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Abstract shown to read out embedded keys and therefore on-chip key

Secure boot within an FPGA environment is tradition- Storage threatens the security of the boot process [2].
ally implemented using hardwired embedded cryptographic  In this paper, we propose a PUF-based key generation
primitives and NVM-based keys, whereby an encrypted bitstrategy that addresses the vulnerability of on-chip key stor-
stream is decrypted as it is loaded from an external storageage. Moreover, the proposed secure boot technique is self-
medium, e.g., Flash memory. A novel technique is proposegontained in that none of the FPGA-embedded security
in this paper that self-authenticates an unencrypted FPGAprimitives or FPGA clocking resources are utilized. We refer
configuration bitstream loaded into the FPGA during theto the system as Bullet-Proof Boot for FPGABu{let-
start-up. The internal configuration access port (ICAP)ProoF). BulletProoF uses a PUF implemented in the pro-
interface is accessed to read-out configuration informationgrammable logic (PL) side of an FPGA to generate the
of the unencrypted bitstream, which is then used as input teecryption key at boot time, and then uses the key for
SHA-3 to generate a digest. In contrast to conventionaldecrypting an off-chip NVM-stored second stage boot
authentication where the digest is computed and comparetinage. The second stage boot image contains PL compo-
with a second pre-computed value, we use the digest as chatents as well as software components such as an operating
lenges to a hardware-embedded delay PUF called HELPsystem and applications. BulletProoF decrypts and programs
The delays of the paths sensitized by the challenges are us#ite PL components directly into those portions of the PL
to generate a decryption key using the HELP algorithm. Theside that are not occupied by BulletProoF using dynamic
decryption key is used in the second stage of the boot procegairtial reconfiguration while the software components are
to decrypt the operating system (OS) and applications. It foldoaded into DRAM for access by the processor system (PS).
lows that any type of malicious tampering with the unen-The decryption key is destroyed once this process completes,
crypted bitstream changes the challenges and theninimizing the time the decryption key is available.
corresponding decryption key, resulting in key regeneration  Similar to PUF-based authentication protocols, enroll-
failure. A ring-oscillator is used as the clock to make the ment for BulletProoF is carried out in a secure environment.
process autonomous (and unstoppable) and a novel on-chiphe enrollment key generated by BulletProoF is used to
time-to-digital-converter is used to measure path delaysencrypt the second stage boot image. Both the encrypted
making the proposed boot process completely self-containegmage and the unencrypted BulletProoF bitstreams are stored
i.e., implemented entirely within the reconfigurable fabricin the NVM. During the in-field boot process, the first stage
and without utilizing any vendor-specific FPGA features.  boot loader (FSBL) loads the unencrypted BulletProoF bit-
1 Introduction stream into the FPGA. BulletProoF reads the entire set of

SRAM-based FPGAs need to protect the programming-onfiguration data that has just been programmed into the
bitstream against reverse engineering and bitstream maniplirPGA using the internal configuration access port (ICAP)
lation (tamper) attacks. Fielded systems are often the target8terface [3] and uses this data as challenges to the PUF to
of attack by adversaries seeking to steal intellectual propertjegenerate the decryption key. Therefore, BulletPreef-

(IP) through reverse engineering, or attempting to disrupfuthenticates The BulletProoF bitstream instantiates the
operational systems through the insertion of kill switchesSHA-3 algorithm and uses this cryptographic function both
known as hardware Trojans. Internet-of-things (IoT) systemd0 compute hashes and as the entropy source for the PUF. As
are particularly vulnerable given the resource-constrainedve Will show, BulletProoF is designed such that the gener-
and unsupervised nature of the environments in which theyted decryption key is irreversibly tied to the data integrity of
operate. the entire unencrypted bitstream.

