25
26

27

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

Eﬁ cryptography m\D\Py

Article
Correlation-Based Robust Authentication (Cobra)

using Helper Data Only

Jim Plusquellic" and Matt Areno?

1 University of New Mexico and IC-Safety; jimp@ece.unm.edu
2 Trusted and Secure Systems; matt@trusecsys.com
* Correspondence: jimp@ece.unm.edu; Tel.: +240-475-1882

Received: date; Accepted: date; Published: date

Abstract: PUF-based authentication protocols have been proposed as a strong challenge-response
form of authentication for IoT and embedded applications. A special class of so called strong PUFs
are best suited for authentication because they are able to generate an exponential number of
challenge-response-pairs (CRPs). However, strong PUFs must also be resilient to model-building
attacks. Model-building utilizes machine learning algorithms and a small set of CRPs to build a
model that is able to predict the responses of a fielded chip, thereby compromising the security of
chip-server interactions. In this paper, response bitstrings are eliminated in the message exchanges
between chips and the server during authentication and therefore, it is no longer possible to carry
out model-building attacks in the traditional manner. Instead, the chip transmits a Helper Data
bitstring to the server and this information is used for authentication instead. The server constructs
Helper Data bitstrings using enrollment data that it stores for all valid chips in a secure database
and computes correlation coefficients (CCs) between the chip’s Helper Data bitstring and each of
the server-generated Helper Data bitstrings. The server authenticates (and identifies) the chip if a
CC is found that exceeds a threshold, which is determined during characterization. The technique
is demonstrated using data from a set of 500 Xilinx Zynq 7020 FPGAs, subjected to industrial-level
temperature and voltage variations.

Keywords: PUF-based authentication; Helper data correlation; hardware security

1. Introduction

Robust authentication and key generation are critically important to defining a root of trust and
to providing data integrity and confidentiality in communications between internet-of-things (IoT)
devices. Physical unclonable functions (PUFs) are proposed as replacements to traditional non-
volatile memory (NVM) for storing keys and to using cryptographic primitives in authentication
protocols [1-7]. PUFs are able to reproduce keys and bitstrings on-the-fly by measuring small changes
in the signal behavior of an integrated circuit that occur because of the finite, non-zero tolerances that
exist in manufacturing processes. A special class of so-called strong PUFs are able to generate an
uncountable numbers of reproducible bits making it possible to construct unique response bitstrings
for authentication protocols without the need to employ entropy-enhancing cryptographic primitives
such as secure hash, thereby reducing energy and area overheads in IoT devices.

PUF-based authentication protocols that allow direct access to the embedded PUF through an
unprotected interface [7], where challenges and responses are not obfuscated using cryptographic
primitives, represent the most attractive usage scenario because such protocols are typically very
simple and compact. The drawback of protocols with unprotected interfaces is that the embedded
PUF is susceptible to model-building attacks. Model-building is typically carried out using machine
learning (ML) algorithms where the goal of the adversary is build a model of the challenge-response

Cryptography 2018, 3, x; doi: FOR PEER REVIEW www.mdpi.com/journal/cryptography

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

89

90

91
92
93

Cryptography 2018, 3, x FOR PEER REVIEW 2 of 17

behavior of the PUF and then later use the model to predict the PUF’s response to any arbitrary
challenge. If this can be accomplished, then the model can be used to impersonate the actual device.
Although ML attacks require a large amount of computing effort, they represents a serious threat to
PUF-based authentication protocols with unprotected interfaces.

In this paper, we propose a PUF-based, privacy-preserving, mutual authentication protocol with
unprotected interfaces that is resilient to model-building attacks. The technique is demonstrated
using the hardware-embedded delay PUF (HELP) [7-8] but is applicable to any PUF architecture that
is able to produce soft data. Soft data refers to digital values that represent the magnitude of the
signal being measured, e.g., path delays and frequencies. Soft data captures the inherent, random
variations that occur in these signals from one chip to another, and represents the source of entropy
for the PUF. The proposed methodology can therefore be applied to an enhanced version of the
arbiter PUF [11], and to traditional weak PUFs, such as the RO PUF [12], with additional but simple
enhancements to expand the challenge-response space from n to 2 as required for authentication
applications.

The PUF architecture defines a set of functions that convert soft data into bitstrings and keys to
be used for encryption and authentication. The authentication protocol that we propose uses soft
data, and the corresponding Helper Data bitstrings that are produced by the PUF architecture, as
input to a correlation technique. We refer to the protocol as Cobra for Correlation-based robust
authentication. The results presented in this paper show that by correlating Helper Data bitstrings,
a server can correctly and securely authenticate a fielded chip. The significance of this claim is that
there is no need to reveal the response bitstrings in the message exchanges between the chip and
server and therefore, the traditional approach of applying machine-learning algorithms to the
challenge-response-pairs (CRPs) is no longer possible.

In the Cobra protocol, the chip constructs and transmits a Helper Data bitstring to the server.
The Helper Data bitstring transmitted is traditionally used by the server to identify weak bits in the
response bitstring, but otherwise reveals no information about the response bitstring itself [7]. The
server constructs a set of Helper Data bitstrings using enrollment data that it stores for all valid chips
in a secure database. The chip’s Helper Data bitstring is correlated to each of the server generated
Helper Data bitstrings by bitwise AND’ing the two bitstrings and then counting the number of ‘1’s
in the AND’ed bitstring. (Alternatives to bitwise AND correlation include bitwise XNOR (discussed
later) and traditional time and frequency domain digital signal processing forms of correlation.) The
server authenticates the chip if exactly one of the Helper Data bitstrings constructed using enrollment
data correlates, i.e., has a large number of ‘1’s, to the chip’s Helper Data bitstring. A similar process
is carried out in reverse from server to chip to enable mutual (two-way) authentication but without
the exhaustive search component. Therefore, no information regarding the PUF secrets is revealed to
the adversary despite the fact that the Helper Data bitstrings are derived from random variations that
occur within the PUF’s circuit components.

The remainder of this paper is organized as follows. Section 2 provides background on PUF
architectures and defines key concepts such as soft data, error avoidance methods, the HELP PUF
architecture, Helper Data generation, methods of correlation and an analysis illustrating proof-of-
concept. Section 3 describes the Cobra privacy-preserving, mutual authentication protocol.
Experimental results are presented in Section 4 on data collected from a set of 500 Xilinx Zynq FPGAs,
showing both the effectiveness and the limitations of Cobra on data collected across the range of
industrial-level temperature and voltage specifications. A security analysis is presented in Section 5
and conclusions in Section 6.

2. Background

2.1. PUF Architectures and Soft Data

A wide range of PUF architectures have been proposed since the initial papers on PUFs were
published [12][13]. The source of entropy (randomness) for the PUF is chip-to-chip and within-die
process variations that occur between and within chips during production. The PUF architecture

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

116

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

Cryptography 2018, 3, x FOR PEER REVIEW 3 of 17

defines the mechanism that is used to measure small signal variations introduced by process
variations effects. In some cases, the measurement process leverages the existing architectural
features of the chip, e.g., the SRAM PUF measures its entropy source, i.e., the state of the individual
SRAM cells, by simply applying power to the SRAM array [14]. For most PUFs, however, circuit
components need to be added to the chip, e.g., the RO PUF requires a set of MUXs and counters to
select and measure the frequencies associated with elements in the array of ROs [12]. In another
example, the HELP PUF adds a launch-capture clocking mechanism to precisely time the delays of
combinational logic paths [7-8].

