
Abstract:  The use of embedded secret information such as keys for  
cryptographic applications, unique identifiers for authentication, and  
activation of on-chip features is becoming increasingly commonplace  
in ASICs and FPGAs. The generation of these secret bitstrings using  
physical  unclonable  functions,  or  PUFs,  offers  distinct  advantages  
over  conventional,  e.g.,  EPROM-based  methods,  in  several  ways,  
including eliminating the need to store the bitstring into, and the cost  
of, a specialized non-volatile memory, and increasing the number of  
random bits. This paper presents a new PUF called the Hardware-
Embedded  Delay  PUF,  or  HELP.  HELP  leverages  the  natural  
variations that occur in the path delays of a core macro on a chip to  
create a unique, stable, and random bitstring of virtually any length.  
We evaluate several quality statistical metrics of HELP on 29 FPGA 
boards  across  a  temperature  range  of  0  to  70°C,  and  propose  an 
error-avoiding scheme that provides high probability against bit flips.

Keywords:  Hardware  security,  unique  identifier,  process 
variations, physical unclonable function, path delay measurement.

 1.  Introduction
Physical  unclonable  functions  (PUFs)  have  emerged  as  useful 

mechanisms  for  generating  random  numbers  for  several  security-
related applications.  PUFs utilize  the random variations in physical 
properties  of  chips  to  differentiate  one  chip from another,  and  are 
designed  to  be  difficult  or  impossible  to  duplicate,  even  by  the 
manufacturer. While process variations are effectively impossible to 
control  or  eliminate,  they  can  be  measured.  The  specific  varying 
properties exploited by the PUF can differ from one PUF design to 
another.  However,  common sources  of  parametric  variation include 
propagation  delay,  metal  resistance,  transistor  drive  strength,  and 
mismatches  between  complementary  transistors.  A PUF  measures 
these variations and compares them to generate a bitstring. 

The quality of the bitstrings produced by a PUF is measured using 
several statistical metrics. Three criteria, however, must be met for a 
PUF  to  be  effective  for  applications  such  as  encryption:  1)  the 
bitstrings  produced  for  each  chip  must  be  sufficiently  unique to 
distinguish each  chip  from  every  other,  2)  the  bitstrings  must  be 
random, making them difficult for an adversary to model and predict, 
and 3) the bitstring for any one chip must be  stable over  time and 
across varying environmental conditions. 

Process variations are increasingly problematic for semiconductor 
manufacturers as they move toward more advanced technology nodes 
and smaller feature sizes. Dopant densities, photolithographic features, 
and  planarization  consistency  are  all  examples  of  manufacturing 
processes that become harder to control and predict as geometries are 
reduced. Engineers are working to develop techniques for mitigating 
these variations. However, even given these improvements, variations 
are  increasing  from  one  technology  node  to  the  next.  While  this 
creates a challenge for manufacturers, this added variability ensures 
that PUFs will remain relevant and that advances in PUF designs will 
continue into the foreseeable future.

In this paper, we present a new PUF, called HELP, that is based 
upon path delay variations. The novel features that differentiate HELP 
from other delay-based PUFs include: 1) the capability of comparing 
paths of widely differing lengths, 2) eliminating the need for specially  
designed,  layout-dependent  delay elements  that  impose a  high area 
cost  while  providing  a  relatively  small  amount  of  entropy,  3)  a 
minimally invasive design with low area and performance impact, and 
4)  a  hardware-embedded  PUF engine  requiring  no  external  testing 
resources. HELP is further differentiated by the large number of paths 
typically  found  in  logic  macros  such  as  the  Advanced  Encryption 

Standard (AES). This large source of entropy allows HELP to generate 
large  bitstrings,  despite being  extremely  conservative  in  the  paths 
selected for bit generation. The large availability of paths also enables 
unique opportunities for achieving bit stability and avoiding errors. 

To prove this PUF concept, and to demonstrate its effectiveness, 
we have designed a complete, functional FPGA-based implementation 
of  this  PUF  and  validated  it  on  a  set  of  29 Xilinx  Virtex2Pro 
(“V2Pro”) FPGA boards. We present the results of that experimental 
work,  and  evaluate  the  statistical  characteristics  of  the  resulting 
bitstrings.