FPGAs implementing secure boot usually store an  BulletProoF is stored unencrypted in an off-chip NVM
encrypted version of the programming bitstream in an off-and is therefore vulnerable to manipulation by adversaries.
chip non-volatile memory (NVM) as a countermeasure toHowever, the tamper-evident nature of BulletProoF prevents
these types of attacks. Modern FPGAs provide on-chip batthe system from booting the components present in the sec-
tery-backed RAM and/or E-Fuses for storage of a decryptioPnd stage boot image if tamper occurs because an incorrect
key, which is used by vendor-embedded encryption harddecryption key is generated. In such cases, the encrypted bit-
ware functions, e.g., AES, within the FPGA to decrypt thestring is not decrypted and remains secure.
bitstream as it is read from the external NVM during the The hardware-embedded delay PUF (HELP) is lever-
boot process [1]. Recent attack mechanisms have beeged in this paper as a component of the proposed tamper-



evident, self-authenticating system implemented within Bul-included in the secure hash process, as well as FPGA embed-
letProoF. HELP measures path delays through a CAD-tootled security keys, as needed.

synthesized functional unit, in particular the combinational ~ The rest of this paper is organized as follows. Related
component of SHA-3 in the proposed system. Within-diework is discussed in Section 2. An overview of the existing
variations that occur in path delays from one chip to anotheiilinx boot process is provided in Section 3. Section 4
allow HELP to produce a device-specific key. Challenges fordescribes the proposed BulletProoF system, while Section 5
HELP are 2-vector sequences that are applied to the inpuigescribes BulletProoF countermeasures, including an on-
of the combinational logic that implements the SHA-3 algo-chip time-to-digital-converter (TDC) which leverages the
rithm. The timing engine within HELP measures the propa-carry-chain component within an FPGA for measuring path
gation delays of paths sensitized by the challenges at theelays. Section 6 presents a statistical analysis of bitstrings
outputs of the SHA-3 combinational block. The digitized generated by the TDC as proof-of-concept. Conclusions are
timing values are used in the HELP bitstring processingprovided in Section 7.

algorithm to generate the AES key. 2 Background

The timing engine times paths using either the fine  Although FPGA companies embed cryptographic primi-
phase shift capabilities of the digital clock manager on thejyes to encrypt and authenticate bitstreams as a means of
FPGA or by using an on-chip time-to-digital-converter jnhibiting reverse engineering and fault injection attacks,
(TDC) implemented using the carry-chain logic within the sych attacks continue to evolve. For example, a technique
FPGA. The experimental results presented in this paper arghat manipulates cryptographic components embedded in the
based on the TDC strategy. bitstream as a strategy to extract secret keys is described in

The BulletProoF boot process is summarized as follows[4]. A fault injection attack on an FPGA bitstream is
+ The first stage boot loader (FSBL) programs the PL sidedescribed in [5] to accomplish the same goal where faulty

with the unencrypted (and untrusted) BulletProoF bit-cipher texts are generated by fault injection and then used to

stream. recover the keys. A hardware Trojan insertion strategy is

« BulletProoF reads the configuration information of the described in [6] which is designed to weaken FPGA-embed-
PL side (including configuration data that describesded cryptographic engines.
itself) through the ICAP and computes a set of digests  There are multiple ways to store the secret crypto-
using SHA-3. graphic keys in an embedded system. While one of the con-

» For each digest, the mode of the SHA-3 functional unitventional methods is to store them in Non-Volatile Memory
is switched to PUF mode and the HELP engine is(NVM), [7] and [8] discuss several ways to extract crypto-
started. graphic keys stored in NVMs, which makes these schemes

e Each digestis applied to the SHA-3 combinational logicinsecure. Battery Backed RAMs (BBRAM) and E-Fuses are
as a challenge. Signals propagate through SHA-3 to italso used for storing keys in FPGAs. BBRAMs complicate
outputs and are timed by the HELP timing engine. Theand add cost to system design because of the inclusion and
timing values are stored in an on-chip BRAM. limited lifetime of the battery. E-Fuses are one-time-pro-

» Once all timing values are collected, the HELP enginegrammable (OTP) memory and are vulnerable to semi-inva-
uses them (and Helper Data stored in the external NVMsive attacks designed to read out the key via scanning
to generate a device-specific decryption key. technologies [8]. These types of issues and attacks on NVMs

« The key is used to decrypt the second stage boot imagare mitigated by Physical Unclonable Functions (PUF),
components also stored in the external NVM and thewhich do not require a battery and do not store secret keys in
system boots. digital form on the chip [9].

