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Abstract—Electronic money or e-Cash is becoming
increasingly popular as the preferred strategy for
making purchases, both on- and off-line. Several
unique attributes of e-Cash are appealing to cus-
tomers, including the convenience of always hav-
ing ‘cash-on-hand’ without the need to periodically
visit the ATM, the ability to perform peer-to-peer
transactions without an intermediary, and the peace
of mind associated in conducting those transactions
privately. Equally important is that paper money
provides customers with an anonymous method of
payment, which is highly valued by many individuals.
Although anonymity is implicit with fiat money, it is a
difficult property to preserve within e-Cash schemes.
In this paper, we investigate several artificial intelli-
gence (AI) approaches for improving performance
and privacy within a previously proposed e-Cash
scheme called PUF-Cash. PUF-Cash utilizes physi-
cal unclonable functions (PUFs) for authentication
and encryption operations between Alice, the Bank
and multiple trusted third parties (mTTPs). The AI
methods select a subset of the TTPs and distribute
withdrawal amounts to maximize the performance
and privacy associated with Alice’s e-Cash tokens.
Simulation results show the effectiveness of the vari-
ous AI approaches using a large test-bed architecture.

I. INTRODUCTION

Electronic money or cash, frequently termed e-
Cash for short, refers to a system in which physical
money, i.e., coins and paper bills, is substituted
by digital tokens. Secure exchange, deposit and
withdrawal functions are typically accomplished by
a message exchange protocol. The protocol, in a
potential combination with secure hardware in an
offline scenario, must guarantee the security of the
tokens against all threats. Customers enrolled in an
e-Cash service can use their devices to purchase
goods and services. To be as cash-like as possible,

e-Cash must provide strong privacy guarantees such
that users can remain anonymous in their transac-
tions to both adversaries and system authorities.
Beyond privacy, other challenges to implement-
ing e-Cash include counterfeit and double-spending
protection, the prevention of fraud, and the recovery
of funds in the event of a theft or loss.

II. RELATED WORK

The popularity of e-Cash will eventually prolif-
erate to a wide range of demographics, both rural
and urban, but will grow most rapidly within the
context of the Smart City as the supporting infras-
tructure evolves to support it [1], [2]. However,
privacy remains a key limiter in its wide-spread
adoption, a property recognized as critical early
on. For example, Chaum, Fiat, and Naor (CFN)
addressed privacy in e-Cash systems by introducing
blind signatures in [3] and later proposed their use
in the first e-Cash protocol [4]. Online counterfeit
protection enables a merchant to validate tokens at
the time of transaction. Brand proposed a variant of
the Sigma protocol as an alternative to replace the
original cut-and-choose proof within CFN [5]. Ca-
menisch, Hohenberger, and Lysanskaya (CHL) [6]
proposed a divisible e-Cash scheme by simplifying
the proof requirement and introducing a pseudo-
random function embedded within Alice’s device.
Use of distributed ledger technologies (DLTs), in
particular tokens hosted on blockchains, are pro-
posed as viable alternatives for digital currency.
While DLTs can satisfy the electronic cash re-
quirements of counterfeit, double-spend and privacy
preservation, they lack offline support as transac-
tions are not finalized until written to the main
ledger.

Existing e-Cash schemes leveraging factoriza-
tion or discrete logarithm mathematical operations,
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which are known to be susceptible to Shor’s al-
gorithm [7], are not secure against quantum com-
puting attacks. Recent advances in quantum-hard
alternatives to the blind-signature generation, such
as lattice-based asymmetric key exchanges [8]
show progress in this area. Post-quantum e-Cash
schemes, such as [9], based on constructing e-Cash
tokens using the superposition of quantum states
have also been proposed in recent literature.