For PUF architectures that measure and digitize the signal behavior associated with the entropy
source, the digitized values provide additional information that can be leveraged in strong challenge-
response-pair (CRP) forms of authentication. The digitized values represent the magnitude of the
signal behavior, e.g., RO frequency or path delay, and are often used as input to mathematical
processes defined by the PUF architecture. The goal of the mathematical operations is to isolate and
amplify the random differences that occur among multiple copies of the individual circuit
components. The digitized values are eventually converted to a bit and used in the response of the
CRP. We refer to the digitized values as soft data.

Of the PUF architectures that create soft data (the RO and HELP PUFs are just two examples),
the conversion to bits can be accomplished in a variety of ways. For example, the RO PUF typically
selects a pair of ROs and then computes a difference by subtracting the soft data associated with the
two ROs. The sign of the difference can then be used to generate a bit, with, e.g., negative differences
producing a ‘0" and positive differences producing a ‘1’. The HELP PUF also computes differences
among pairings of path delays and uses a modulus operation to assign a ‘0" or ‘1’ to the differences.

2.2. Error Correction and Avoidance Methods

Nearly all PUF architecture need to deal with bit-flip errors, which are differences in the
response bitstring that occur when the response is regenerated. Bit-flip errors are most probable when
the magnitude of the difference between a pair of soft data values is close to zero. In these cases,
regeneration of the bitstring, which takes place later in the field and under potentially adverse
environmental conditions, can result in bits flipping from ‘0" to ‘1" or vise versa. Although
authentication protocols can be designed to be tolerant to a small number of bit-flip errors, the
number of bit-flip errors that can occur is too large in most PUF architectures to guarantee that
authentication works correctly when regeneration is carried out in harsh environments.

To deal with this issue, nearly all PUF architectures define an error correction or error avoidance
method to improve reliability during regeneration. Error correction is the more popular of the two
reliability-enhancing methods. Error correction typically processes the PUF response bits into a final
response bitstring using algorithms based on linear block codes [15] or Bose-Chaudhuri-
Hochquenghen (BCH) codes [16]. However, nearly all of the error correction schemes ignore the
magnitude of the difference in the soft data and use all of the PUF response bits to construct a smaller
but reproducible bitstring response, including bits that have a high probability of changing value.

Error avoidance schemes, on the other hand, integrate a thresholding method that skips bits that
are deemed unreliable. The reliability of a bit is often directly related to the soft data associated with
the bit, and in particular, the distance of the soft data value to the bit-flip line. The bit-flip line is
defined by the PUF architecture as a soft threshold between ‘0" or a ‘1’. Unlike error correction
methods, error avoidance methods can only be used with PUF architectures that produce soft data
values, e.g., the RO [12], metal resistance [17], NVM [18] and HELP [8-10] PUFs are some examples.
Notable exceptions here are memory-based PUFs, including SRAM, DRAM, FF and latch-based
PUFs, which as originally proposed, are not capable to producing soft data.

In typical usage scenarios, an enrollment phase is carried out in which challenges are applied to
the PUF in a secure facility and response bitstrings are generated for the first time. In addition to the
response bitstring, PUF architectures that use either error correction or error avoidance methods also
produce Helper Data. Helper Data is typically maintained in the secure facility and transmitted to
the fielded device later during regeneration to enable the PUF to precisely reproduce the response

145
146
147
148

149

150

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

Cryptography 2018, 3, x FOR PEER REVIEW 4 of 17

bitstring. The form of the generated Helper Data varies dramatically depending on the error
correction or avoidance method employed. A key contribution of the method proposed here relates
to Helper Data, and in particular to Helper Data that is generated by error avoidance methods. The
next two subsections discuss a simple error avoidance scheme used by the HELP PUF as well as

= et f %'ﬂﬁ_'_.‘_""* path
= BT D e [

f |
‘ = _.. .
/ : H i L] Capture : i !
Launch E { = F[‘:?\\'llh p—,ulh Fail : Clock
FFs with a ==) . Strobing
Clk, . £y Al ik Clp[| Method
- i A ath :

p
0
Clk][YL
0>1]—2] | e

| P
M 1st success Clky |7
fine phase shift %

Clio [o L.

Figure 1 HELP Architecture illustrating Clock Strobing concept used to create path delay (Timing)
soft data.

features of the generated Helper Data that are leveraged in the proposed Cobra protocol.

2.3. HELP PUF

To better exemplify the principles of the proposed technology, we use the HELP PUF
architecture and data collected from a set of Zynq FPGAs in the illustrative examples that follow [9-
10]. HELP uses a launch-capture technique to obtain accurate digital timing values of path delays
through a combinational logic block. The combinational logic block for a full adder is shown in Fig.
1 but any functional unit can be used (the combinational logic from one column of the Advanced
Encryption Standard is used in [7-10] and for the experimental results presented in Section 4). Logic
signal transitions are launched from the Launch FFs shown on the left using Clki and captured in the
Capture FFs shown on the right using Clk.

The digital clock manager (DCM) on the FPGA is used to create the clocks, with dynamic fine
phase shift enabled for Clk:. Dynamic fine phase shift allows a state machine running in the
programmable logic (PL) of the FPGA to increment the phase shift by increments of 18 ps (see right
side of Fig. 1). A path through the full adder is timed by repeatedly applying a 2-vector sequence to
the Launch FFs until the signal propagating along the highlighted path is successfully captured in the
Capture FF. A successful capture occurs in this example when the ‘0" produced from the first vector
V1 of the 2-vector sequence is overwritten by the “1” produced by V: (see center portion of Fig. 1).
When this occurs, the current fine phase shift value, which is an integer typically between 100 and
500, is recorded by HELP as the digitized timing value for this path. These timing values represents
the soft data associated with HELP.

PN, PN, PN, PN,
380,01 | 2948 | 3669 |ess| 2762
_D C2 360.6 | 2828 | 3527 286.1
;; 366.3 | 2884 | 3557 2823
=
= -
= :
U
3875 | 3012 | 3735 2721

mel re Server Datahace

Figure 2 HELP PN database created during enrollment.

169
170
171
172
173
174
175
176
177
178
179
180
181
182

183

184
185
186
187
188
189
190
191

Cryptography 2018, 3, x FOR PEER REVIEW 5 of 17

During enrollment, a set of timing values, called PUF Numbers or PN, for each chip are stored
in the rows of a secure database as shown in Fig. 2. This data is consulted by the secure server to
authenticate these chips after they are deployed in fielded systems. The storage of soft data on the
server, in contrast to response bitstrings, is the first of several significant differences that exist
between Cobra and the PUF-based protocols proposed by others [1-6].

As indicated above, the proposed Cobra protocol leverages Helper Data to carry out
authentication. The Helper Data is derived from the PNs stored in the secure database on the server,
and from an instance of HELP that is programmed into the programmable logic of an FPGA, which
represents the fielded chip. The entropy that is associated with each chip is captured by the PN stored
in the server database. An adversary carrying out machine learning attacks against the protocol
would attempt to learn the timing information stored in the database by reverse-engineering the
bitstring responses that are exchanged openly over the network. Once learned, the adversary can
then impersonate the chip. Therefore, it is vital that the relationship between the PN and the response
bitstring be obscured and remain hidden to make this task difficult or impossible for the adversary.