Self-authentication is ensured because any change to ti% Overview of Secure Boot under Xilinx
configuration bitstream will change the digest. When the A hardwired 256-bit AES decryption engine is used by
incorrect digest is applied as a challenge in PUF mode, thilinx to protect the confidentiality of externally stored bit-
set of paths that are sensitized to the outputs of the SHA-3treams [1]. Xilinx provides software tools to allow a bit-
combinational block will change (when compared to thosestream to be encrypted using either a randomly generated or
sensitized during enroliment using the trusted BulletProoFuser-specified key. Once generated, the decryption key can
bitstream). Therefore, any change made by an adversary foe loaded through JTAG into an dedicated E-Fuse NVM or
the BulletProoF configuration bitstring will result in missing battery-backed BRAM (BBRAM). The power-up configura-
or extra timing values in the set used to generate the decrypion process associated with fielded systems first determines
tion key. if the external bitstream includes an encrypted-bitstream

The key generated by HELP is tied directly to the exactindicator and, if so, decrypts the bitstream using cipher block
order and cardinality of the timing values. It follows that any chaining (CBC) mode of AES. To prevent fault injection
change to the sequence of paths that are timed will changgttacks [5], Xilinx authenticates configuration data as it is
the decryption key. As we discuss below, multiple bits withinloaded. In particular, a 256-bit keyed hashed message
the decryption key will change if any bit within the configu- authentication code (HMAC) of the bitstream is computed
ration bitstream is modified by an adversary because of thesing SHA-256 to detect tamper and to authenticate the
avalanche effect of SHA-3 and because of a permutatiosender of the bitstream.
process used within HELP to process the timing values into  During provisioning, Xilinx software is used to compute
a key. Note that other components of the boot processsn HMAC of the unencrypted bitstream, which is then
including the first stage boot loader (FSBL), can also beembedded in the bitstream itself and encrypted by AES. A
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decrypted bitstream. If the comparison fails, the FPGA is performs integrity check on generated key
deactivated. The security properties associated with the Xil- v _[BulletProoF uses partial dynamit
inx boot process enable the detection of transmission failt 4 reconfiguration ?0 progrgm i
ures, attempts to program the FPGA with a non-authenti¢ N unused PL regions and
bitstream and tamper attacks on the authentic bitstream. transfers software images to DDR

The secure boot model in modern Xilinx SoC architec- FPGA deactivates

tures differs from that described above because Xilinx SoC
integrate both programmable logic (PL) and processor com
ponents (PS). Moreover, the SoC is designed to be proces-
sor-centric, i.e., the boot process and overall operation of the

SoC is controlled by the processor. Xilinx SoCs use publicties such as AES are not used. The BulletProoF boot-up
key cryptography to carry out authentication during theprocess is illustrated in Fig. 2 as a flow diagram. Similar to
secure boot process. The public key is stored in an NVM anghe Xijlinx boot process, the BootROM loads the FSBL
is used to authenticate configuration files including the Firstyhich then programs the PL side, in this case with the unen-
Stage Boot Loader (FSBL) and therefore, it provides secondgrypted BulletProoF bitstream. The FSBL then hands control
ary authentication and primary attestation. . over to BulletProoF, which carries out some of the functions
The Xilinx Zyng 7020 SoC used in this paper incorpo- normally delegated to U-Boot. BulletProoF's first task is to
rates both a processor (PS) side and programmable logiggenerate the decryption key. It accomplishes this by read-
(PL) side. The processor side runs an operating system (OShg all of the configuration information programmed into the
e.g., Linux, and applications on a dual core ARM cortex A-9p|_ sjde using the ICAP interface [3]. As configuration data
processor, which are tightly coupled with PL side throughis read, it is used as challenges to time paths between the
AMBA AXI interconnect. ICAP and the SHA-3 functional unit (see Fig. 3) and as input