A. Contributions

The original PUF-Cash [10] was expanded by
introducing multiple trusted third parties (TTPs)
and reinforcement learning via stochastic learning
automata (SLA) to improve performance and to
introduce non-determinism in the optimal selection
of TTPs [11]. To the best of our knowledge, this
is the first research work in the existing literature
that modifies and extends the multiple TTPs ap-
proach by investigating a wider range of reinforce-
ment learning methods for executing the blinding
process. Key contributions of this paper can be
summarized as follows:
• Introduction of a Master TTP to coordinate the

blinding process on behalf of the customer, e.g.,
Alice, and to prevent attempts by Alice to double
spend. Moreover, Alice chooses the Master TTP
from a set of existing TTPs through a process
that better preserves her anonymity with respect
to the Bank.

• Investigation of alternative reinforcement learn-
ing algorithms to autonomously optimize the
selection and workload of Slave TTPs tasked with
performing the blinding operation.

• Comparative evaluation and analysis of the pro-
posed learning algorithms to SLA from a perfor-
mance perspective.
III. THE PUF-CASH MULTI-TTP PROTOCOL

PUF-Cash is an anonymous, electronic cash pro-
tocol that defines a set of transactions between a
set of entities, namely, the customers, e.g., Alice
and Bob, a set of TTPs, and the Bank. PUF-Cash
preserves customer anonymity using two distinct
mechanisms. First, the customers and the TTPs
authenticate using a privacy-preserving PUF-based
authentication protocol, which prevents adversaries
from tracking their transactions [12]. Second, the
customers engage a set of TTPs to fractionize

and convert from issued tokens to blinded tokens,
reducing the Bank’s ability of establishing the
correct correspondence between the two sets of
tokens. In this paper, we focus on improving this
second mechanism. The proposed multiple TTP
architecture also addresses performance bottlenecks
associated with a single TTP architecture [10] by
distributing system load, which in turn, maximizes
throughput and automatically adjusts with dynami-
cally changing environmental conditions.

Fig. 1 illustrates the entities and message ex-
change operations associated with the blinding pro-
cess, which is a subset of the overall protocol. Pro-
tocol steps are ordered by the circled numbers and
the arrows indicate the direction of the information
exchange. The following section elaborates on this
component of the protocol, namely the issuance and
blinding steps.

A. Issuance and Blinding Steps

1) Alice withdraws funds from her account at the
Bank. The Bank generates a unique token (128-
bit random number) for each 1 cent of the
withdrawal amount, then encrypts them using a
PUF-generated session key and transmits them
to Alice. The Bank records the issued tokens
and Alice’s session key in a database of open
transactions.

2) Alice randomly selects a Master TTP, TTPM ,
XOR encrypts her issued tokens with her session
key and transmits them to TTPM .

3) TTPM transmits Alice’s encrypted issued to-
kens to the Bank. The Bank validates the issued
tokens by XOR decrypting them with each of
the session keys stored in the database of open
transactions, searching for a match to those
stored in the database. All matching tokens are
removed from the database to prevent double
spending. If validated, the Bank sends Alice’s
session key and an acknowledgement to TTPM .

4) TTPM initiates the blinding operation: It runs
an AI algorithm to select a subset of Slave
TTPs from the set TTP1 to TTPn. A second
instance of an AI algorithm runs to determine
a set of fractions, which dictate how the issued
tokens are partitioned among the set of Slave
TTPs for blinding. The AI algorithms utilized
for these operations are presented in Section
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Fig. 1: Operations within the PUF-Cash Protocol responsible for exchanging issued e-Cash Tokens for
blinded e-Cash Tokens

IV. Since all TTPs are enrolled in a trusted
network, all messages between the Slave TTPs
are transferred over encrypted channels.

5) The Slave TTPs generate a new blinded token
(128-bit random number) for each 1 cent in
the conversion request from TTPM . The Slave
TTPs encrypt the blinded tokens using their
session keys and transmit them to the Bank.
The Bank acknowledges receipt and adds them
to a second blinded token database of open
transactions.

6) Once acknowledged, each Slave TTP transmits
the blinded tokens to TTPM .

7) TTPM encrypts the aggregate set of blinded
tokens with Alice’s session key and transmits
them to Alice.