Secure Database C; (enroll) ~ Subset of PN from chip C; at enroll & regen In-field C; (regen)
[20]
cnnene ¥ (A TR . i s ¢
[O[O[O[T T]O[1[0[T[0[0[O]O[O[OJOTT[T] |, | .-" .. AN '\ }' |([0[0 1|1|([1]0)|l 10]
1 5] 5 gL \ 7! / ‘
C, Mixed BStr 4 10 : \W C, Mixed BStr "
[O[To[T[o[I[T[o]1[T[o[T ol 1[T]o[o]1] | — R % [T[o[o[T[o[1T[0[1[0f0T[0[1]1[0]0[1]
1 : 10 Foed 1) 110 -
\ L / :g | II‘ strong 0| / ¥ I\ '" Y 4
ad T 10
C; Strong BStr o M/ /f#ﬁ’/' /y /,/ ﬂ /i C; Strong BStr
1 5 10 15 18 |
Environmental conditions: Index of PN for chip C, Environmental conditions:

25°C with supply voltage at 1.00V 85°C with supply voltage at 0.95V
Subset of PN from chip C, at enroll & regen

Secure Database C, (enroll) [20] 7% TR ,ﬁ,’(/)

i rr | v
.-"' @ F-Smmgl I "I, ,' '. C, Helper Data ¢ @
[1{o[o[1[1[1][o]t]o[1][t[o]o[t]o]1]0][1
5 15

In-field C, (enroll)

C, Helper Data # z
[1]oJo[1]a]1]o[1[O[1]t]0]0[OJO]1]O]1] =
1 5 10 15

T

1 5 10
\\&\%\\\\\%\g\\\ C, Mixed BSu "
,/"\3 Stmguk /| H'E"“i.“ 0 wlmwu T[]

0 /,W' /555 //JM// 747} ll-lllll

Cs Strong BStr 1 5 10 15 18 | C, Strong BStr
Index of PN for chip C,

=
=

1
Cs Mixed BStr ‘

g_'t

III]I

Figure 3 (Center) PN for chips Ci and C2under enrollment (black points), and regeneration (red
points), conditions, (top left A) Helper Data and response bitstrings for Ci under enrollment
conditions, (top right B) Helper Data and response bitstrings for C1 under regeneration conditions,
(bottom left C and right D) same for chip Ca.

2.4. Helper Data Generation using an Error Avoidance Technique

The illustration presented in Fig. 3 shows how bitstrings and Helper Data are generated using
an error avoidance scheme called Margining, as a precursor to our discussion on the proposed Helper
Data correlation method. The graphs labeled with “C1” and “C2” (in large circles) in the center of the
figure plot a set of 18 PN (timing values) along the x-axis for two chips Ci1 (top) and Cz (bottom), with
the black curves depicting PN obtained from the secure server database and the red curves depicting
PN generated on-the-fly by these chips during regeneration in the field. The environmental
conditions for data collected during enrollment and stored in the secure database are specified as
25°C under nominal supply voltage conditions (1.00V) while to fielded chips are subjected to high

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

240

241
242

Cryptography 2018, 3, x FOR PEER REVIEW 6 of 17

temperature (85°C) and low supply voltage conditions (-5% or 0.95V). The data shown are actual
measurements obtained from two Zynq FPGAs used in our experiments.

The HELP PUF converts the PN into a bitstring by applying the following algorithm. First, a
pseudo-random number generator selects pairs of PN and creates differences. A temperature-voltage
compensation method called TVComp is then applied to the differences to compensate the measured
timing values for changes introduced by environmental conditions (we omit the details of these
operations [19] here to focus the discussion on the proposed correlation technique). Finally, a
modulus operation is applied to the compensated differences to remove path length bias effects. The
modulus operation is defined in the standard way as returning the positive remainder after dividing
by the modulus. The value of the modulus is one of several parameters to the HELP algorithm. The
graphs shown in Fig. 3 use a modulus of 20, which is reflected as the maximum value given on the
y-axis.

The TVComp process implemented within HELP is very effective at compensating the chip
regenerated PN (red values) but is not ideal. The red data points are vertically offset above and below
the black (enrollment) data points because of uncompensated temperature-voltage noise (TVNoise).
An interesting example labeled ‘wrap’ is shown for the 2nd data point in the upper “Ci” graph where
TVNoise has caused the point to “wrap’ from the enrollment value near 20 back around to a value
near 0 during regeneration. Despite these anomalies, the black and red curves in each graph track
very closely, i.e., they are correlated. In contrast, the black curves from both graphs (for Ci and C2)
are not correlated. This key observation serves as the basis for the innovation proposed within the
Cobra protocol.

As mentioned earlier, the error avoidance scheme implemented within HELP is called
Margining. The Margining scheme skips soft data values (PN in our example) for cases in which the
probability of a bit-flip error is large. These highly probable bit-flip regions are labeled “weak” in the
center graphs of Fig. 3 and are located adjacent to the bit-flip lines at 0, 10 and 20. In other words, PN
that are within a distance of 2.0 of these bit-flip lines have the highest probability of changing value.
For example, the PN labeled “wrap” represents a bit-flip error which is introduced by TVNoise. PN
that are located in the “weak” regions are assigned ‘0" in the Helper Data bitstring. For example, the
“Ci Helper Data” bitstrings in the region labeled with the circled “A” in the figure begins with “000”,
which reflects that the status of the first 3 PN in the black curve of graph “Ci”. In contrast, the 4th bit
is ‘1" because the PN at position 4 in graph “C:” falls within the “strong 1” region.

The “C1 Mixed BStr” in region “A” of Fig. 3 records the bit value associated with each of the 18
PN, with PN < 10.0 assigned ‘0" and those >= 10.0 assigned ‘1’. This response bitstring corresponds
one-to-one to the “Ci Helper Data” bitstring and contains both strong and weak bits. The “Ci Strong
BStr” is constructed from the “Ci Mixed BStr” by selecting only those bits identified as strong in the
“C1 Helper Data” bitstring. The region labeled “B” shows the corresponding bitstrings generated
using the red (regeneration) data points from graph “Ci1”. The graphs and annotations labeled “C2”,
“C” and “D” are completely analogous to “C1”, “A” and “B” except the PN and bitstrings are derived
from second chip Ca.

The HELP authentication protocol from [7] proposes a DualHelperData scheme where both the
Helper Data and Strong BStr are exchanged between the server modeled on the left side of Fig. 3 and
the fielded chips modeled on the right side. As discussed earlier, exposing the Strong BStr to the
adversary enables model-building attacks where the adversary attempts to reverse engineer the PN
stored in the secure database using machine learning (ML) algorithms. Although attempts to model-
build HELP have not been successful (see [20]), the exposure of the response bitstrings (Strong BStr)
still represents a vulnerability that enables ML attacks. If it becomes possible to construct an ML
attack that is able to deduce the relationships among the PN, then the response bitstrings to other
challenges can be predicted, and the chip impersonated.

2.5. Poof-of-Concept: Helper Data Correlation

As a mitigation strategy, we propose an alternative authentication protocol that exchanges only
the Helper Data bitstrings. Authentication is carried out in Cobra by correlating the Helper Data

243
244
245
246

247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

Cryptography 2018, 3, x FOR PEER REVIEW 7 of 17

bitstrings generated using the enrollment data on the server with the Helper Data bitstring generated
on-the-fly by the chip. The simplest correlation strategy is to compute a new bitstring by bitwise
AND’ing the Helper Data bitstrings from the server and chip and then counting the number of ‘1’s
in the AND’ed version. We refer to the number of ‘1’s as the correlation coefficient (CC) because it

C; is authenticating C, is authenticating
C, He t|m|]1|l||nll Id C 1||]1|J|1n -field

[oJofofiT1foT o Tfo[o]o[o]0[0[1TI0] <~ > | [0]0] ||| [T[oT[O[T]TO[O[T[O[T[O]T] ¥~
C 5 10 15 \ { 10 5] N

C; Helper Data, server DB A (IIL[P\.T[’!II server DB

[n]{) [0]1] l]n[i]n[n]u[n]n[i‘:]n[n]l[l] K‘ }n[n]n[l |_|n]||n t|||[njn[n]n[n]n[|]'I| \

