock(spinlock_t *lock);

Note that spinlocks are NOT noninterruptible and there are variants to the above (as

with semaphores)

Deadlock can happen easily and needs to be avoided:

• Your code looses the processor by calling copy_from_user (gets put to sleep), or

perhaps preemption kicks in and a higher priority process runs

• Since you are still holding the lock, other processes with spin, potentially forever

The core rule is that code holding a spinlock must be atomic and must not loose the

processor except to service interrupts

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 13 (9/22/15)

Concurrency and Race Conditions

The kernel preemption case is handled by the spinlock code itself

Any time kernel code holds a spinlock, preemption is disabled on the relevant

processor

The bigger challenge is to avoiding sleep while holding a lock

Many kernel functions can sleep, and this is not always well documented

• Copying data to or from user space is an obvious example b/c of the possiblity of

swapping

• Same is true of memory allocation, e.g., kmalloc, b/c of the possiblity that the sys-

tem call sleeps until memory becomes available (this can be disabled)

• A critical section in DD code has taken the lock and an interrupt occurs, and the ISR

requires the lock (fix here is to disable interrupts)

You need to examine every function that you call in the critical section to ensure

’sleeping’ is not a possibility

You should also minimize the amount of time a spinlock is held b/c higher priority

processes are locked out

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 14 (9/22/15)

Concurrency and Race Conditions

One of the alternatives:

void spin_lock_irqsave(spinlock_t *lock, unsigned long flags);

spin_lock_irqsave disables interrupts (on the local processor only), with previious

interrupt state stored in flags

You must use the irq version in ISRs themselves to avoid deadlock, and both the

irqsave and irqrestore calls must appear in the same ISR function

There are other challenges with avoiding deadlock with spinlocks

In more complex code, a spinlock will be assigned to specific structures

If you call two functions that request the same spinlock, the code deadlocks --

fix is to remove the spinlocks from the individual functions and require the

caller to acquire it (which MUST be documented!)

If you call several functions that each access different spinlocks, then deadlock

can be avoided if all processes follow the same order to acquire/release them

On-line text describes some other, lighter weight alternative locking schemes