_ The flow diagram shown on the left side of Fig. 1 identi- to the SHA-3 cryptographic hash function to compute a
fies the basic elements of the Xilinx Zynq SoC secure booknained set of digests.

process. The Xilinx BootROM loads the FSBL from an ) : .
external NVM to DRAM. The FSBL programs the PL side As configuration data is read and hashed, BulletProoF
and then reads the second stage boot loader (U-Boot), whidperodically changes the mode of SHA-3 from hash mode to
is copied to DRAM, and passes control to U-Boot. U-Boot @ SPecialized PUF mode of operation. PUF mode configures
loads the software images, which can include a bare-metat?A-3 such tr]:at the co][nbll?atlonal logic of ShHA'3 is used
application or the Linux OS, and other embedded softwaréS & Source of entropy for key generation. The HELP PUF
applications and data files. Secure boot first establishes 45€S €ach digest as a challenge to the SHA-3 combinational
root of trust, and then performs authentication on top of théog'c.t?lOCk' HELP measures and d|g[t|zes the d(_alays of paths
trusted base at each of the subsequent stages of the boot piiznSitized by these challenges at high resolution and stores
cess. As mentioned, Rivest-Shamir-Adleman (RSA) is used €M in an on-chip BR.AZ/' for flater prrlocgssmg. Tr;]e same
for authentication and attestation of the FSBL and other conl!MiNg operation is carried out for paths between the ICAP
figuration files. The hardwired 256-bit AES engine and and SHA-3 outputs, as discussed above, and the timing data

SHA-256 are then used to securely decrypt and authenticafgPMPined and stored with the SHA-3 timing data in the
boot images using a BBRAM or E-Fuse embedded key! RAM. This process continues with e_lddltlona! configuration
Therefore, the root of trust and the entire secure boot procedata added to the existing hash (chained) until all of the con-
depends on the confidentiality of the embedded keys. iguration data is read and processed.
4 Overview of BulletProoF BulletProoF then reads the externally stored Helper
BulletProoF is designed to be self-contained, utilizing Data and delivers it to the HELP algorithm as needed during
only components typically available in the FPGA PL fabric. the key generation process that follows. The decryption key
Specialized, vendor-supplied embedded security compas transferred to an embedded PL-side AES engine. Bullet-
nents, including E-Fuse, BBRAM and cryptographic primi- ProoF reads the encrypted second stage boot image compo-

PS side boots Linux and
runs apps, etc.

|72}

Fig. 2. Proposed Zynq SoC boot process.
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ried out by the fielded device is illustrated in Fig. 3. As indi-
cated above, the FSBL loads the unencrypted version of
BulletProoF from the external NVM into the PL of the
o FPGA and hands over control to BulletProoF. As discussed
nents labeled 3 through 9 in Fig. 2 from external NVM and fyrther below, BulletProoF utilizes a ring-oscillator as a
transfer them to the AES engine. o clock source that cannot be disabled during the boot process
An integrity check is performed at the beginning of the gnce it is started. This prevents attacks that attempt to stop
decryption process as a mechanism to determine if thehe boot process at an arbitrary point to reprogram portions
proper key was regenerated. The first component decryptegk the PL using external interfaces, e.g., PCAP, SelectMap or
is the key integrity check component (labeled 3 in Fig. 2).JTAG. The steps and annotations in Fig. 3 are defined as fol-

External NVM

Fig. 3. BulletProoF enrollment and regeneration process.