The PUF-Cash protocol addresses the core com-
ponents of e-Cash. The issued token database and
validation process carried out by the Bank (step
3) protects against double spending and provides
a mechanism to recover lost funds. The random
number generation and encrypted communication
between all entities in the blinding operation guards
against man in the middle and replay attacks. Use of
AI algorithms for tasks distribution associated with
the generation of Alice’s blinded tokens across the
Slave TTPs improves performance and obscures the
correspondence between issued and blinded tokens
to preserve Alice’s transactional anonymity.

B. Transaction Timelines

The timeline associated with the PUF-Cash pro-
tocol (Fig. 1) is highly variable, as arbitrary delays

can exist between Alice’s withdrawal (step 1), the
blinding process (steps 2-7), the value transfer
operation between Alice and Bob (step 8) and
Bob’s deposit to the Bank (step 9). As the protocol
was designed to support both online and offline
transaction scenarios, it necessitated that each of
these major sequences operates independently of
each other. Thus, Alice can withdraw issued tokens
at some point and delay blinding for days or weeks.
Tokens cannot be stolen since only Alice’s device
is capable of carrying out the blinding operation.

More rapid timelines are possible, and it follows
that a timeline that minimizes delays between the
initial and final components of the exchange rep-
resents the weakest level of privacy for the proto-
col. This scenario is highly probable in scenarios
where Alice engages in an online purchase and the
payee (Bob) is a fully connected merchant, e.g., a
merchant terminal or an online payment processor.
Here, Alice delays the exchange operation after
withdrawing (to guard against theft) and then car-
ries out the exchange and value transfer operations
in rapid succession. The expanded multi-TTP ar-
chitecture first proposed in [11] adds significantly
to the privacy over the single TTP version proposed
in the original PUF-Cash protocol [10]. However,
the exploration of an AI approach to obscure the
relationship between issued and blinded tokens was
limited to one algorithm in [11], and is expanded
here to include a wider range of AI algorithms.
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IV. ARTIFICIAL INTELLIGENT TRANSACTIONS

In this section, we explore AI algorithms to au-
tomate the performance and anonymity-enhancing
tasks associated with the TTP exchange operation,
namely, (1) the selection of a set of TTPs and
(2) the partitioning of Alice’s withdrawal amount
across the selected TTPs. From Fig. 1, Alice begins
the issued-to-blinded-token exchange operation by
randomly selecting a Master TTP, TTPM . TTPM
then selects a subset of TTPs based on the theory
of the Learning Automata (LA). Once selected,
TTPM determines the Slave offloaded fractional
amounts of issued tokens using a reinforcement
learning (RL) approach. We investigate a variety of
RL approaches, including Linear Reward Inaction,
Binary and Max log linear, and Optimistic Q-
learning with Upper Bound Confidence (QUC) and
compare their drawbacks and benefits.

A. Slave TTP Selection

Let U = {1, . . . , u, . . . , |U |} and T =
{1, . . . , t, . . . , |T |+1} denote the sets of customers
and TTPs, respectively. Given that customers imme-
diately choose a Master TTP, we use u in the fol-
lowing to refer to a customer’s TTPM . Each TTP

t has a computation capability Ft[
CPU cycles

unit operation
].

Each Master TTP u is physically separated from a
Slave TTP t at a distance of du,t[m]. Each TTPM
selected by a customer has Mu issued tokens and
can offload fu,t% of them to a Slave TTP t. TTPM
can select N ≤ |T | Slave TTPs, thus, the TTPM ’s
selection strategy is given by s = [1, . . . , t, . . . , N ]
and its strategy space is S = {1, . . . , s, . . . ,S}.
TTPM wants to minimize its communication and
computing delay, thus, it selects Slave TTPs in its
close proximity which have high available compu-
tation capacity. The reward that TTPM experiences
by choosing a strategy s is defined below,

r
(ite)
u,s =

∑
t∈s

Ft

|Ut|(ite−1)∑
t∈s

du,t∑
t∈T

du,t

(1)

where |Ut| is the number of users engaging TTP t.
TTPM acts as an LA making probabilistic iterative
decisions (the iteration is denoted as (ite)) until
converging to a stable decision. Eq. 1 is normalized

as r̂(ite)u,s = r
(ite)
u,s∑

u∈U
r
(ite)
u,s

to reflect the reward probability.

