
Abstract: The use of embedded secret information such as keys for
cryptographic applications, unique identifiers for authentication, and
activation of on-chip features is becoming increasingly commonplace
in ASICs and FPGAs. The generation of these secret bitstrings using
physical unclonable functions, or PUFs, offers distinct advantages
over conventional, e.g., EPROM-based methods, in several ways,
including eliminating the need to store the bitstring into, and the cost
of, a specialized non-volatile memory, and increasing the number of
random bits. This paper presents a new PUF called the Hardware-
Embedded Delay PUF, or HELP. HELP leverages the natural
variations that occur in the path delays of a core macro on a chip to
create a unique, stable, and random bitstring of virtually any length.
We evaluate several quality statistical metrics of HELP on 29 FPGA
boards across a temperature range of 0 to 70°C, and propose an
error-avoiding scheme that provides high probability against bit flips.

Keywords: Hardware security, unique identifier, process
variations, physical unclonable function, path delay measurement.

 1. Introduction
Physical unclonable functions (PUFs) have emerged as useful

mechanisms for generating random numbers for several security-
related applications. PUFs utilize the random variations in physical
properties of chips to differentiate one chip from another, and are
designed to be difficult or impossible to duplicate, even by the
manufacturer. While process variations are effectively impossible to
control or eliminate, they can be measured. The specific varying
properties exploited by the PUF can differ from one PUF design to
another. However, common sources of parametric variation include
propagation delay, metal resistance, transistor drive strength, and
mismatches between complementary transistors. A PUF measures
these variations and compares them to generate a bitstring.

The quality of the bitstrings produced by a PUF is measured using
several statistical metrics. Three criteria, however, must be met for a
PUF to be effective for applications such as encryption: 1) the
bitstrings produced for each chip must be sufficiently unique to
distinguish each chip from every other, 2) the bitstrings must be
random, making them difficult for an adversary to model and predict,
and 3) the bitstring for any one chip must be stable over time and
across varying environmental conditions.

Process variations are increasingly problematic for semiconductor
manufacturers as they move toward more advanced technology nodes
and smaller feature sizes. Dopant densities, photolithographic features,
and planarization consistency are all examples of manufacturing
processes that become harder to control and predict as geometries are
reduced. Engineers are working to develop techniques for mitigating
these variations. However, even given these improvements, variations
are increasing from one technology node to the next. While this
creates a challenge for manufacturers, this added variability ensures
that PUFs will remain relevant and that advances in PUF designs will
continue into the foreseeable future.

In this paper, we present a new PUF, called HELP, that is based
upon path delay variations. The novel features that differentiate HELP
from other delay-based PUFs include: 1) the capability of comparing
paths of widely differing lengths, 2) eliminating the need for specially
designed, layout-dependent delay elements that impose a high area
cost while providing a relatively small amount of entropy, 3) a
minimally invasive design with low area and performance impact, and
4) a hardware-embedded PUF engine requiring no external testing
resources. HELP is further differentiated by the large number of paths
typically found in logic macros such as the Advanced Encryption

Standard (AES). This large source of entropy allows HELP to generate
large bitstrings, despite being extremely conservative in the paths
selected for bit generation. The large availability of paths also enables
unique opportunities for achieving bit stability and avoiding errors.

To prove this PUF concept, and to demonstrate its effectiveness,
we have designed a complete, functional FPGA-based implementation
of this PUF and validated it on a set of 29 Xilinx Virtex2Pro
(“V2Pro”) FPGA boards. We present the results of that experimental
work, and evaluate the statistical characteristics of the resulting
bitstrings.

 2. Related Work
The introduction of the PUF as a mechanism for generating secure

bitstrings first appeared in [1] and [2], however, the PUF as a chip
identifier was introduced earlier in [3]. Since its introduction, there
have been many proposed PUF designs, most of which fall into one of
several categories: SRAM PUFS [4], ring oscillators [5,6], MOS
drive-current PUFs [7], delay line and arbiter PUFs [8], and PUFs
based upon variations in a chip's metal wires [9]. The Glitch PUF, a
delay-based PUF that relies on the variation in glitch behavior, is
presented in [10]. Each of these PUFs attempts to leverage one or
more naturally-varying properties, and shares the challenges that arise
from a number of sensitivities, such as measurement error and
uncertainty, and fluctuations in voltage or temperature.