This component can be an arbitrary string or a secure hasfyys:

of, e.g., U-Boot.elf, that is encrypted during enroliment and1
stored in the external NVM. An unencrypted version of the ™
key integrity check component is also stored as a constant in
the BulletProoF bitstream. The integrity of the decryption 2.
key is checked by comparing the decrypted version with the
BulletProoF version. If they match, then the integrity check
passes and the boot process continues. Otherwise, the FPGA
is deactivated and secure boot fails. 3

If the integrity check passes, BulletProoF then decrypts™
and authenticates components 4 through 9 in Fig. 2 using
256-bit AES in CBC mode and HMAC, resp., starting with
the application (App) bitstream. An application bitstream is4.
programmed into the unused components of the PL side by
BulletProoF using dynamic partial reconfiguration. Bullet-
ProoF then decrypts the software components, e.g., Linux,
etc. and transfers them to U-Boot. The final step is to boo]5
strap the processor to start executing the Linux OS (or bare-"
metal application).
4.1 BulletProoF Enrollment Process

BulletProoF uses a physical unclonable function (PUF)
to generate the decryption key as a mechanism to eliminaté.
the vulnerabilities associated with on-chip key storage. Keyy.
generation using PUFs requires an enroliment phase, which
is carried out in a secure environment, i.e., before the system
is deployed to the field. During enroliment when the key is
generated for the first time, HELP generates the key inter-
nally and transfers Helper Data off of the FPGA. As shown
in Fig. 2, the Helper Data is stored in the external NVM

BulletProoF reads configuration data using the ICAP
interface using a customized controller.

Everyn-th configuration word is used as a challenge to
time paths between the ICAP and the SHA-3 outputs

with SHA-3 configured ilPUF modé. The digitized
timing values are stored in an on-chip BRAM.

The remaining configuration words are applied to the
inputs of SHA-3 irfunctional modeo compute a
chained sequence of digests.

Periodically, the existing state of the hash is used as a
challenge with SHA-3 configured PUF modeto gen-
erate additional timing data. The digitized timing values
are stored in an on-chip BRAM.

Once all configuration data is processed, the HELP
algorithm processes the digitized timing values into a
decryption key using Helper Data which are stored in an
External NVM.

BulletProoF runs an integrity check on the key.

BulletProoF reads the encrypted 2nd stage boot image
(SSBI) from the external NVM. AES decrypts the image
and transfers the software components to U-Boot and
the hardware components into the unused portion of the
PL using dynamic partial reconfiguration. Once com-
pleted, the system boots.

unencrypted. The internally generated key is then used to
encrypt the other components of the external NVM (second
stage boot image or SSBI) by configuring AES in encryption

1. Thisis done to prevent a specific type of reverse-engi-
neering attack discussed later.
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Fig. 4. Implementation details of ICAP and SHA-3 interface with annotations showing paths that are timed (“A” and “B”’) and

hash mode (“C”).

4.3 Security Properties .

The primary goal of BulletProoF is to protect the second

stage boot images, i.e., prevent them from being decrypted,
changed, encrypted and installed back into the fielded sys-
tem. The proposed system has the following security proper-
ties in support of this objective:

The enrollment and regeneration process proposed for
BulletProoF never reveals the key outside the FPGA®
Therefore, physical, side-channel-based attacks are nec-
essary in order to steal the key. We do not address side-
channel attacks in this paper, but it is possible to design

BulletProoF disables the external programming inter-
faces (PCAP, SelectMap and JTAG) prior to starting to
prevent adversaries from attempting to perform dynamic
partial reconfiguration during the boot process. Bullet-
ProoF actively monitors the state of these external inter-
faces during boot, and destroys the timing data and/or
key if any changes are detected.

BulletProoF erases the timing data from the BRAM
once the key is generated, and destroys the key once the
2nd stage boot image is decrypted. The key is also
destroyed if the key integrity check fails.

the AES engine with side-channel attack resistances Additional BulletProoF CounterMeasures

using circuit countermeasures as proposed in [10].