\‘L (in-| ll(ldr AND C, (server) Hl.!pl.r Data ~, C3 (in-field) AND C, (server)]Idpu Data

|n|n|n|||1|u|:]n[||u[n|u[n|n|u|n ||nl ./ i n|{1 {}|I]I|lJ|[J|t}|U[{}|ll|t}|tl|ll|t)[l!|l!|ll| 24 1e

C, HL][KFDI'I server DB Cs HL[P\IDI[I server DB ‘/
[l 1{?[(1] 1] i] 1[0]1 [U[l]1 [{?]U[U]U[170]1] "/ i_l [U]H[1] 1]1]0]1 [ﬂll [I]U[“]{)[U] 170]1]

/
(p ({in- |]|.|d] AND C; (server) }Itlpﬁ'D ta & {_ (in- iu.ld} AND C, l\tr\tr! "l.lptl' Da IIJ

[ofo[o]1]1]ojolo]olo]o]oojojo]1]0]0] 3 “1%s |||n!n||]1 |l|n|||u|l||lu|{}5[>|n|||n||| @
1 5 10 15 1 5 10 15

Figure 4 Illustration showing Helper Data bitstring correlation using “AND” operator with Ci
authenticating to the server on the left and Cz on the right. Helper Data bitstrings are obtained from
data in Fig. 3.

reflects the level of similarity that exists (among the “1’s) between the two Helper Data bitstrings.

As an example, the left column of Fig. 4 shows an authentication attempt by chip Ci while the
right column shows an attempt by chip Cz. The top-most red-colored bitstrings in each column are
the Helper Data bitstrings transmitted by the chips to the server. For each Helper Data bitstring
received during authentication, the server carries out an exhaustive search operation using the PN
stored its secure database. It constructs the black-colored Helper Data bitstrings in each column using
the technique described in Fig. 3 (in fact, the bitstrings shown here are identical to those shown in
Fig. 3).

For each Helper Data bitstring it constructs, the server bitwise AND'’s it with the received chip’s
Helper Data bitstring. For example, the AND’ed versions are labeled “Ci (in-field) AND C: (server)
Helper Data” and “C: (in-field) AND C: (server) Helper Data” in the left column of Fig. 4. As
discussed, the bitwise AND operation is a form of correlation that acts to preserve more ‘1’s in cases
where the bitstrings are similar. The CCs (number of 1’s) are reported to the right of AND’ed Helper
Data bitstrings. The results for both authentication attempts show higher correlation for cases where
the server-generated Helper Data bitstring is derived using PN collected earlier during enrollment
from the same chip. In other words, the authenticating chip is correctly identified to the server using
only the information provided by the CC.

This example uses only a small number of 18 PN from the larger set of 2048 that are produced
by each iteration of the HELP algorithm [7]. The results shown in Fig. 5 expand the example
illustration to the full length bitstrings and to PN collected across 9 TV corners using 500 Xilinx Zynq
FPGAs. Each of the 9 curves plots the CCs for the 500 chips along the x-axis. The authenticating chip
is labeled Czs0and is highlighted in the center region of the figure.

The graphic illustration given in Fig. 6 shows how the curves in Fig. 5 are constructed. Here, the
chip’s Helper Data bitstring on the left, regenerated under 250C, 1.00V, is transmitted to the server
on the right. A second authentication request is also shown in red where the chip in this case is
regenerating Helper Data with environmental conditions set to -40°C, 1.05V. The server carries out
an exhaustive search using data stored in the Enroll DB separately for each of these two
authentication attempts and computes a set of 500 CCs. The CCs are plotted along the x-axis in Fig.
5 as the top-most and bottom-most curves. A similar process is carried out to construct the CCs for
the remaining 7 curves in Fig. 5 but using PN from the other TV corners.

277
278
279
280
281
282
283
284

Cryptography 2018, 3, x FOR PEER REVIEW

<40°C, 100V~

AE chip._ 499 NE chij
a

01 - 396 709= =3 Ay
200 .
5 = - o e
501 = 5506 5,95V ! a5
200| Aot
50k = = = = = = - - L

359C, 105V oo
20 | AT e s N g I A pen s g
450[— — oz D = = = = R

20H) | st

Correlation Coefficient (Bits)

85°C, 0.95V

R5°C, L.O5V

100

200 250 300

400 500]

Chip Number

8 of 17

Figure 5 CCs (y-axis) for 500 chips (x-axis) across 9 TV corners obtained by correlating Helper Data

bitstrings from the HELP PUF with a Margin of 3 and Modulus of 18. Peak at 250 occurs when Helper

Data is derived using PN generated by the chip and matched with PN collected during enrollment

for this same chip (called the authentic-enrolled or AE chip). All other CCs are derived by correlating

The CCs in Fig. 5 for Caso (referred to as the authentic-enrolled (AE) chip) vary from more than
450 bits in the top curve to approx. 380 bits in the bottom curve. Although the correlation is weakened
when the chip is exposed to harsh environmental conditions, it still remains high with respect to the
CCs produced by the remaining 499 chips (referred to as non-authentic-enrolled (NE) chips) from the
DB. The largest value associated with a NE chip is approx. 260. The large margin between the AE and
NE CCs suggests that it should be possible for the server to define a threshold to distinguish
successful authentications from unsuccessful authentications with very high probability, e.g., any
value between 260 and 380 works in this example.

Chips
C,

Server

25°C., 1.00V

25°C. 0.95V

25°C, 1.05V

-40°C, 1.00V

-40°C, 0.95V

-40°C, 1.05V

85"C, .00V

85"C. 0.95V

85°C, 1.05V

Gaso

25°C, 1.00V

transmi
»

25°C, 0.95V

25°C, 1.05V

-40°C, 1.00V

-40°C, 0.95V

-40°C, 1.05V

85"C. L.OOV

85°C, 0.95V

(11]

tran

85°C, 1.05V

Enroll DB

L L 1]

cc,

Server carries
out exhaustive
search using data
in Enroll DB by
computing CCs
using the Chip’s
Helper Data
bitstring

Casp

and Helper Data
bitstrings created
using each of the
data sets stored
inDB

Caog
Ca00 _wCCso0

Csoo “ACCyy

Figure 6 Graphic depicting process used to construct curves shown in Fig. 5. Each same-colored set

of CCs displayed vertically are concatenated and shown along the x-axis in Fig. 5. This process

represents exactly what the sever would do to identify and authenticate each Chip’s Helper Data

bitstring request transmitted to the server. Red-colored CCs correspond to the same Caso

authenticating when the environmental conditions are 85°C, 1.05V as shown by the bottom-most

curve in Fig. 5.

285
286
287
288
289
290
291
292
293
294
295
296

297

298
299
300
301
302
303
304
305
306
307
308
309
310

Cryptography 2018, 3, x FOR PEER REVIEW 9 of 17

Note that our analysis considers only AE and NE authentication attempts. Two other
possibilities include non-authentic-not-enrolled (NN) and non-authentic-counterfeit (NC)
authentication attempts. Modeling NN authentication attempts is trivially accomplished by
removing their data from the Enroll DB. It follows that attempts to authenticate by chips with no data
in the Enroll DB would produce CCs similar to those produced for the 499 NE CCs shown in Fig. 5.
Modeling NC authentication attempts is difficult without employing some type of machine learning
algorithm if in fact an attack model can be devised. We leave this non-trivial task for future work.

We emphasize here that under the AND correlation sheme, it is possible for adversaries to
construct Helper Data bitstrings with all 1’s, which guarantees a large number of matches. However,
large CCs would occur for ALL data sets in the secure DB, which, in turn, would be flagged by the
server and result in a failed authentication attempt. This is true because the server allows only one
CC to be above the threshold in order for an authentication attempt to be classified as successful.