The HELP PUF proposed in this paper is, to the best of our
knowledge, the only delay-based PUF that combines the following
features:

• HELP is embedded in the hardware in the sense that the path
delays measured in, e.g., an AES core logic macro, are used to
generate a bitstring that is later used as the key when AES is run
in functional mode. The close proximity of bit generation to the
hardware that uses the bitstring improves resilience to invasive,
e.g., probing, attacks that are designed to steal the key.

• By using the core logic of AES itself, a large source of entropy is
leveraged.

• HELP's bit flip avoidance scheme makes the probability of
failure in regenerating the bitstring negligibly small.

• The physical implementation of HELP uses standard logic
functions widely available in most commercial chip
architectures. In particular, HELP uses standard cell library
blocks and an on-chip clock generation scheme, i.e., a digital
clock manager (DCM). Our use of the DCM for performing path
timing tests is similar to that proposed in [11] for Trojan
detection and IC authentication.

In this paper, we analyze very large bitstrings as a means of improving
the statistical significance in our reported results. However, we believe
that the large number of bits provided by HELP can serve as an
enabler for new, yet-to-be-developed, iron-clad security mechanisms
that are not possible using a smaller, fixed number of bits provided by
current non-volatile memories.

 3.Overview
Similar to other PUFs, the bitstring is generated by applying a set

of challenges and measuring the corresponding responses, called
challenge-response pairs. The challenge component for HELP consists
of a randomly selected, two-vector test sequence applied to the inputs
of the macro-under-test (MUT), which introduces a set of transitions
that propagate through the core logic of the MUT and emerge on its
outputs. The responses are the measured path delays on each of the
outputs, and are expressed as 8-bit numbers that correspond to path
delay. A single MUT output is isolated and measured individually, as
explained in this section. A bitstring is generated by comparing pairs

HELP: A Hardware-Embedded Delay PUF

Jim Aarestad1, Philip Ortiz1, Dhruva Acharyya2 and Jim Plusquellic1

jaarestad@ece.unm.edu, pgortiz@sandia.gov, Dhruva.Acharyya@advantest.com and jimp@ece.unm.edu
1Department of ECE, University of New Mexico, 2Advantest Corporation

mailto:jaarestad@ece.unm.edu
mailto:jimp@ece.unm.edu
mailto:Dhruva.Acharyya@advantest.com
mailto:pgortiz@sandia.gov

of these path delays.
The delay measurement precision has an impact on the stability of

HELP. We use an embedded test structure called REBEL to obtain a
high-precision, digitized representation of the path delays [12].
REBEL is integrated directly with the scan chain logic and uses the
on-chip clock tree network for launch-capture (LC) timing events.

Fig. 1 depicts an overview of the REBEL test structure, consisting
of two rows of flip-flops (FFs) that can be connected together into a
single scan chain or on separate scan chains (as shown). The top row
is the launch row, and is configured to operate in functional mode. A
small logic block on the left of the second row of scan cells, labeled
RCL for Row Control Logic, allow the scan elements on that row to
be configured as follows:

• The second row is the capture row, and is configured in a mixed
mode, in which a specific FF, called the insertion point (IP), is
chosen. This scan-FF and each scan-FF to the right of it in the
row are placed in a mode called flush delay (described below),
and form a combinational delay chain, effectively extending the
path at the IP.

Flush-delay mode (FD) is a special mode in which a scan chain
can be configured as a combinational delay chain. This is depicted in
the callout in Fig. 1, which shows two master/slave FFs in which the
output of the first master feeds forward into the scan input of the
second FF. Any transition that occurs on the IP propagates through the
functional input and into the first master using logic that selects that
path (not shown). In contrast, the logic controlling the scan mux for
the second FF (and all FFs to its right) selects the scan input,
effectively allowing the transition to propagate unimpeded through the
masters of these FFs. Details concerning the control logic for the scan
chain muxes can be found in [12].