The primary threat to BulletProoF is key theft. This sec-

Any type of tamper with the unencrypted BulletProoF tion discusses two important attack scenarios and counter-
bitstream or Helper Data by an adversary will only pre- measures designed to deal with them.
vent the key from being regenerated and a subsequert| [CAP Data Spoofing Countermeasure

failure of boot process. Note that it is always possible to
attack a system in this fashion, i.e., by tampering with
the contents stored in the external NVM, independent o
whether it is encrypted or not.

Any attempt to reverse engineer the unencrypted bit-,[h e
stream in an attempt to insert logic between the ICAP
and SHA-3 input will change the timing characteristics
of these paths, resulting in key regeneration failure. For,
example, the adversary may attempt to rewire the inpuE
to SHA-3 to allow external configuration data (con—f
structed to exactly model the data that exists in the
trusted version) to be used instead of the ICAP data.
The adversary may attempt to reverse-engineer th
Helper Data to derive the secret key. As discussed i

The first important attack scenario is shown by the red

1dotted lines in Fig. 3. The top left dotted line labeled ‘Attack
scenario’ represents an adversarial modification which is
designed to re-route the origin of the configuration data from

ICAP to I/O pins. With this change, the adversary can

stream in the expected configuration data and then freely
modify any portion of the BulletProoF configuration. The
implest change she can make is to add a key leakage chan-
el as shown by the red dotted line along the bottom of the
igure.

The countermeasure to this attack is to ensure the adver-

ary is not able to make changes to the paths between the
CAP and the SHA-3 without changing the timing data and

[11], the PUF used by BulletProoF uses a helper dat&iecryption key. A block diagram of the BulletProoF archi-

scheme that does not leak information about the key.
The proposed secure boot scheme stores an unencryptg%kf’,l
version of the BulletProoF bitstream and therefore,

tecture that addresses this threat is shown in Fig. 4. In partic-
r, timing data is collected by timing the paths identified as
and “B”. For "A”, the 2 vector sequence (challenge)V

adversaries are free to change components of BulletY2 iS derived directly from the ICAP data. In other words,
ProoF and/or add additional functionality to the unusedthe launch of transitions along the "A” paths is accomplished
regions in the PL. As indicated, changes to configuraWithin the ICAP interface itself. Signal transitions emerging
tion data read from ICAP are detected because the pati# the ICAP output register propagate through the SHA-3
that are timed by the modified configuration data arecombinational logic to the time-to-digital converter or TDC

different, which causes key regeneration failure.

shown on the right (discussed below). The timing operation

BulletProoF uses a ring oscillator as a clock sourcels carried out by de-assertitigish_modeand then launching
Therefore, once BulletProoF is started, it cannot beV» by asserting ICAP control signals using the ICAP input
stopped by the adversary as a mechanism to steal thegister (not shown). The path selected by the 200-to-1 MUX

key (this attack is elaborated on below).

is timed by the TDC. This operation is repeated to enable all
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Fig. 5. Functional unit and time-to-digital converter (TDC) engine architecture.  Fig. 6. Xilinx slice with CARRY4 Primitive.

of the 72 individual paths along the “A” route to be timed. x— launch
Note that the ICAP output register is only 32-bits, which is V, val§ V, vals
fanned-out to 72-bits as required kgccak-f[200}version of
SHA-3 [12]. Launch carry chain buffer values
The timing operation involving the ‘chained’ sequence path T
of hashes times paths along the routes labeled by “B” in Fig. MPSCIk —
4. The current state of the hash is maintaineldstatewhen ThermEEs
hash_modas deasserted by virtue of disabling updates to ITITFWW
the FFs using theen input. Vector V| of the two-vector L 222 4 vy
sequence is all 0's and the launch of i accomplished by v IE = DeEOdi:g |
deasserting.aunchMUXCtrl AlLD] Mﬁset