 2. Related Work
The introduction of the PUF as a mechanism for generating secure 

bitstrings first appeared in [1] and [2], however, the PUF as a chip 
identifier was introduced earlier in [3]. Since its introduction, there 
have been many proposed PUF designs, most of which fall into one of  
several  categories:  SRAM  PUFS  [4],  ring  oscillators  [5,6],  MOS 
drive-current  PUFs [7],  delay line and arbiter  PUFs [8],  and PUFs 
based upon variations in a chip's metal wires [9]. The Glitch PUF, a 
delay-based  PUF that  relies  on  the  variation  in  glitch  behavior, is 
presented in [10].  Each of  these PUFs attempts  to leverage one or  
more naturally-varying properties, and shares the challenges that arise 
from  a  number  of  sensitivities,  such  as  measurement  error  and 
uncertainty, and fluctuations in voltage or temperature.

The  HELP PUF proposed  in  this  paper  is,  to  the  best  of  our 
knowledge,  the  only delay-based  PUF that  combines  the following 
features: 

• HELP is  embedded in the hardware in the sense that  the path 
delays measured in, e.g., an AES core logic macro, are used to 
generate a bitstring that is later used as the key when AES is run 
in functional mode. The close proximity of bit generation to the 
hardware that uses the bitstring improves resilience to invasive, 
e.g., probing, attacks that are designed to steal the key.

• By using the core logic of AES itself, a large source of entropy is  
leveraged. 

• HELP's  bit  flip  avoidance  scheme  makes  the  probability  of 
failure in regenerating the bitstring negligibly small. 

• The  physical  implementation  of  HELP  uses  standard  logic 
functions  widely  available  in  most  commercial  chip 
architectures. In  particular,  HELP  uses  standard  cell  library 
blocks and an on-chip clock generation scheme, i.e.,  a digital 
clock manager (DCM). Our use of the DCM for performing path 
timing  tests  is  similar  to  that  proposed  in  [11]  for  Trojan 
detection and IC authentication. 

In this paper, we analyze very large bitstrings as a means of improving 
the statistical significance in our reported results. However, we believe 
that  the  large  number  of  bits  provided  by  HELP can  serve  as  an 
enabler for new, yet-to-be-developed, iron-clad security mechanisms 
that are not possible using a smaller, fixed number of bits provided by 
current non-volatile memories. 

 3.Overview
Similar to other PUFs, the bitstring is generated by applying a set 

of  challenges  and  measuring  the  corresponding  responses,  called 
challenge-response pairs. The challenge component for HELP consists 
of a randomly selected, two-vector test sequence applied to the inputs 
of the macro-under-test (MUT), which introduces a set of transitions 
that propagate through the core logic of the MUT and emerge on its  
outputs. The responses are the measured path delays on each of the 
outputs, and are expressed as 8-bit numbers that correspond to path 
delay. A single MUT output is isolated and measured individually, as 
explained in this section. A bitstring is generated by comparing pairs 
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of these path delays.
The delay measurement precision has an impact on the stability of 

HELP. We use an embedded test structure called REBEL to obtain a 
high-precision,  digitized  representation  of  the  path  delays  [12]. 
REBEL is integrated directly with the scan chain logic and uses the  
on-chip clock tree network for launch-capture (LC) timing events.

Fig. 1 depicts an overview of the REBEL test structure, consisting 
of two rows of flip-flops (FFs) that can be connected together into a 
single scan chain or on separate scan chains (as shown). The top row 
is the launch row, and is configured to operate in functional mode. A 
small logic block on the left of the second row of scan cells, labeled 
RCL for Row Control Logic, allow the scan elements on that row to 
be configured as follows:

• The second row is the capture row, and is configured in a mixed 
mode, in which a specific FF, called the insertion point (IP), is 
chosen. This scan-FF and each scan-FF to the right of it in the 
row are placed in a mode called flush delay (described below), 
and form a combinational delay chain, effectively extending the 
path at the IP.