Cobra Protocol

Prover (chip C; with ID;) Enrollment Verifier (server)
(PN} = PUF({¢,}) {o} (.} « Server
g {PN }
— 1, [DI. « ServerGenlID()

DB[ID;] & ({PN;})

Chip Authentication

token request to authenticate message req. to authen. n., < TRNG()
ny < TRNG() “ . e
. {e, Yon, {c,,} « ServerSelChallng
Margin « l:’zu‘:unSeI(ul XOR :;2) m =
{Pl\l}.}e.‘r Uf({rm}) h’.ul
h' HeIperDala({PN’j}. Margin) —» Margin « PammSt:l(anOR n,)

For i in DB[ID;] (Search for match)
CC.[. « Correlate({ PNj} » Margin, h")
o i
cc, >t
Do server authentication
Succeed if exactly one CC meets threshold criteria

Figure 7 Cobra Protocol: Enrollment (top) and Chip Authentication (bottom) operations and message
exchanges of proposed Helper Data bitstring correlation technique for implementing a privacy-
preserving, mutual authentication protocol between chip (left) and server (right).

3. The Cobra Protocol

In this section, we describe the general structure of the proposed Cobra protocol. A graphical
illustration of the Enrollment and Authentication operations, including the message exchanges
between the chip and server, are presented in Fig. 7 along the top and bottom, respectively.
Enrollment is performed in a secure facility using a confidential FPGA programming bitstream that
allows access to the PUF’s soft data. The server on the right generates challenges {cy} and transmits
them to the chip on the left. The chip then applies the challenges to its PUF to generate the set {PN}},
which is returned to the server. The server generates a chip identifier ID: and stores the soft data set
{PNj} under ID: in its secure database DB.

The first phase of authentication is called Chip Authentication. Here, a fielded chip i requests
authentication to the server (note, no chip ID is transmitted to the server in order to preserve privacy).
The server generates a nonce 12, selects a set of challenges {cn} and transmits them to the chip. The
nonce 1z is used to select a Margin parameter, and the challenges {cn} are a subset of the challenges
{cx} used during enrollment. The chip applies the challenges {cw/} to its PUF, along with a Margin,

311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339

340

341
342
343
344

345

346
347
348
349
350
351
352
353
354
355
356
357
358

Cryptography 2018, 3, x FOR PEER REVIEW 10 of 17

which is selected using the function ParamSel(n: XOR n2), and generates a Helper Data bitstring h’
using the Margining scheme described earlier. Both /" and n: are transmitted to the server.

The server then carries out a search by processing soft data sets {PNj}i it stores in its database for
each chip i. The routine Correlate produces a Helper Data bitstring h internally (not shown) using each
of the stored data sets {PNj}i and the same Margin that was used by the chip. The Helper Data bitstring
h’ is then correlated with /. Correlation based on a bitwise AND operation was shown in the previous
section, but other possibilities exist including bitwise XNOR and/or standard waveform correlation
methods. The output of Correlate is a correlation coefficient CCi that is then compared to a threshold
t. The authentication is considered successful if exactly one CC is larger than the threshold. The
‘exactly one CC’ constraint implements a countermeasure against simple adversarial attacks which
use Helper Data bitstrings constructed with all 1’s. This issue is discussed in detail in Section 5. The
threshold is determined in advance using a characterization process in a secure facility. The goal of
characterization is to select a threshold that unambiguously distinguishes authentic-enrolled chips
(AE) from non-authentic-enrolled (NE), non-authentic-not-enrolled (NN) and non-authentic-
counterfeit (NC) chips.

The last phase of the Cobra mutual authentication protocol is for the chip to authenticate the
server. This phase is not shown in Fig. 7 but is similar except the message exchanges are reversed and
the search process is omitted. Moreover, the AND-based correlation scheme used by the server to
authenticate the chip cannot be used because the chip does not have access to the secure database.
Instead, the chip uses XNOR correlation, which, as we discuss further below, requires matches to
both 0’s and 1’s in the Helper Data bitstring received from the server and the bitstring produced on-
the-fly by the fielded chip.

Server authentication is not performed unless chip authentication succeeds, in which case, the
server has identified the chip’s soft data set {PNj}i. The server uses this {PNjli to generate another
Helper Data bitstring, which is transmitted to the chip. Note that the Helper Data bitstrings generated
during server authentication are distinct from those generated during chip authentication because
the challenge subset {cn} and nonces n: and n: are selected differently in this phase. Although the
nonces select only the Margin parameter in this example, other parameters can be introduced to
further expand the CRP space, as described below (and in reference [7]).

4. Experimental Results

This section carries out a worst case analysis using a larger set of the HELP CRP space and
discusses the security properties of the Cobra protocol in more detail. Similar to the preliminary
analysis presented in Section 2.5, the data analyzed here is collected from a set of 500 chip-instances
under enrollment and 9 temperature-voltage (TV) corners.

4.1. HELP Challenge Space

The full CRP space of the HELP algorithm is defined by 1) sets of challenges (2-vector sequences)
and corresponding Path-Select-Masks where each challenge set produces 4096 PN and 2) a set of
parameters, consisting of two LFSR seeds, two floating point parameters called the reference mean and
range, and a Modulus and Margin as discussed earlier in Section 2.4. The challenges and Path-Select-
Masks create a CRP space with size exponentially related to the size of the functional unit used as the
entropy source [21]. The parameters increase the CRP space by approx. 2%, i.e., there are 220 2048-bit
bitstrings that can be generated by varying these parameters for each set of challenges and Path-Select-
Masks. Only one set of challenges and Path-Select-Masks are used for the analysis carried out in this
paper and instead we focus on analyzing Helper Data bitstrings produced by varying only the
parameters. Although this represents only a small subset of the entire CRP space, our results show
that the Cobra technique works well across a statistically significant sample.

The two LFSR seed parameters allow up to 2048 distinct bitstrings to be generated, each of length
2048 bits. The reference mean and range increase the number of distinct bitstrings by a factor of approx.

359
360

361

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388

Cryptography 2018, 3, x FOR PEER REVIEW 11 of 17

128. The analysis performed here analyzes the Helper Data bitstrings generated using 10 distinct
LFSR seeds, one combination of the reference mean and range and a set of 11 Moduli and 3 Margins.

CCs for 500 chips, 9 TV corners, 10 seeds for AE chips
‘ " ‘ o

200!l ﬂ\M\ MFM_M A &\l’““*i’”\m\"l MM‘ l‘mN‘t“-ﬂqMﬁ-"W ‘l“ﬁ.‘”

Correlation Coefficient (Bits)

100] Worst-case CCs for NE chips

Average CCs for NE chips

1 100 200 300 400 500]
Chip Number

Figure 8 AE chip (black), worst-case NE chip (red), average-case NE chip (green) CCs with a Margin
of 3 and Modulus of 18.

4.2. llustration of Worst Case Scenario

The approach taken for the analysis of the worst case is illustrated using Figs. 8 and 9. The data
presented is derived using only one Modulus and Margin in this section, and is expanded to the larger
set in Section 4.3. The black curves in Fig. 8 plot the CCs computed by the server when each of the
500 AE chips identified along the x-axis authenticates. These curves are constructed as we illustrated
for Czs0 in Fig. 6 but now include data for all 500 chips and 9 TV corners shown on the left in that
figure, and for the 10 LFSR seeds. Therefore, there are 90 curves, each with 500 AE CCs. Similarly, the
red curves in Fig. 8 plot the worst-case (largest) NE CC among the remaining 499 CCs in each
authentication attempt while the green curves plot the average NE CC.