TTPM ’s probability to select the same (Eq. 2a) or
different strategy (Eq. 2b) is given below.

P
(ite+1)
u,s = P

(ite)
u,s + λ1(1− P (ite)

u,s )− λ2(1− r̂(ite)u,s )P
(ite)
u,s ,

s(ite+1) = s(ite)

(2a)

P
(ite+1)
u,s = P

(ite)
u,s − λ1r̂(ite)u,s P

(ite)
u,s +

λ2(1− r̂(ite)u,s )(
1

|S| − 1
− P (ite)

u,s ), s(ite+1) 6= s(ite)

(2b)

where λ1, λ2 ∈ [0, 1] are the learning parameters,
and based on them, three different LA approaches
are possible: (1) Linear Reward Penalty (LRP),
where λ1 = λ2; (2) Linear Reward-ε Penalty (LR-
εP), where λ1 >> λ2; (3) Linear Reward Inaction
(LRI), where λ2 = 0. Here, each TTPM performs
a thorough, a less thorough, and a very limited
exploration of its available strategies, respectively.
Following convergence, each TTPM has selected
the most efficient combination of Slave TTPs s∗. A
detailed comparative evaluation of the LRP, LR-εP,
and LRI TTPs selection algorithms is presented in
Section V-A.

B. Autonomous Offloading of Fractional Amounts
to Slave TTPs

Following the selection process, TTPM then
determines the fraction fu,t% that it will offload
to each selected Slave TTP t∗ ∈ s∗, with the goal
of maximizing performance and privacy. Regarding
the worst case privacy scenario outlined in Sec-
tion III-B, TTPM validates the issued tokens and
immediately sends requests to the Slave TTPs to
generate blinded tokens, which are then transmitted
to the Bank. Other TTPM will make requests
concurrently, thereby obscuring Alice’s issued to-
kens among the multiple fractional requests for
other customers. The parallel processing capability
provided by multiple Slave TTPs also reduces the
turn-around time for Alice’s exchange operation.
TTPM ’s strategy is Fu,i =

[fu,1∗ , . . . , fu,t∗ , . . . , fu,N∗ ],
N∗∑
t∗=1

fu,t∗ = 1,

i ∈ I = {1, . . . , |I|}, where I is the number of
offloading combinations. By selecting strategy
Fu,i, TTPM experiences the following reward,
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r
(ite)′

u,Fu,i
=

∑
t∗∈s∗

(f
(ite′)
u,t∗ MuFt∗)∑

u′∈|Ut∗ |,t∗∈s∗
(f

(ite′)
u′,t∗ Mu′)

∑
t∗∈s∗

Ft∗
(3)

which can be normalized as r̂(ite
′)

u,Fu,i
=

r
(ite′)
u,Fu,i∑

u∈U
r
(ite′)
u,Fu,i

∈

[0, 1] to reflect the reward probability. Four different
artificial intelligent RL algorithms are investigated
to determine Alice’s stable offloading decision,
namely: (1) LRI, which belongs to the category
of gradient ascent algorithms; (2) Binary log lin-
ear learning (BLLL); (3) Max log linear learn-
ing (MLLL); and (4) Optimistic Q-learning with
Upper bound Confidence action selection (QUC).
The probability of selecting a strategy Fu,i in
iteration ite′ of each algorithm is denoted as P (ite′)

u,Fu,i
.

The probabilistic selection of an offloading strategy
considering the LRI gradient ascent algorithm fol-
lows the rule of Eq. 2a,2b by utilizing the reward
probability r̂

(ite′)
u,Fu,i

and all offloading combinations
|I| in Eq. 2b.