Flush-delay mode (FD) is a special mode in which a scan chain 
can be configured as a combinational delay chain. This is depicted in 
the callout in Fig. 1, which shows two master/slave FFs in which the 
output  of  the first  master  feeds  forward  into the  scan input  of  the 
second FF. Any transition that occurs on the IP propagates through the 
functional input and into the first master using logic that selects that 
path (not shown). In contrast, the logic controlling the scan mux for 
the  second  FF  (and  all  FFs  to  its  right)  selects  the  scan  input, 
effectively allowing the transition to propagate unimpeded through the 
masters of these FFs. Details concerning the control logic for the scan 
chain muxes can be found in [12]. 

A  REBEL  path  delay  test  is  carried  out  by  scanning  in 
configuration  information,  which  selects  the  IP and  configures  the 
delay chain as shown in Fig. 1. A clock transition is then applied to the 
launch row FFs  which generates  transitions  that  propagate  into the 
MUT. Any transition that occurs on the MUT output at  the IP will  
propagate into the delay chain. By asserting the clock input  on the 
capture row FFs, the master latches revert to storage mode and digitize 
the time behavior of the transition(s) as a sequence of 1's and 0's. The 
combined delay of the MUT path and the delay chain can be derived 
by searching, from right to left, in the binary sequence for the FF that  
contains the first transition. Note that additional glitching behavior can 
be present in the sequence to the left of this final transition.

 4. Experimental Setup
We've created a complete HELP implementation on an FPGA and 

carried out experiments on a set of 29 V2Pro-based FPGA boards. Fig. 

2 shows a top-level structural diagram of our HELP implementation. 
The MUT used in our implementation is the logic defining a single 

round of a pipelined AES implementation (space limitations prevented 
inclusion of all 10 rounds of the logic) from OpenCores. The block 
labeled “Initial  Launch Vector (256)” represents the pipeline FFs in 
the full-blown AES implementation, converted here to MUX-D scan-
FFs. A second copy of this block labeled “Final Launch Vector (256)”, 
is added to emulate the logic from the omitted previous round. In our 
implementation,  two randomly  generated  vectors  that  represent  the 
challenge are scan-loaded into the two blocks.

TABLE I. FPGA RESOURCE UTILIZATION

Resource
AES Macro Full PUF (w/o UART)

Used Util. Pct. Used Util. Pct.

Flip-flops 1297 4.7% 1749 6.0%

LUTs 3122 11.4% 7098 25.0%

Slices 2146 15.7% 3986 29.0%

RAMB16 0 0.0% 58 42.0%

BUFGMUX 1 12.5% 5 31.0%

DCMs 0 0.0% 3 37.0%

Fig. 1: REBEL embedded test structure.

Fig. 2: Top-Level HELP System Diagram

 
 

 

LC_LFSR

LFSR Controller

REBEL Controller

L/C 
Ctrl

Clock Generator

PN Memory

Sample Analysis 
(SAE)

Initial Launch Vector (256)

Final Launch Vector (256)

Macro-Under-
Test (MUT)

-----------------
(Pipelined AES)

REBEL (Capture) Row

Path Delay Result

...

...
Valid Path Memory (VPM)

0 0 0 0 01 1 1 1

0 0 0 0 01 1 1 1

÷2

Launch

Capture

FPA

Value 2Value 1

Compare

Random Pairing 
Generator

BG_LFSR

Addr 2Addr 1

 

Data Collection Engine

Path Valid?

Addr MUX

BitGen Engine

Serial Interface

 

      
“Start”

Run Parameters

 

Ext. 
Clock

Hard 
Reset

Rx
Tx

PUF Numbers (PNs)
PUF Bit String

 

Master

RCL

SI

011

IP

Rst

FD
Flush Delay Signal

REBEL Mode Ctrl

Combinational Logic

Master Slave

D
SI

MUXD Scan-FF

Master Slave
D
SI

MUXD Scan-FF

SI
D

Functional
Input

Scan
Input

Clk

SI
Launch Row (MUXD-Style Scan Cells)



The  block  labeled  “REBEL  (Capture)  Row”  in  Fig.  2 also 
represents  the  pipeline  FFs  between  the  logic  blocks  defining  the 
rounds  in  AES. We modified  this  row to incorporate  REBEL,  and 
designed it  to implement  the “mixed mode” functionality described 
previously in relation to Fig.  1. The number of  FFs in this  row is 
expanded from 256 to 264 to extend the delay chain for the IPs in the  
rightmost side of the MUT.