Hash mode of operation, labeled “C” in Fig. 4, is
enabled by assertingnash_mode Configuration data is
hashed into the current state by assertimad_msgon the  Xilinx ‘implementation view’ diagram of Fig. 6 highlight
first cycle of the SHA-3 hash operatiohaunchMUXCtrl  carry-chain (CARRY4) components within the FPGA that
remains deasserted in hash mode. are leveraged within the TDC. A CARRY4 element is a
5.2 Clock Manipulation Countermeasure sequence of 4 high-speed hardwired buffers, with outputs

The adversary may attempt to stop BulletProoF duringconnected to a set of 4 FFs labelBdermFFsin Figs. 5 and
key generation or after the key is generated, reprogram pot6. The Carry Chain component in Fig. 5 is implemented by
tions of the PL and, e.g., create a leakage channel that pr@onnecting a sequence of 32 CARRY4 primitives in series,
vides direct access to the key. The clock source and othewith individual elements labeled as @@ CC,,7in Fig. 5.
inputs to the Xilinx digital clock manager (DCM), including Therefore, the Carry Chain component implements a delay
the fine phase shift functions used by HELP to time pathschain with 128 stages. The path to be timed (labglathin
therefore represent an additional vulnerability [13]. Figs. 5 and 6) drives the bottom-most §€lement of the

A countermeasure that addresses clock manipulatiogarry chain. Transitions on this path propagate upwards at
attacks is to use a ring oscillator (RO) to generate the clockigh speed along the chain where each carry chain element
and a time-to-digital-converter (TDC) as an alternative path,gqs approx. 15 ps of buffer delay. As the signal propagates,
timing method that replaces the Xilinx DCM. The RO and the p inputs of theThermFFschange from O to 1, one-by-
TDC are implemented in the programmable logic and thereéqne over the length of the chain. TieermFFsare config-
fore the configuration information associated with them ISyred as positive-edge-triggered FFs and therefore, they sam-
also processed and validated by the hash-based self-authergfe the D input when their Clk input is 0. The Clk input to
cation mechanism described earlier. ‘the ThermFFsis driven by a special Major Phase Shift Clk

As discussed previously, HELP measures path delays iaypscly that is described further below.
the combinational logic of the SHA-3 hardware instance.

The left side of the block-level diagram in Fig. 5 shows an ~ The delay of a path through the SHA-3 combinational
instance of SHA-3 configured with components that werelogic block is measured as follows. First, the?SClksignal
described in the previous section (Fig. 4). The right sideat the beginning of the path delay test is set to 0 to make the
shows an embedded time-to-digital converter (TDC) engineThermFFssensitive to the delay chain buffer values. The
with components labeled Test Paths, Carry Chain and Majopath to be timed is selected usifgelectand is forced to 0
Phase Shift, which are used to obtain high resolution meadnder the first vector, ¥, of the 2-vector sequence. There-
surements of the SHA-3 path delays. fore, the signapath and the delay chain buffers are initial-
The white and orange colored routes and elements in thized to O, as illustrated on the left side of the timing diagram

Fig. 7. Timing Diagram for the timing engine.



in Fig. 7. The launch event is initiated by applying ¥ the  ing inaccuracies introduced as the configuration of the MPS

inputs of SHA-3 while simultaneously asserting tteunch  is tuned to accommodate the length of the path being timed.
signal, which creates rising transitions that propagate a&rom Fig. 5, theMPSClkdrives theThermFFClk inputs and
shown by the red arrows on the left side of Fig. 5. Thetherefore controls how long th'éhermFFscontln_ue to sam-
Launchsignal propagates into the MPBUF, delay chain ple the CG elements. The 12-to-1 MUX associated with the

shown on the right side of Fig. 5 simultaneous with ragh ~ MPS can be controlled using théPSsekignals to delay the
signal’s propagation through SHA-3 and the carry chain.CIk with respect to th@athsignal. The MPS MUX connects
The Launch signal eventually emerges from theajor to theBUF, chain at 12 different tap points, with O selecting

Phase Shifunit on the right asMPSCIK. WhenMPSCIlk  the tap point closest to the origin of the BUF path along the
goes high, theThermFFsstore a snap-shot of the current Pottom and 11 selecting the longest path throughBlk,
state of carry chain buffer values. Assuming this eventchain. The delay associated witiPSseket to 0 is designed
occurs as the rising transition gmath is still propagating to be less than delay of the shortest path through the SHA-3
along the carry chain, the lower set BhermFFswill store  combinational logic.