A benefit provided by the log linear algorithms
is that they enable convergence to the best equi-
librium compared to the LRI algorithm (and in
general the gradient ascent algorithms) by allowing
a more thorough exploration of their strategy space.
In the BLLL and MLLL algorithms, a random
TTPM selects an alternative strategy F′u,i

(ite′) with
equal probability (while the other TTPM keep the
same actions) and receives the corresponding nor-
malized reward r̂′

(ite′)

u,F′u,i
(ite′) during the exploration

phase. In the learning phase, the TTPM selects
different (Fu,i

(ite′+1) = F′u,i
(ite′)) or the same

(Fu,i
(ite′+1) = Fu,i

(ite′)) offloading strategy based
on Eq. 4a,4c and Eq. 4b,4d for the BLLL and
MLLL algorithms, respectively.

P
(ite′+1)
u,Fu,i

=
e
r̂′

(ite′)

u,F′
u,i

(ite′) ·β

e
r̂′

(ite′)

u,F′
u,i

(ite′) ·β
+ e

r̂
(ite′)

u,Fu,i
(ite′) ·β

(4a)

P
(ite′+1)
u,Fu,i

=
e
r̂
(ite′)

u,Fu,i
(ite′) ·β

e
r̂′

(ite′)

u,F′
u,i

(ite′) ·β
+ e

r̂
(ite′)

u,Fu,i
(ite′) ·β

(4b)

P
(ite′+1)
u,Fu,i

=
e
r̂′

(ite′)

u,F′
u,i

(ite′) ·β

max{e
r̂′

(ite′)

u,F′
u,i

(ite′) ·β
, e
r̂
(ite′)

u,Fu,i
(ite′) ·β}

(4c)

P
(ite′+1)
u,Fu,i

=
e
r̂
(ite′)

u,Fu,i
(ite′) ·β

max{e
r̂′

(ite′)

u,F′
u,i

(ite′) ·β
, e
r̂
(ite′)

u,Fu,i
(ite′) ·β}

(4d)

Here, β ∈ R+ controls the degree to which the
TTPM can explore alternative strategies. The na-
ture of the MLLL probabilistic update rule (Eq.
4c,4d) enables faster convergence to larger (and
better) normalized rewards (see Section V-B,V-C).

An alternative RL-based decision making model
for offloading is based on the QUC algorithm [13].
Each TTPM determines its Q-value (experienced
reward) in ite′ iterations following the update rule
Q

(ite′)

Fu,i
(ite′) = Q

(ite′)

Fu,i
(ite′) +γ · (r̂

(ite′)

u,Fu,i
(ite′)−Q

(ite′)

Fu,i
(ite′))

and selects a strategy as follows:

Fu,i
(ite′) = argmax

Fu,i
(ite′)

[Q
(ite′)

Fu,i
(ite′) + c ·

√
ln (ite′)

N(ite′)(Fu,i
(ite′))

]

(5)
Here, N(ite′)(Fu,i

(ite′)) denotes the number of times
the strategy Fu,i

(ite′) has been selected prior to
iteration ite′. The physical meaning of Eq. 5 is
that a TTPM selects a strategy that not only
maximizes its Q-value, but also considers the upper
confidence bound as expressed by the square-root
component. The upper confidence bound measures
the uncertainty in the estimate of Fu,i

(ite′)’s value,
where c ∈ R+ captures the confidence level. It can
be observed that if a strategy Fu,i

(ite′) is selected,
the uncertainly decreases, while the opposite holds
true if the strategy is not selected. Finally, it should
be noted that the term ln (ite′) causes the increases
to get smaller over time. Thus, the strategies that
have been explored frequently will be selected with
decreasing frequency over time, ensuring that all
strategies will eventually be explored.