The remaining components in Fig. 2 define the HELP PUF engine, 
and can be divided into the Data Collection Engine (DCE), and the 
BitGen Engine (BGE). One iteration of the whole process produces 
the bitstring. The engine behaves differently depending on whether a 
new bitstring is requested (a process called  enrollment) or whether 
the bitstring needs to be reproduced (a process called regeneration). 
These scenarios are distinguished between in the following description 
where needed.

The overhead of HELP is given in TABLE I. The resources under 
the column “AES Macro” corresponds to a single round of AES. A full 
pipelined  implementation  of  AES  would  therefore  be  10X  larger. 
Factoring this in reduces the overhead of HELP from 100% as shown 
in the last column to approx. 10%. 

 4.1. HELP Components

The DCE in Fig. 2 carries out a sequence of LC tests, measures the 
path delays, and records the digitized representation of them, called 
PUF numbers or  PNs,  in block RAM on the FPGA. In our current 
implementation,  the  DCE  runs  to  completion  before  the  BGE 
component is started. Alternatively, the DCE and BGE components 
can be run simultaneously.

Clock  Generator.  The  clock  generator  module  generates  two 
clock signals: a Launch clock and a Capture clock, and is shown on 
the left  in Fig.  2.  In  our  design,  this  module contains  three digital 
clock managers, or DCMs. A 'master' DCM is used to reduce the off-
chip oscillator-generated 100 MHz clock to 50 MHz. The output of the 
master DCM drives the Launch and Capture DCMs. We utilize the 
fine phase adjustment (FPA) feature of the Capture DCM to 'tune' the 
phase  relationship  between  the  Launch  and  Capture  clocks. At  50 
MHz, the FPA allows 80-ps increments/decrements in the phase of the 
Capture clock on the V2Pro FPGA chips. 

When the DCE is configuring the scan chains in preparation for 
the LC test, the phase relationship between the Launch and Capture 
clocks is set to 0. Just prior to the launch event, the controlling state 
machine selects the 180° phase-shifted output of the Capture DCM, 
and the FPA feature is used to tune the phase in an iterative process 
designed to meet a specific goal (to be discussed).

TABLE II.  summarizes the characteristics of the Capture clock, 
and Fig.  3 illustrates the timing relationship between the Launch and 
Capture clocks for different values of the 'Phase Adj.' control counter 
in the DCM. The launch and capture events occur on the rising edge of 
the corresponding clocks. From the timing diagram, this allows path 
delays from 5 ns to 15 ns in length to be measured. The 0 to 128 range 
of values (called PNs) are used as a digital representation of the path 

delays.
The remaining components of the DCE are as follows:
PN Memory: A block RAM used to store the PNs.
LC  LFSR  Controller:  A 32-bit  linear  feedback  shift  register 

(LFSR) used to produce the randomized launch vectors.
REBEL  Controller:  Configures  the  IP  in  the  REBEL  row 

attached to the output of the AES logic block. 
Sample Analysis Engine (SAE): Analyzes the digitized results in 

the delay chain after each LC test  for a given path and determines  
whether the path is 'valid'. A valid path is defined as one that has a 
real  transition,  is  glitch-free,  and  produces  consistent  results 
across multiple samples.

Valid Path Memory: A block RAM used to record a pass/fail flag 
for each tested path that reflects its validity (as defined under SAE). 
This  memory  would  normally  be  stored  in  non-volatile  storage 
because  it  represents  the  helper  data needed  in  the  regeneration 
process.

TABLE II. CAPTURE CLOCK PHASE ADJUSTMENT

Phase Adj. Phase Angle LC Interval

0 90° 5 ns

64 180° 10 ns

128 270° 15 ns

Random Pairing  Generator:  Uses  a  28-bit  LFSR to generate 
randomized pairings of PNs for bit generation. 

The Serial Interface component is used to interact with the HELP 
engine, and to transfer the results of the path testing and bit generation 
processes.

 4.2.Measuring Path Delays

A sequence of paths are tested by the DCE process to produce the 
PNs used later in bit generation. The starting point and order in which 
the paths are tested is completely determined by the LC LFSR. The 
DCE process begins by loading the LC LFSR with a seed (provided by 
the user), and instructs the LC LFSR controller to load a random pair 
of vectors into the launch rows. Simultaneously, the REBEL controller 
configures the REBEL row with a specific IP and places the REBEL 
row in FD mode. The same random vector pair is reloaded to test each 
of the 256 IPs, one at a time, before the LC LFSR generates and loads 
the next random vector pair.