A REBEL path delay test is carried out by scanning in
configuration information, which selects the IP and configures the
delay chain as shown in Fig. 1. A clock transition is then applied to the
launch row FFs which generates transitions that propagate into the
MUT. Any transition that occurs on the MUT output at the IP will
propagate into the delay chain. By asserting the clock input on the
capture row FFs, the master latches revert to storage mode and digitize
the time behavior of the transition(s) as a sequence of 1's and 0's. The
combined delay of the MUT path and the delay chain can be derived
by searching, from right to left, in the binary sequence for the FF that
contains the first transition. Note that additional glitching behavior can
be present in the sequence to the left of this final transition.

 4. Experimental Setup
We've created a complete HELP implementation on an FPGA and

carried out experiments on a set of 29 V2Pro-based FPGA boards. Fig.

2 shows a top-level structural diagram of our HELP implementation.
The MUT used in our implementation is the logic defining a single

round of a pipelined AES implementation (space limitations prevented
inclusion of all 10 rounds of the logic) from OpenCores. The block
labeled “Initial Launch Vector (256)” represents the pipeline FFs in
the full-blown AES implementation, converted here to MUX-D scan-
FFs. A second copy of this block labeled “Final Launch Vector (256)”,
is added to emulate the logic from the omitted previous round. In our
implementation, two randomly generated vectors that represent the
challenge are scan-loaded into the two blocks.

TABLE I. FPGA RESOURCE UTILIZATION

Resource
AES Macro Full PUF (w/o UART)

Used Util. Pct. Used Util. Pct.

Flip-flops 1297 4.7% 1749 6.0%

LUTs 3122 11.4% 7098 25.0%

Slices 2146 15.7% 3986 29.0%

RAMB16 0 0.0% 58 42.0%

BUFGMUX 1 12.5% 5 31.0%

DCMs 0 0.0% 3 37.0%

Fig. 1: REBEL embedded test structure.

Fig. 2: Top-Level HELP System Diagram

LC_LFSR

LFSR Controller

REBEL Controller

L/C
Ctrl

Clock Generator

PN Memory

Sample Analysis
(SAE)

Initial Launch Vector (256)

Final Launch Vector (256)

Macro-Under-
Test (MUT)

(Pipelined AES)

REBEL (Capture) Row

Path Delay Result

...

...
Valid Path Memory (VPM)

0 0 0 0 01 1 1 1

0 0 0 0 01 1 1 1

÷2

Launch

Capture

FPA

Value 2Value 1

Compare

Random Pairing
Generator

BG_LFSR

Addr 2Addr 1

Data Collection Engine

Path Valid?

Addr MUX

BitGen Engine

Serial Interface

“Start”

Run Parameters

Ext.
Clock

Hard
Reset

Rx
Tx

PUF Numbers (PNs)
PUF Bit String

Master

RCL

SI

011

IP

Rst

FD
Flush Delay Signal

REBEL Mode Ctrl

Combinational Logic

Master Slave

D
SI

MUXD Scan-FF

Master Slave
D
SI

MUXD Scan-FF

SI
D

Functional
Input

Scan
Input

Clk

SI
Launch Row (MUXD-Style Scan Cells)

The block labeled “REBEL (Capture) Row” in Fig. 2 also
represents the pipeline FFs between the logic blocks defining the
rounds in AES. We modified this row to incorporate REBEL, and
designed it to implement the “mixed mode” functionality described
previously in relation to Fig. 1. The number of FFs in this row is
expanded from 256 to 264 to extend the delay chain for the IPs in the
rightmost side of the MUT.

The remaining components in Fig. 2 define the HELP PUF engine,
and can be divided into the Data Collection Engine (DCE), and the
BitGen Engine (BGE). One iteration of the whole process produces
the bitstring. The engine behaves differently depending on whether a
new bitstring is requested (a process called enrollment) or whether
the bitstring needs to be reproduced (a process called regeneration).
These scenarios are distinguished between in the following description
where needed.