V. RESULTS AND DISCUSSION

The effectiveness of the artificial intelligence
assisted processes within the PUF-cash protocol are
evaluated in this section. In particular, we evaluate
TTPM processes associated with: (1) The selection
of Slave TTPs (Section V-A); (2) The fractionaliza-
tion of issued tokens to the selected subset of Slave
TTPs (Section V-B). Finally, in Section V-C, we
compare the results from the various AI algorithmic
approaches. The evaluation is carried out with the
parameters assigned as follows: |U | = 1000, |T | =
6, Ft = 356[

CPU cycles
unit operation

], dc,t ∈ [100, 1000]m,



6

0 100 200 300

LRI Iterations

0

0.5

1
A

c
ti

o
n

 P
ro

b
a
b

il
it

y

Selected TTPs:

TTP1, TTP5, TTP6

(a)

0 1000 2000 3000 4000

LR- P Iterations

0

0.5

1

A
c

ti
o

n
 P

ro
b

a
b

il
it

ie
s

Selected TTPs:

TTP1, TTP5, TTP6

(b)

0 2500 5000 7500 9000

LRP Iterations

0

0.5

1

A
c
ti

o
n

 P
ro

b
a
b

il
it

y

Selected TTPs:

TTP1, TTP5, TTP6

(c)

Fig. 2: Gradient Ascent Learning Algorithms – Convergence

N = 3, Mu ∈ [100, 20000] tokens, c = 2, γ = 0.6,
fu,t ∈ [10%, 20%, . . . , 100%]. Algorithmic specific
parameters are assigned as follows: for the gradient
ascent RL algorithms λ1 = 0.7, for the LRI ap-
proach λ2 = 0, for the LR-εP approach λ2 = 0.001
and for the LRP approach λ2 = 0.7.

A. Reinforcement Learning-based TTPs Selection

In this section, a comparative evaluation of the
gradient ascent LRP, LR-εP, and LRI RL algorithms
is carried out to show the drawbacks and benefits
with respect to Slave TTP selection process. Fig.
2 shows the convergence to a stable selection for
a typical TTPM using each of the three gradient
ascent algorithms. The graphs reflect the expected
result that more iterations are needed for con-
vergence when the solution space is thoroughly
explored as is true for LRP in Fig. 2c, while fewer
iterations are required for LR-εP - Fig. 2b, and
even fewer for LRI - Fig. 2a, for lightly explored
solution spaces. The real execution time of the three
gradient ascent RL algorithms is presented in Fig.
3b, while the corresponding average reward of the
TTPM is shown in Fig. 3a. Thus, we conclude that
more thorough exploration leads to higher rewards
at the expense of longer execution times. The trade-
off between the reward and the execution time is
also shown in Fig. 3b which plots the ratio of
the normalized reward to normalized real execution
time, where normalization is performed by dividing
the sum of the rewards by time. The results reveal
that the LRI algorithm outperforms the LRP and
LR-εP algorithms due to the extremely low real
execution time and achieved rewards.

B. Artificial Intelligence-enabled Slave TTPs Of-
floading

A comparative evaluation among the gradient
ascent, log linear, and QUC RL algorithms is
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Fig. 3: Gradient Ascent RL Algorithms - Compar-
ative Evaluation

carried out here to determine the effectiveness of
Slave TTP offloading strategies. Fig. 4 presents the
convergence of the LRI, BLLL, MLLL, and QUC
algorithms. The results reveal that the log linear
(BLLL, MLLL) and QUC algorithms require more
iterations than the LRI algorithm to converge to a
stable decision, as they explore more thoroughly
the available strategies or converge to the best
equilibrium, respectively, while achieving higher
TTPM s’ average rewards. Also, it is clear that the
MLLL algorithm converges faster when compared
to BLLL given the form of the probabilistic update
rule (Eq. 4c,4d). A higher value of the learning
parameter β for the log linear algorithms results
in higher TTPM s’ average rewards at the expense
of longer execution times.