A key contribution of  our  technique is  the discovery that  path 
stability can be used as the basis for random number generation. Path 
stability  is  defined  as  those  paths  which  have  a  rising  or  falling 
transition,  do  not  have  temporary  transitions  or  glitches,  and  that 
produce  a  small  range  of  PNs  (ideally  only  one)  over  multiple 
repeated sampling. As shown below, the paths that pass the stability 
test are different for each chip in the population.  In generating 4096 
paths on 29 boards, less than 100 paths were common to every board, 
and only 2042 paths had any commonality at all.

A state machine within the DCE is responsible for measuring path 
delays and for determining the stability of the paths. Our algorithm 
begins testing a path by setting the FPA to 128, which configures the 
Capture clock phase to 270°. It then iteratively reduces the phase shift 
in a series of LC tests, called a sweep. For paths that have transitions, 
the process of 'tuning' the FPA toward smaller values over the sweep 
effectively 'pushes' the transition backwards in the delay chain, since 
each successive iteration reduces the amount of time available for the 
transition to propagate. When the edge is 'pushed back' to a point just 
before a target FF in the delay chain, the process stops (the goal has 
been achieved). The target FF is an element in the delay chain that is a 
specific distance (in scan-FFs) from the IP. The value of the FPA at the 
stop point is saved as the PN for this path, i.e., the PN represents the 
'response' to the 'challenge' defined by the launch vector and IP. 

Evaluating path stability is accomplished by counting the number 
of  transitions  that  occurred  in  the  REBEL  row  by  'XOR'ing' 
neighboring FFs in the delay chain. The path is immediately classified 
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as  unstable  (and  the  sweep is  halted)  if  the  number  of  transitions 
exceeds 1 at any point during the sweep. Once the sweep is complete, 
the  whole  process  is  repeated  multiple  times. If  the  range  of  PNs 
measured across multiple samples varies by more than a user-specified 
threshold, the path is classified as unstable and is discarded.

Note  that  path  stability  evaluation  occurs  ONLY  during 
enrollment. In order to make it possible for regeneration to replay the  
valid  path  sequence  discovered  during  enrollment,  the  'valid  path' 
bitstring is updated after testing each path. For paths considered valid, 
a '1' is stored and for those classified as unstable, a '0' is stored. During  
regeneration, the exact same sequence of tests can be carried out by 
loading the LC LFSR with the same seed and using the 'valid path' 
bitstring to determine which paths are to be tested (a '1' forces the path 
to be tested, and a '0' forces the path to be skipped).

The usage scenario requires the LC LFSR seed and the 'valid path'  
bitstring to be stored in publicly accessible non-volatile memory. This 
enables an adversary to “reverse engineer” the secret bitstring using a 
simulation model of the MUT and HELP system. Although difficult to 
accomplish  in  practice,  the  only  way  to  completely  eliminate  this 
threat is to obfuscate the helper data. Techniques for obfuscation exist,  
but are beyond the scope of this work.

 4.3. The "Universal-No Modulus" (UNM) Techniques

We developed a method called “Universal-No Modulus” (UNM) 
that is capable of generating O(n2) bits from n PNs. UNM avoids bit 
flips by using  only the longest  and shortest  paths  in  the MUT for  
comparisons,  discarding paths of  medium length.  It  avoids the bias 
that would normally result  under these conditions  by exploiting the 
property that  path stability is  random across chips. In other words, 
even though the result of comparing a short path with a long path is  
predictable from the design, the stability, and therefore selection, of 
short and long paths is random from chip to chip. 