Note that the curves shown in Fig. 8 are in a different format than the curves shown in Fig. 5. In
particular, the CCs in the black curves of Fig. 8 correspond to the AE chip only and the red curves
plot only one CC (the largest, worst case value) from the 499 NE CCs in each of the curves of Fig. 5.
Therefore, only two points from each of the curves in Fig. 5 are plotted in Fig. 8, and appear as column
pairs in the black and red curves. The two points in each pair represent the worst case (smallest)
separation between the AE and NE CCs and visually portray how close a NE chip gets to being falsely
authenticated as the AE chip on the server. In summary, the number of black and red CC pairs is
given by 500 * 9 TV corners * 10 LFSR seeds = 45,000. Note that each pair corresponds to 500
authentication attempts so in total, there are 45,000*500 = 22,500,000 (22.5M) authentication attempts.

As indicated, the key feature of this graph is the distance (separation) between pairs of points in
the black and red curves. This separation is key to the server’s ability to distinguish between AE and
NE, NN and NC chip authentications. Unfortunately, a hard threshold (horizontal line) between the
black and red points cannot be drawn without some AE authentications failing (false negatives) and
some NE authentications succeeding (false positives).

To deal with this issue, we propose a new metric that computes the percentage change CC, called
PCC, as follows. First, a set of CCs are computed using the chip’s Helper Data bitstring against each
of the server computed Helper Data bitstrings. Then the two largest CCs are identified and plugged
in Eq. 1 to obtain the PCC value. The server successfully authenticates the chip if the PCC is larger
than a hard threshold value, and fails otherwise. In cases where the authentication is successful, the

389

390

391
392
393
394
395
396
397
398
399
400
401
402

403

404

405
406
407
408
409
410
411
412
413
414
415

Cryptography 2018, 3, x FOR PEER REVIEW 12 of 17

soft data in the Enroll DB associated the largest CC, CCurgst, identifies the authenticating chip.

_ (Cclargest B CCan_largest) Eq. 1.1

PCC
c Clargest

hard threshold = 15%

smallest value ~= 18%

1 100 200 300 400 500]
Chip Number

Figure 9 CCs as percentage change using AE chip and worst-case NE chip from Fig. 8.

The curves in Fig. 9 plot a closely related metric, defined as PCCac_wc in Eq. 2, using the CCs
from Fig. 8. Here, CCat is associated with an AE chip obtained from the black curves in Fig. 8 and
CCuorst_case_NE is the other point in the pair obtained from the red curves. Note that in practice, we would
not know the authenticate chip and therefore this analysis is somewhat artificial. However, it turns
out for every CC pair in Fig. 8, CCuargest = CCat and CCazud_iargest = CCuorst_case_NE. Therefore, Eq. 1 and Eq. 2
produce the same results for this set of CCs. In fact, the PCCar_wc would be negative if any of the CCar
is not the largest CC among the 500 generated by the server for the authentication attempt. The
smallest PCCae_wc present is circled in Fig. 9 and is approx. 18%. This indicates that all of the CCat are
significantly larger than the NE CCs across the 22.5M authentications. Expressed in terms of bits, the
smallest CC from Fig. 8 is approx. 300 bits. Therefore, the smallest separation between AE and NE
CCs is approx. 300%0.18 = 54 bits. A hard threshold can now be defined, e.g., at 15% as shown in Fig.
9, that enables the server to properly identify and authenticate chips with high probability.

(cc chorst_case_NE) Eq. 21

CCAg

AE ™

PCC A we =

4.3. Validation using the Larger CRP Space

An analysis reporting PCCat_wc is expanded in this section to a set of 11 Moduli and 3 Margins.
The analysis is carried out using bitwise AND correlation as described in the previous sections and
is repeated using bitwise XNOR correlation. XNOR correlation further restricts the matching criteria
over AND correlation to count matches to both ‘1’s and ‘0’s in the two Helper Data bitstrings. Bitwise
XNOR correlation relaxes the criteria used for a successful authentication in the Cobra protocol from
‘exactly one’ to any CC that exceeds the threshold. This is possible because bitwise XNOR correlation
measures the degree of matching between all bits in the Helper Data bitstrings, in contrast to bitwise
AND which counts only the number of matching ‘1’s. Interestingly, the two forms of correlation
behave differently and are somewhat complementary as we discuss below and further in Section 5.

The PCCae_wc values are shown in Fig. 10 for Helper Data bitstrings derived using bitwise AND
correlation along the top row and bitwise XNOR correlation along the bottom row. The bar heights

416
417
418
419
420

421
422
423
424
425
426
427
428
429
430
431
432
433
434

435

436
437
438
439

Cryptography 2018, 3, x FOR PEER REVIEW 13 of 17

represent the worst case PCCat_wc for a set of Moduli given along the x-axis and Margins given along
the y-axis. Note that only one PCCat_wc is reported for each Margin-Moduli combination, and in
particular, the value that corresponds to the circled point in Fig. 9 labeled ‘smallest value’. Negative
height bars represent that at least one authentication failure has occurred, i.e., at least one CCatis not

the largest CC among the 500 CCs computed as we discussed in the previous section.

AND CORRELATION

25°C, 1.00V -40°C, 0,95V 85°C, 1.05V
0 50
] T T 30
=1 8 =0y Sl
g a0 o A B g]
= [.L- - (10 £ - e £ 204 — T
o 30 = e % 20 ~0r1_ - ——p e o
¥ 20 JLLE] e ¥ @ L-' o = i i iy N
i L w 2 o w “"l S |
Y 10 - o o 1| B A l L_
z o z z Ll
p © %) . w oo = J.t‘“_]_j.ﬁ-- |
= .0 z*— 10 P
— - 0
L A e TSR G A a0 g 20 o i] 6141210 R =Tt 16141210
2220101614 242220181 " 624222018
starglh 23 BT e Margin 2 30RO auls Margin © 2 30RO auus
(a) (b) (c)
XNOR CORRELATION
25°C, LoV -40°C, 0.95V 85°C, 1.05V
o 3 = 5 5 3
2o 2 oas 2 25
£ 20 S 20 = L 2 201 ! i
7] 7} [] e [;_5 i
® s ° 1S L | = o1s o L=
U 10+ U 10 | l l U 10 | 1
- - 1 pot - - <
o g *1 el Julled o] ol
L o4 < ol g [k, = T 0 pussapR A
(& aw = w 2 & |
& e O = = O 5| e
T g8 Sy v 2620 sy T g8
.10 remr -“u““mn“ 10 = ,,:4‘6“”““ 20 = ““umn?*
34 10 Modulus 2 3 4 10 Modulus 2 3 4 1012 Mod ulus
Margin Margin Margin

(d)

(e)

N

Figure 10 Worst case Correlation Coefficient (CC) differences between AE and NE chips expressed as
percentage change using Eq. 2 under nominal environmental conditions, 25°C, 1.00V in (a) and (d),
and worst case environmental conditions, -40°C, 0.95V in (b) and (e), and 85°C, 1.05V in (c) and (f) for
22.5M authentication attempts for Margins 2 through 4 and Moduli 10 through 30. Top row gives
results using bitwise AND correlation and bottom row gives results using bitwise XNOR correlation.
Positive bars indicate server identifies AE chip correctly in all 22.5M authentications while negative
bars indicate at least one false authentication with an NE chip occurred.