Fig. 6 shows the results for the QUC algorithm.
Fig. 6a illustrates the uncertainty associated with a
TTPM offloading strategy, showing two strategies
where the TTPM converged, i.e., strategy #3 and
#9, as well as the number of times that each strategy
is selected before convergence occurs. The results
reveal that strategies which are selected more often
produce lower uncertainties, as the TTPM has
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Fig. 4: Gradient Ascent, Log Linear, Q-Learning
RL Algorithms – Average Rewards

explored the solution space more thoroughly. This
is confirmed by the corresponding Q-value for these
two strategies (Fig. 6b), which shows the strategy
that the TTPM finally selects generates a greater
Q-value (reward).

C. Comparative Evaluation

In this section, the gradient ascent, log linear, and
QUC RL algorithms are compared with respect to
the TTPM s’ average reward, real execution time,
and the ratio of the normalized average reward
over the normalized real execution time (Fig. 5)
when tasked with selecting the fractional amounts
to offload to the Slave TTPs. The results reveal
that the QUC algorithm outperforms the other algo-
rithms in terms of average achieved reward, at the
expense of higher real execution time. The MLLL
algorithm ranks second and performs better than
the BLLL algorithm when using the same learning
parameter β – with respect to the achieved reward
and execution time. In contrast, the LRI algorithm
has similar rewards but with significantly lower
real execution times. To determine the trade-off
between the average reward and the execution time,
we calculate the ratio of the normalized average
reward over the normalized real execution time. The
results show that the MLLL algorithm with a low
learning parameter value represents the best trade-
off due to the significantly lower real execution time
while achieving similar rewards when compared
to the other algorithms. The superiority of the

Fig. 5: TTPM offloading - Comparative Evaluation

MLLL algorithm is further supported by its intrinsic
characteristic to converge to the best equilibrium.

D. Transaction Time Speedup with Multiple TTPs

The performance benefit associated with intro-
ducing multiple TTPs over the one TTP protocol
proposed in [10] are reported on here. Only the
MLLL algorithm from the previous section is used
in the hardware validation experiments to measure
the speed-up, but the performance of the other
algorithms can be extrapolated from the results
reported above. Our testbed is composed of 5 TTPs
and 9 customers. The customers were configured
to continuously carry out the blinding process,
which effectively emulates a much larger set of
customers. The average transaction time, measured
from the time instant when a customer selects a
Master TTP to the time instant when the customer
receives the blinded tokens from the Master TTP
improves from approximately 9 seconds with one
TTP to 3.7 seconds with 5 TTPs, i.e., a speedup of
approximately 2.43.

VI. CONCLUSION

In this paper, multiple trusted-third-parties
(mTTPs) are utilized within the PUF-Cash protocol
for improving performance and privacy. A set of
artificial intelligence (AI) algorithms are evaluated
to determine their effectiveness in selecting an
optimal subset of Slave TTPs for offloading the
task of exchanging issued e-Cash tokens for blinded
tokens during value transfer operations requested
by Alice. The combination of AI algorithms and
mTTPs provides a significant performance benefit
to PUF-Cash, while simultaneously reducing the
Bank’s ability to correlate Alice’s issued tokens
with her corresponding blinded tokens. The latter
property increases the level of privacy for Alice,
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Fig. 6: QUC-Learning – Evaluation

making PUF-Cash an attractive solution for imple-
menting e-Cash systems that are private and scale
with system demand.

ACKNOWLEDGMENT

The research of Mr. Fragkos and Dr. Tsiropoulou
was conducted as part of the NSF CRII-1849739.

REFERENCES

[1] C. U. Mohanty, Saraju P. and E. Kougianos, “Everything
you wanted to know about smart cities, the internet of
things is the backbone,” Consumer Electronics Magazine,
vol. 5, no. 3, pp. 60–70, July 2016.

[2] S. Rathore and J. H. Park, “Cognitive science-based
security framework in consumer electronics,” Consumer
Electronics Mag., vol. 9, no. 1, pp. 83–87, Jan/Feb 2020.