Figs. 4(a) and 4(b) show the path distribution from a typical chip, 
with  the  PN  range  plotted  along  the  x-axis  against  ‘number  of 
instances’  along  the  y-axis.  During  enrollment,  UNM  uses  two 
thresholds to partition the distribution into 3 regions. The tail regions 
on the left and right are considered valid PN regions. PNs in the tails 
represent  short  (Low PNs) and long (High PNs) paths respectively. 
The large ‘invalid’ region between the thresholds, given as 32 and 90 
in Fig.  4(a),  is a safety zone between the groups designed to prevent 
‘jumps’, and bit  flips, between the Low and High PN regions. The 
placement  of  the  thresholds  determines  the  balance  between  the 
number  of  paths  in  each  tail  region,  and  are  established  using  a 
process that characterizes the path-length distribution at  the start  of  
each enrollment. Jumps, although infrequent, can occur because of the 
appearance and disappearance of hazards (glitches) on side-inputs of 
gates along the tested paths. Small  temperature variations or  power 
supply noise  influence the  behavior  of  these  hazards.  Examples  of 
tolerable (green line) and intolerable (red line) jumps are shown Fig. 
4, wherein the lines indicate PNs that were significantly higher during 
regeneration than they were during enrollment.

The  safety  zone  is  only  enforced  during  enrollment,  and  is 
redefined as the midpoint between the margins during regeneration as 
shown in Fig.  4(b). The DCE process creates a valid path bitstring 
during enrollment so the same sequence of path tests can be carried 
out  during  regeneration.  In  our  experiments,  we  found  that  UNM 
generates a valid PN after approx. every 20 tested paths, depending on 

the  user-specified  width  of  the 
'invalid'  region.  The  “XOR-style” 
bit generation process is carried out 
by comparing pairs of PNs,  where 
PNs from the same region generate 
a  '0',  while  those  from  opposite 
regions generate a ‘1’. With n PNs, 
up  to  n*(n-1)/2 bits  can  be 
generated  by  considering  all 
combinations.

 5. Experimental 
Results And Analysis

We  collected  data  on  a  set  of  29 V2Pro  boards  using  a 
thermoelectric  cooler  (TEC)  apparatus  and  a  programmable  power 
supply. Experiments were carried out at three different temperatures 
(0C, 25C, 70C) and three different  voltages (1.35V, 1.50V, 1.65V). 
Enrollment  data  is  collected  at  25°C  and  1.5V.  The  experiments 
carried  out  at  the  remaining  8  temperature/voltage  (TV)  corners 
represent regeneration.

Hamming Distance: Fig. 5 shows the HD distribution as well as 
the  mean (Mn) and standard deviation  (SD) of  the Gaussian curve 
fitted to, and superimposed on, the distribution. The inter-chip HD is 
50.0019% for bitstrings with a length of 1,028,890. This is very close 
to the ideal value of 50%. The standard deviation is also very small.  
Combined with a mean intra-chip HD of 2.74e-7, these results indicate 
the bitstrings are highly reliable and unique.

NIST Statistical Analysis of Randomness: The NIST statistical 
test  suite  is  also applied  to the  bitstrings  from the  29 boards.  The 
bitstrings pass all NIST statistical tests, with no more than 2 boards  
failing any of the 15 tests. In addition, these bitstrings pass all of the 
P-value-of-the-P-values tests, even in spite of the fact that the NIST 
documentation  indicates  that  a  minimum  of  55  boards  is  required 
before this metric can be considered valid. 

Running Time Analysis:  On average, the number of valid paths 
tested per second is 30.20 for enrollment and 88.03 for regeneration. 
This includes the time required to test and discard invalid paths, and 
the time required to generate the  n(n-1)/2  bitstrings from the  n PNs 
stored in block RAM.

Probability  of  Failure:  As  discussed  above,  a  bit  flip  occurs 
when a PN measured during regeneration jumps across the “bit flip 
line” as shown by the example in Fig. 4(b). The number of bit flips 
that occurred across the 8 regenerations for the 29 boards is 10. This 
yields a probability of failure of 8e-5, computed as 10 / (29 boards x 
4096 PNs per  board). Although beyond the scope of  this work, we 
have developed a simple, very low-overhead technique that eliminates 
all bit flips in our results and improves the probability of failure to 
7.25e-11.

 6. Conclusions
A novel PUF, called HELP, is proposed and demonstrated on  an 

FPGA platform. HELP is based on measuring variations in path delays 
in the core logic macro(s) of the chip. The results of hamming distance 
and  NIST  statistical  test  analyses  show  the  bitstrings  are  of  high 
quality. In particular, the bitstrings are unique and repeatedly random, 
and are therefore appropriate for cryptographic applications.
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