The overhead of HELP is given in TABLE I. The resources under
the column “AES Macro” corresponds to a single round of AES. A full
pipelined implementation of AES would therefore be 10X larger.
Factoring this in reduces the overhead of HELP from 100% as shown
in the last column to approx. 10%.

 4.1. HELP Components

The DCE in Fig. 2 carries out a sequence of LC tests, measures the
path delays, and records the digitized representation of them, called
PUF numbers or PNs, in block RAM on the FPGA. In our current
implementation, the DCE runs to completion before the BGE
component is started. Alternatively, the DCE and BGE components
can be run simultaneously.

Clock Generator. The clock generator module generates two
clock signals: a Launch clock and a Capture clock, and is shown on
the left in Fig. 2. In our design, this module contains three digital
clock managers, or DCMs. A 'master' DCM is used to reduce the off-
chip oscillator-generated 100 MHz clock to 50 MHz. The output of the
master DCM drives the Launch and Capture DCMs. We utilize the
fine phase adjustment (FPA) feature of the Capture DCM to 'tune' the
phase relationship between the Launch and Capture clocks. At 50
MHz, the FPA allows 80-ps increments/decrements in the phase of the
Capture clock on the V2Pro FPGA chips.

When the DCE is configuring the scan chains in preparation for
the LC test, the phase relationship between the Launch and Capture
clocks is set to 0. Just prior to the launch event, the controlling state
machine selects the 180° phase-shifted output of the Capture DCM,
and the FPA feature is used to tune the phase in an iterative process
designed to meet a specific goal (to be discussed).

TABLE II. summarizes the characteristics of the Capture clock,
and Fig. 3 illustrates the timing relationship between the Launch and
Capture clocks for different values of the 'Phase Adj.' control counter
in the DCM. The launch and capture events occur on the rising edge of
the corresponding clocks. From the timing diagram, this allows path
delays from 5 ns to 15 ns in length to be measured. The 0 to 128 range
of values (called PNs) are used as a digital representation of the path

delays.
The remaining components of the DCE are as follows:
PN Memory: A block RAM used to store the PNs.
LC LFSR Controller: A 32-bit linear feedback shift register

(LFSR) used to produce the randomized launch vectors.
REBEL Controller: Configures the IP in the REBEL row

attached to the output of the AES logic block.
Sample Analysis Engine (SAE): Analyzes the digitized results in

the delay chain after each LC test for a given path and determines
whether the path is 'valid'. A valid path is defined as one that has a
real transition, is glitch-free, and produces consistent results
across multiple samples.

Valid Path Memory: A block RAM used to record a pass/fail flag
for each tested path that reflects its validity (as defined under SAE).
This memory would normally be stored in non-volatile storage
because it represents the helper data needed in the regeneration
process.

TABLE II. CAPTURE CLOCK PHASE ADJUSTMENT

Phase Adj. Phase Angle LC Interval

0 90° 5 ns

64 180° 10 ns

128 270° 15 ns

Random Pairing Generator: Uses a 28-bit LFSR to generate
randomized pairings of PNs for bit generation.

The Serial Interface component is used to interact with the HELP
engine, and to transfer the results of the path testing and bit generation
processes.

 4.2.Measuring Path Delays

A sequence of paths are tested by the DCE process to produce the
PNs used later in bit generation. The starting point and order in which
the paths are tested is completely determined by the LC LFSR. The
DCE process begins by loading the LC LFSR with a seed (provided by
the user), and instructs the LC LFSR controller to load a random pair
of vectors into the launch rows. Simultaneously, the REBEL controller
configures the REBEL row with a specific IP and places the REBEL
row in FD mode. The same random vector pair is reloaded to test each
of the 256 IPs, one at a time, before the LC LFSR generates and loads
the next random vector pair.

A key contribution of our technique is the discovery that path
stability can be used as the basis for random number generation. Path
stability is defined as those paths which have a rising or falling
transition, do not have temporary transitions or glitches, and that
produce a small range of PNs (ideally only one) over multiple
repeated sampling. As shown below, the paths that pass the stability
test are different for each chip in the population. In generating 4096
paths on 29 boards, less than 100 paths were common to every board,
and only 2042 paths had any commonality at all.