[3] D. Chaum, “Blind signatures for untraceable payments,”
in Advances in Cryptology. Springer US, 1983, pp. 199–
203.

[4] D. Chaum, A. Fiat, and M. Naor, “Untraceable electronic
cash,” in Advances in Cryptology, S. Goldwasser, Ed.
Springer New York, 1990, pp. 319–327.

[5] S. Brands, “Untraceable off-line cash in wallet with
observers,” in Advances in Cryptology - CRYPTO’ 93.
Springer, 1994, pp. 302–318.

[6] J. Camenisch, A. Lysyanskaya, and M. Belenkiy, “En-
dorsed e-cash,” in Proc. IEEE Symp. on Security and
Privacy. IEEE Computer Society, June 2007.

[7] P. W. Shor, “Polynomial-time algorithms for prime factor-
ization and discrete logarithms on a quantum computer,”
SIAM Review, vol. 41, no. 2, pp. 303–332, Jan 1999.

[8] M. Rückert, “Lattice-based blind signatures,” in Advances
in Cryptology - ASIACRYPT 2010, M. Abe, Ed. Springer,
2010, pp. 413–430.

[9] S. Aaronson and P. Christiano, “Quantum money from
hidden subspaces,” in ACM Symp. on Th. of Comp., 2012,
pp. 41–60.

[10] J. Calhoun, C. Minwalla, C. Helmich, F. Saqib, W. Che,
and J. Plusquellic, “Physical unclonable function (PUF)-
based e-cash transaction protocol (PUF-Cash),” Cryptog-
raphy, vol. 3, p. 21, 2019.

[11] G. Fragkos, C. Minwalla, J. Plusquellic, and E. E.
Tsiropoulou, “Reinforcement learning toward decision-
making for multiple trusted-third-parties in puf-cash,” in
IEEE WF-IoT, 2020.

[12] W. Che, M. Martin, G. Pocklassery, V. K. Kajuluri,
F. Saqib, and J. Plusquellic, “A privacy-preserving, mu-
tual PUF-based authentication protocol,” Cryptography,
vol. 1, no. 1, 2016.

[13] R. S. Sutton, A. G. Barto et al., Introduction to rein-
forcement learning. MIT press Cambridge, 1998, vol.
135.

Georgios Fragkos (gfragkos@unm.edu) is a Ph.D.
student at the Department of Electrical and Com-
puter Engineering, University of New Mexico. He
received his Diploma in Electrical and Computer
Engineering from National Technical University of
Athens in 2018. His main research interests include
reinforcement learning and game theory. He re-
ceived the IEEE Outstanding Graduate Engineering
Student Award in 2020.
Cyrus Minwalla (cminwalla@bankofcanada.ca) is
a Technical Researcher and Security Lead within
the Financial Technology group at the Bank of
Canada. He holds a PhD in Computer Engineering
from York University and received the NRC’s Top
Scientist Under 40 Award in 2017. His research
interests include digital currencies, cryptography,
embedded devices and Internet-of-Things (IoT).
Jim Plusquellic (jimp@ece.unm.edu) is a Professor
in Electrical and Computer Engineering, University
of New Mexico. His research interests include
security and trust in embedded systems, supply
chain and IoT. He received an ”Outstanding Con-
tribution Award” from IEEE Computer Society for
”Co-Founder of and providing Outstanding Contri-
butions to the IEEE International Symposium on
Hardware-Oriented Security and Trust (HOST) for
the Past Ten Years 2008-2017”.
Eirini Eleni Tsiropoulou (eirini@unm.edu) is an
Assistant Professor at the Department of Electri-
cal and Computer Engineering, University of New
Mexico. Her research interests include reinforce-
ment learning, game theory, and network eco-
nomics. Four of her papers received the Best Paper
Award at IEEE WCNC 2012, ADHOCNETS 2015,
IEEE WMNC 2019, and INFOCOM 2019 by IEEE
ComSoc Technical Committee on Communications
Systems Integration and Modeling.