The bar graphs in each of the three columns in Fig. 10 gives the results for three TV corners,
namely 25°C, 1.00V in (a) and (d), -40°C, 0.95V in (b) and (e) and 85°C, 1.05V in (c) and (f). The latter
two columns represent worst case TV corners, i.e., the results for the remaining 6 TV corners (not
shown) produce bars that are larger. From these results, it is clear that the Margin-Moduli
combinations with negative bar heights cannot be used in the Cobra authentication protocol.
However, Moduli between 18 to 22 for Margin 3 and for 22 and 24 for Margin 4 produce bar heights
greater than 15% when using AND correlation. For XNOR correlation, the behavior is reversed
regarding the Margin where Margins of 2 and 3 produce better results (note that the bar graph
orientation in the top row is rotated 180° in the bottom row). Here, the PCCs exceed 15% for Moduli
of 16 and 18 for a Margin of 2 and for Moduli 20 and 22 for a Margin of 3.

The bar graphs in the left column for TV corner 25°C, 1.00V show the PCCs generated under
nominal conditions. Unlike the results for the other TV corners, the bar heights for all Moduli and
Margins are positive, indicating that the CCats are the largest among the sets of 22.5M authentications
carried out in each analysis.

5. Security Analysis

The effectiveness of the proposed Helper Data bitstring correlation method is directly related to
two components of the soft data processing algorithm carried out within the PUF architecture. The
first is temperature-voltage compensation, referred to as TVComp earlier. Under the HELP
algorithm, TVComp scales and shifts the path delays (PN) measured on-the-fly by the chip to make

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490

Cryptography 2018, 3, x FOR PEER REVIEW 14 of 17

them as similar as possible to the values measured during enrollment under nominal conditions. The
proposed correlation techniques depend heavily on the effectiveness of TVComp. For other PUF
architectures, e.g., the ARB, RO, NVM and metal PUFs, a similar form of TV compensation can be
applied as a means of enabling correlation-based authentication as described here for HELP.

A second critically important component of the correlation methods is related to the Margining
scheme portrayed within the center graphs of Fig. 3. Each of the two response bit regions, with ‘0’
assigned to the region between 0-10 and ‘1" assigned to the region between 10-20, also contain two
strong-weak region boundaries. Bit assignments within the Helper Data bitstrings depend only on
these four strong-weak region boundaries and are independent of response bit boundaries at 0 and
10. In other words, a Helper Data bit can be assigned ‘0’ or ‘1’ in either of the response bit regions
with equal probability. The symmetrical placement of the strong-weak region boundaries within each
response bit region eliminates leakage in the Helper Data bitstrings and is the basis for the claimed
improvements to model-building resistance of the correlation methods.

As mentioned earlier, when the AND correlation method is used by Cobra to generate PCCs, an
authentication is deemed successful only in cases where exactly one server-computed PCC is above
the threshold. The requirement of ‘exactly one PCC’ represents a countermeasure to adversarial
attacks in which Helper Data bitstrings are artificially constructed with all “1’s or a large fraction of
‘1’s. The server is effectively screening for an outlier, i.e., one PCC that is significantly larger than all
the others it computes during the exhaustive search process. A successful impersonation attack then
requires the adversary to construct a Helper Data bitstring that is consistent with a matching server-
generated version at all bit positions, i.e., both the ‘0’s and ‘1’s must be correlated. Otherwise
authentication fails because more than PCC is above the threshold.

From the results shown in Fig. 10 (a), the AND correlation method performs best, i.e., produces
the largest PCCs, when the fraction of ‘1’s in the Helper Data bitstrings is small. The fraction of ‘1’s
(and ‘0’s) is determined by the ratio of the Margin and Modulus. The Margining scheme requires the
Modulus >= 4*Margin + 2. As an example, when the Margin is 4, the Modulus must be at least 18.
Assuming the PN are evenly distributed across the range defined by the Modulus (which is not valid
for individual PN but is valid across a large collection of PN), the fraction of ‘1’s is approximately
equal to the sum of the two strong bit regions divided by the Modulus. For AND correlation, the best
results are obtained when the strong response bit regions are size 1 or 2. In particular, the largest CCat
is nearly 45% larger than CCuorst_sse_NE in Fig. 10 (a) for a Margin of 4 and a Modulus of 18. The fraction
of ‘1’s in this case is 2/18 ~=11%.

The strong-weak bit regions acts as selection functions for the correlation methods. The AND
correlation method is a one-sided selection function because only the ‘strong bit” side of the boundary
impacts the PCC. From the results, AND correlation performs best when the selection regions are
asymmetrically skewed toward narrow strong bit regions.

In contrast, both sides of the strong-weak boundaries affect the XNOR PCC. This fundamental
difference in the two correlation functions is reflected in the PCCs computed using different Margins.
For AND correlation in Fig. 10 (a), the largest PCCs occur using a Margin of 4 for the majority (not all)
of the Margin-Moduli combinations, while best case for the XNOR correlation occurs for a Margin of
2. The bar graphs in the second row are rotated 180° to more clearly illustrate this characteristic. For
example, the best results for XNOR occur for a Margin of 2 and for Moduli of 14 and 16. For these
Margin-Moduli combinations, the size of weak and strong bit regions are nearly equal (they are equal
for a Modulus of 16). Therefore, the two-sided XNOR selection function appears to work better for
Margin-Moduli combinations that divide the entire region more evenly into weak and strong regions.
Given the distinctive behavior of the AND and XNOR correlation functions, the Cobra protocol can
in fact leverage both PCCs as a means of reducing the probability of false negative and false positive
authentication decisions.

The overall decrease in the PCC magnitudes under adverse environmental conditions (Figs. 10
(b-c) and (e-f)) is caused by TVNoise. From the results, it is clear that the level of sensitivity of the
PCCs to TVNoise is higher for smaller Margins and Moduli.

491

492
493
494
495
496
497
498
499
500
501

502

503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534

535

536
537
538
539

Cryptography 2018, 3, x FOR PEER REVIEW 15 of 17

5.1. Overhead of the Cobra Protocol

The largest component of the overhead associated with the Cobra protocol is related to the PUF
architecture. Reference [10], Table II gives the resource requirements for the HELP algorithm and
original HELP protocol as 2,350 LUTs and 1,454 FFs with an additional 706 and 3,494 LUTs needed
to implement the functional unit (entropy source) using an instance of AES SBOX and AES
sbox_mixcol, resp. An instance of sbox_mixcol is used to generate the data presented in this paper. It
consists of 4 AES SBOXs and 1 32-bit copy of AES mixed column implemented in a hazard-free
combinational logic style. Cobra eliminates the need to generate the response bitstring and therefore,
is slightly smaller by approx. 100 LUTs. For example, the size of the implementation used for
experiments in this paper is 5,750 LUTs and 1,454 FFs, excluding the LUTs and FFs used by the Xilinx
IP. Total size with Xilinx IP is 6,770 LUTs and 3,271 FFs, plus 1 MMCM and 1 25-bit multiplier.

5.2. Analysis of Cobra’s Challenge-Response Space

As outlined earlier in Section 4.1, the full CRP space of HELP is defined by two components; 1)
the values associated with a set of six parameters including 2 11-bit LFSR seeds, two floating point
parameters called the reference mean and range, and a Modulus and Margin, and 2) the challenges and
Path-Select-Masks. The challenges and Path-Select-Masks are used to select two sets of 2,048 PN from
the larger set {PNj} stored in the secure database (see Fig. 7). The number of distinct 2048-bit Helper
Data bitstrings that can be generated by varying the parameters is given by the product: 2048 * 128 *
2 *2 =22 or 1 million. HELP first creates 2048 PN differences (PND) by subtracting unique pairs of
elements from the two sets of 2,048 PNs. The factor 2,048 in the above product represents the number
of ways unique sets of 2,048 PND can be created using the LFSR seeds. HELP applies a procedure
called TVComp that shifts and scales the PND using two floating point parameters called the reference
mean and range. The factor 128 in the product represents a conservative estimate on the number of
ways the PND can be modified to produce unique response and Helper Data bitstrings by varying
these parameters. Finally, the factors of 2 represent a conservative estimate on the number of Margins
and Moduli that can be applied, as we discussed in Section 4.2. Note that 22 represents the number of
unique Helper Data bitstrings that can be produced using the 4,096 PN selected by one set of
challenges and Path-Select-Masks.