A state machine within the DCE is responsible for measuring path
delays and for determining the stability of the paths. Our algorithm
begins testing a path by setting the FPA to 128, which configures the
Capture clock phase to 270°. It then iteratively reduces the phase shift
in a series of LC tests, called a sweep. For paths that have transitions,
the process of 'tuning' the FPA toward smaller values over the sweep
effectively 'pushes' the transition backwards in the delay chain, since
each successive iteration reduces the amount of time available for the
transition to propagate. When the edge is 'pushed back' to a point just
before a target FF in the delay chain, the process stops (the goal has
been achieved). The target FF is an element in the delay chain that is a
specific distance (in scan-FFs) from the IP. The value of the FPA at the
stop point is saved as the PN for this path, i.e., the PN represents the
'response' to the 'challenge' defined by the launch vector and IP.

Evaluating path stability is accomplished by counting the number
of transitions that occurred in the REBEL row by 'XOR'ing'
neighboring FFs in the delay chain. The path is immediately classified

T
lc_min

=5 ns

10 ns

Launch Clock

Capture Clock
(fpa=0)

Capture Clock
(fpa=64)

Capture Clock
(fpa=128)

Start Signal
(Asynchronous)

T
lc
=10 ns

T
lc_max

=15 ns

0 64 128

Fine Phase
Adjustment

Fig. 3: Launch/Capture Timing Diagram

as unstable (and the sweep is halted) if the number of transitions
exceeds 1 at any point during the sweep. Once the sweep is complete,
the whole process is repeated multiple times. If the range of PNs
measured across multiple samples varies by more than a user-specified
threshold, the path is classified as unstable and is discarded.

Note that path stability evaluation occurs ONLY during
enrollment. In order to make it possible for regeneration to replay the
valid path sequence discovered during enrollment, the 'valid path'
bitstring is updated after testing each path. For paths considered valid,
a '1' is stored and for those classified as unstable, a '0' is stored. During
regeneration, the exact same sequence of tests can be carried out by
loading the LC LFSR with the same seed and using the 'valid path'
bitstring to determine which paths are to be tested (a '1' forces the path
to be tested, and a '0' forces the path to be skipped).

The usage scenario requires the LC LFSR seed and the 'valid path'
bitstring to be stored in publicly accessible non-volatile memory. This
enables an adversary to “reverse engineer” the secret bitstring using a
simulation model of the MUT and HELP system. Although difficult to
accomplish in practice, the only way to completely eliminate this
threat is to obfuscate the helper data. Techniques for obfuscation exist,
but are beyond the scope of this work.

 4.3. The "Universal-No Modulus" (UNM) Techniques

We developed a method called “Universal-No Modulus” (UNM)
that is capable of generating O(n2) bits from n PNs. UNM avoids bit
flips by using only the longest and shortest paths in the MUT for
comparisons, discarding paths of medium length. It avoids the bias
that would normally result under these conditions by exploiting the
property that path stability is random across chips. In other words,
even though the result of comparing a short path with a long path is
predictable from the design, the stability, and therefore selection, of
short and long paths is random from chip to chip.

Figs. 4(a) and 4(b) show the path distribution from a typical chip,
with the PN range plotted along the x-axis against ‘number of
instances’ along the y-axis. During enrollment, UNM uses two
thresholds to partition the distribution into 3 regions. The tail regions
on the left and right are considered valid PN regions. PNs in the tails
represent short (Low PNs) and long (High PNs) paths respectively.
The large ‘invalid’ region between the thresholds, given as 32 and 90
in Fig. 4(a), is a safety zone between the groups designed to prevent
‘jumps’, and bit flips, between the Low and High PN regions. The
placement of the thresholds determines the balance between the
number of paths in each tail region, and are established using a
process that characterizes the path-length distribution at the start of
each enrollment. Jumps, although infrequent, can occur because of the
appearance and disappearance of hazards (glitches) on side-inputs of
gates along the tested paths. Small temperature variations or power
supply noise influence the behavior of these hazards. Examples of
tolerable (green line) and intolerable (red line) jumps are shown Fig.
4, wherein the lines indicate PNs that were significantly higher during
regeneration than they were during enrollment.

The safety zone is only enforced during enrollment, and is
redefined as the midpoint between the margins during regeneration as
shown in Fig. 4(b). The DCE process creates a valid path bitstring
during enrollment so the same sequence of path tests can be carried
out during regeneration. In our experiments, we found that UNM
generates a valid PN after approx. every 20 tested paths, depending on

the user-specified width of the
'invalid' region. The “XOR-style”
bit generation process is carried out
by comparing pairs of PNs, where
PNs from the same region generate
a '0', while those from opposite
regions generate a ‘1’. With n PNs,
up to n*(n-1)/2 bits can be
generated by considering all
combinations.

 5. Experimental
Results And Analysis

We collected data on a set of 29 V2Pro boards using a
thermoelectric cooler (TEC) apparatus and a programmable power
supply. Experiments were carried out at three different temperatures
(0C, 25C, 70C) and three different voltages (1.35V, 1.50V, 1.65V).
Enrollment data is collected at 25°C and 1.5V. The experiments
carried out at the remaining 8 temperature/voltage (TV) corners
represent regeneration.

Hamming Distance: Fig. 5 shows the HD distribution as well as
the mean (Mn) and standard deviation (SD) of the Gaussian curve
fitted to, and superimposed on, the distribution. The inter-chip HD is
50.0019% for bitstrings with a length of 1,028,890. This is very close
to the ideal value of 50%. The standard deviation is also very small.
Combined with a mean intra-chip HD of 2.74e-7, these results indicate
the bitstrings are highly reliable and unique.

NIST Statistical Analysis of Randomness: The NIST statistical
test suite is also applied to the bitstrings from the 29 boards. The
bitstrings pass all NIST statistical tests, with no more than 2 boards
failing any of the 15 tests. In addition, these bitstrings pass all of the
P-value-of-the-P-values tests, even in spite of the fact that the NIST
documentation indicates that a minimum of 55 boards is required
before this metric can be considered valid.

Running Time Analysis: On average, the number of valid paths
tested per second is 30.20 for enrollment and 88.03 for regeneration.
This includes the time required to test and discard invalid paths, and
the time required to generate the n(n-1)/2 bitstrings from the n PNs
stored in block RAM.

Probability of Failure: As discussed above, a bit flip occurs
when a PN measured during regeneration jumps across the “bit flip
line” as shown by the example in Fig. 4(b). The number of bit flips
that occurred across the 8 regenerations for the 29 boards is 10. This
yields a probability of failure of 8e-5, computed as 10 / (29 boards x
4096 PNs per board). Although beyond the scope of this work, we
have developed a simple, very low-overhead technique that eliminates
all bit flips in our results and improves the probability of failure to
7.25e-11.

 6. Conclusions
A novel PUF, called HELP, is proposed and demonstrated on an

FPGA platform. HELP is based on measuring variations in path delays
in the core logic macro(s) of the chip. The results of hamming distance
and NIST statistical test analyses show the bitstrings are of high
quality. In particular, the bitstrings are unique and repeatedly random,
and are therefore appropriate for cryptographic applications.

 7. Authors
Jim Aarestad received his M.S. in Computer Engineering from

the University of New Mexico in 2011. His research interests include
hardware security and its role in embedded systems and in the broader
context of trusted computing. After completing his PhD., Jim will
become a computer scientist at the Cyber Division of the Federal
Bureau of Investigation.

Postal Address:
1706 Silver Ave. SE - #28

Fig. 4: UNM Bit Generation Fig. 5: HD Analysis

of

 in
st

an
ce

s
50

0

0.498 0.500 0.502
(b)

HD (PCH)
Mn: 50.0019%
SD: 0.049%

HD (Actual)
Mn: 514,467

SD: 507

Length
1,028,895

Invalid

Low
PNs

High
PNs

ENROLLMENT

High
PNs

Low
PNs

REGENERATION

(a) (b)PUF Numbers (PNs)

N
um

be
r

of
 In

st
an

ce
s

N
um

be
r

of
 In

st
an

ce
s “Bit Flip”

line

Bit flip
No bit flip

Albuquerque, NM 87106
Phone: (505) 573-1936
Fax: (505) 277-1439
Email: jaarestad@ece.unm.edu

Philip Ortiz is a Principal Member of the Technical Staff at
Sandia National Laboratories, has 17 years' experience in FPGA
design, signal processing, and embedded systems. Philip received his
B.S. in Electrical Engineering from Stanford University and is
completing an M.S. in the same subject from the University of New
Mexico.