The challenges and Path-Select-Masks represent the larger component of the CRP space. In [21],
we used two sets of 7,500 PN as the enrollment data (15,000 PN), where each PN can be stored as a
16-bit fixed-point value, resulting in less than 32 KB of storage in the secure database per fielded
device. Although the number of distinct PND that can be created from the two sets of 7,500 PN is
7,500% ~= 56 million, the number of distinct response and Helper Data bitstrings that can be produced
is much larger because of the Distribution Effect (which is the main topic of [21]). The challenges and
Path-Select-Masks allow any two subsets of 2,048 PN from the 7,500 sets to be selected. The
Distribution Effect is an artifact of the TVComp process which transforms any given PND into one of
approx. 100 different compensated PND (PND.). More importantly, it is not possible to predict the
value of a PNDc unless the entire set of 2,048 PND are known. Although the Distribution Effect only
increases the number of distinct PND. to approx. 5.6 billion, the number of different distributions of
2,048 PND is characterized as (7,500 select 2,048) which is a very large exponential.

The entire CRP space with 15,000 PN per fielded device would then be lower bounded by the
product of 220% 232 =25, which accounts for both the parameters and challenge components. The large
diversity of HELP’s CRP space prevents replay attacks, and adds significantly to the difficulty of
model-building attacks if in fact such attacks are possible using only Helper Data bitstrings.

6. Conclusions

A privacy-preserving, mutual PUF-based authentication protocol called Cobra is described in
this paper. Cobra exchanges and correlates Helper Data bitstrings instead of PUF response bitstrings
as a means of authenticating the chip and server. Helper Data is derived from the PUF response
bitstrings and therefore the Helper Data bitstrings inherit the randomness and uniqueness

540
541
542
543
544
545
546
547
548

549
550

551
552

553

554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590

Cryptography 2018, 3, x FOR PEER REVIEW 16 of 17

characteristics associated with the PUF’s source of entropy. By eliminating PUF response bitstrings
in the message exchanges between the chip and server, attacks such as model-building are much
more difficult to carry out. Cobra is demonstrated on a statistically significant set of FPGAs using the
HELP algorithm, and a simple thresholding method is proposed that the server and chip can use for
authentication. Although the HELP algorithm is used in this paper, the method is applicable to any
PUF that produces soft data, i.e., digitized values that capture the magnitude of signal behavior such
as delay or metal resistance. Future work will investigate the application of the Helper Data
correlation method to other PUF architectures and will evaluate more traditional forms of correlation
that are used in digital signal processing applications.

Author Contributions: “Conceptualization, Jim Plusquellic; Methodology, Jim Plusquellic; Validation, Matt
Areno; ; Writing-Original Draft Preparation, Jim Plusquellic and Matt Areno;

Funding: “This research received no external funding”

Conflicts of Interest: “The authors declare no conflict of interest.”

References

1. L. Bolotny and G. Robins, “Physically Unclonable Function-based Security and Privacy in RFID Systems”,
PerCom, 2007, pp. 211-220.

2. G. Hammouri, E. Ozturk, and B. Sunar, “A Tamper-Proof and Lightweight Authentication Scheme”,
Pervasive and Mobile Computing, Vol. 4, Issue 6, 2008, 807-818.

3. A-R. Sadeghi, I. Visconti, and C. Wachsmann, “Enhancing RFID Security and Privacy by Physically
Unclonable Functions”, Information Security and Cryptography, 2010, pp. 281-305.

4. U. Kocabas, A. Peter, S. Katzenbeisser, and A. Sadeghi, “Converse PUF-Based Authentication”, TRUST,
2012, pp. 142-158.

5. M. Majzoobi, M. Rostami, F. Koushanfar, D. S. Wallach, and S. Devadas, “Slender PUF Protocol: A
Lightweight, Robust, and Secure Authentication by Substring Matching”, Symposium on Security and Privacy
Workshop, 2012, pp. 33-44.

6. A. Aysu, E. Gulcan, D. Moryama and P. Schaumont, “Compact and Low-power ASIP Design for
Lightweight PUF-based Authentication Protocols”, IET Information Security, Vol. 10, Issue 5, 2016, pp. 232-
241.

7. W. Che, M. Martin, G. Pocklassery, V. K. Kajuluri, F. Saqib, and J. Plusquellic, “A Privacy-Preserving,
Mutual PUF-Based Authentication Protocol”, Cryptography 2017.

8. J. Aarestad, P. Ortiz, D. Acharyya and J. Plusquellic, “HELP: A Hardware-Embedded Delay-Based PUF”,
Design and Test of Computers, Mar., 2013, pp. 17-25.

9. W. Che, V. K. Kajuluri, M. Martin, F. Saqib and J. Plusquellic, “Analysis of Entropy in a Hardware-
Embedded Delay PUF”, Cryptography, 2017.

10. W. Che, F. Saqib and]. Plusquellic, “Novel Offset Techniques for Improving Bitstring Quality of a
Hardware-Embedded Delay PUF”, Trans. on VLSI, 2018.

11. http://ece-research.unm.edu/jimp/pubs/ARB_PUF.pdf, UNM publication, Mar. 2013.

12. B. Gassend, D. E. Clarke and M. van Dijk, S. Devadas, “Silicon Physical Unknown Functions”, Conference
on Computer and Communications Security, 2002, 148-160.

13. K. Lofstrom, W. R. Daasch, D. Taylor, “IC Identification Circuits using Device Mismatch”, International
Solid State Circuits Conference, 2000, pp. 372-373.

14. J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P. Tuyls, “FPGA Intrinsic PUFs and their use for IP Protection”,
Cryptographic Hardware and Embedded Systems (CHES), 2007, pp. 63-80.

15. Y.Dodis, L. Reyzin, A. Smith, “Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other
Noisy Data”, Advances in cryptology (EUROCRYPT), 2004, pp. 523-540.

16. C.Bosch, J. Guajardo, A.-R. Sadeghi, J. Shokrollahi and P. Tuyles, “Efficient Helper Data Key Extractor on
FPGAs”, Workshop Cryptographic Hardware and Embedded Systems (CHES), pp. 181-197.

17. R. Helinski, D. Acharyya and]. Plusquellic, “A Physical Unclonable Function Defined Using Power
Distribution System Equivalent Resistance Variations”, Design Automation Conference, 2009, pp. 676-681.

18. W. Che, S. Bhunia and J. Plusquellic, “A Non-Volatile Memory based Physically Unclonable Function
without Helper Data”, International Conference on Computer-Aided Design, 2014.

Cryptography 2018, 3, x FOR PEER REVIEW 17 of 17

591 19. http://ece-research.unm.edu/jimp/HOST/index.html, see video tutorials labeled ‘HELP’ and ‘HELP
592 Protocol’

593 20. W. Che, M. Martinez-Ramon, F. Saqib, J. Plusquellic, “Delay Model and Machine Learning Exploration of
594 a Hardware-Embedded Delay PUF”, Symposium on Hardware-Oriented Security and Trust (HOST), 2018.
595 21. W. Che, V. K. Kajuluri, F. Saqib and J. Plusquellic, “Leveraging Distributions in Physical Unclonable
596 Functions”, Cryptography, MDPI, 2017.

@ @ 1. ©2018 by the authors. Submitted for possible open access publication under the terms
and conditions of the Creative Commons Attribution (CC BY) license

599 (http://creativecommons.org/licenses/by/4.0/).