Postal Address:
7339 Boxwood Avenue NE
Albuquerque, NM 87113

Phone: (505) 845-8156
Email: pgortiz@sandia.gov

Dr. Dhruva Acharyya holds a PhD degree in Computer
Engineering from University of Maryland, Baltimore County. His
research interests are in the areas of VLSI Design and Testing,
Hardware Security, Test Instrumentation and Design for
Manufacturability. He is currently employed as a R&D Engineer at
Advantest Corporation.

Postal Address:
3061 Zanker Rd.
San Jose, CA 95134

Phone: 410-245-3322
Email: dhruva.acharyya@advantest.com

Dr. Jim Plusquellic received his degree in Computer Science
from the University of Pittsburgh in 1997. He is currently an Associate
Professor in ECE at the University of New Mexico. His research
interests include security and trust in IC hardware, silicon validation,
design for manufacturability and delay test methods. He is a member
of the IEEE Computer Society's Golden Core and of the IEEE.

Postal Address:
University of New Mexico
ECE 236C
MSC01 1100
1 University of New Mexico
Albuquerque, NM 87131-0001

Phone: (505) 277-0785
Fax: (505) 277-1439
Email: jimp@ece.unm.edu

 8. REFERENCES
[1] R.S.Pappu, et. al; "Physical One Way Functions", Science, 297(6),
2002, pp. 2026-2030.
[2] B. Gassend, et.al.; "Controlled Physical Random Functions",
Conf. on Computer Security Applications, 2002, pp. 149-160.
[3] K. Lofstrom, et. al.; "IC Identification Circuits using Device
Mismatch", SSCC, 2000, pp. 372-373.
[4] P. Simons, et. al.; “Buskeeper PUFs, a Promising Alternative to D
Flip-Flop PUFs”, HOST, 2012, pp. 7-12.
[5] G.E. Suh, S. Devadas; "Physical Unclonable Functions for Device
Authentication and Secret Key Generation", DAC, 2007, pp. 9-14.
[6] A. Maiti, P. Schaumont; "Improving the Quality of a Physical
Unclonable Function using Configurable Ring Oscillators", Conf. on
Field-Programmable Logic and Applications, 2009, pp. 703-707.
[7] Y. Su, et. al.; "A 1.6pj/bit 96% Stable Chip ID Generating Circuit
Using Process Variations", SSCC, 2007, pp. 406-407.
[8] M. Majzoobi, et. al.; "Lightweight Secure PUFs", ICCAD, 2008,
pp. 670-673.
[9] J. Ju, et. al.; “bitstring Analysis of Physical Unclonable Functions
based on Resistance Variations in Metals and Transistors”, HOST,

2012, pp. 13-20.
[10] D. Suzuki, K. Shimizu; “The Glitch PUF: A New Delay-PUF
Architecture Exploiting Glitch Shapes”, CHES, 2010, pp. 366-382.
[11] J. Li, J. Lach; “At-Speed Delay Characterization for IC
Authentication and Trojan Horse Detection”, HOST, 2008, pp. 8-14.
[12] C. Lamech, et. al.; "REBEL and TDC: Two Embedded Test
Structures for On-Chip Measurements of Within-Die Path Delay
Variations", ICCAD, 2011, pp. 170-177.

	 1. Introduction
	 2. Related Work
	 3. Overview
	 4. Experimental Setup
	 4.1. HELP Components
	 4.2. Measuring Path Delays
	 4.3. The "Universal-No Modulus" (UNM) Techniques

	 5. Experimental Results And Analysis
	 6. Conclusions
	 7. Authors
	 8. REFERENCES