1's while the upper set store 0’s (see timing diagramin Fig. 7 An underflow condition occurs when tipathtransition

for a illustration). The sequence of 1's followed by O’s is arrives at the input of the carry chain (at g)Cafter the
referred to as @hermometer code or TC. The Decoder MPSClkis asserted on th&hermFFs The MPS controller
component in Fig. 5 counts the number of O's in the 128¢onfigures theiPSseto 0 initially, and increments this con-
ThermFFsand stores this count in theVal (timing value)  trol signal until underflow no longer occurs. This requires
register. TheTVal is added to anMPSOffset(discussed the path to be retested at most 12 times, once of MR&sel
below) to produce a PUF NumbePN), which is stored in  setting. Note that paths timed withPSsel> 0 require the
BRAM for use in the key generation process. additional delay along the MP8UF, chain, called an

5.2.1 Underflow and Overflow MPSOffsetto be added to th&Val. Calibration is a process
The differences in the relative delays of thath and  that determines th®PSOffsetvalues associated with each
MPSClksignals may cause an underflow or overflow errormMPSseb> 0.
condition, which is signified when th&Val is either 0 or The goal of calibration is to measure the delay through
128. Although the carry chain can be extended in length as ghe MPSBUF, chain between each of the tap points associ-
means of avoiding these error conditions, it is not practical t0;0 4 with the 12-to-1 MUX. In order to accomplish this, dur-
do so. This is true because of very short propagation delay cajipration, the role of thpath and MPSClksignals are
associated with each carry chain element (approx. 15 ps) andyersed. In other words, thathsignal is now the ‘control

the wide range of delays that need to be measured througl) : P
e : ; gnal and thevPSClksignal is timed. The delay of thgath
the SHA-3 combinational logic (approx. 10 ns), which gjona| needs to be controlled in a systematic fashion to create
would require the carry chain to be more than 650 element§, o gata required to compute an accurate se¥IBSOffset
in length. values associated with ealtPSselsetting.

_Inmodern FPGAs, a carry chain of 128 elements s triv- The calibration process utilizes the Test Path component
lally mapped into a small region of the programmable IOgIC'from Fig. 5 to allow systematic control over tipath delays.
The shorter length also minimizes adverse effects created uring calibration, theCalselis set to 1 which redirects the

a!cross'c“ip process variatiqns, localized temperature Variﬂﬁput of the carry chain from SHA-3 to the Test Path output.
2822 ggfagg;vneﬁn%é%?leytﬁg'stiedeﬂgvr\]'ege;% égleasg?r:;rn%g%'pfhe TPselcontrol signals of the Test Path component allow
be measured, and instances of u%derﬂow );nd overflo ths of incrementally longer lengths to be selected during
become comn'won events alibration, from 1 LUT to 32 LUTSs. Although paths within
. y . the SHA-3 combo logic unit can be used for this purpose, the

TheMajor Phase ShiffMPS) component is included as ot paih component allows a higher degree of control over
a means of dealing with underflow and overflow conditions., length of the path. The components labelechEwough
Its primary function is to extend the range of the paths tha Wan refer to a ‘swit h hich is impl ted as 2 llel
can be timed. With 128 carry chain elements, the range of ' 31 €f€r o a switch’, which 1S implemented as < parafle
path delays that can be measured is approx. 128 * 15 pg-tol-l MUXs (S|m.|lar to the Arbiter PUF but with no con-
which is less than 2 ns. The control inputs to the MPS Straints on matching delays along the two paths [14]). The
labeledMPSselin Fig. 5, allow the phase dfIPSClkto be  fising transition entering the chain of switches at the bottom
adjusted to accommodate the 10 ns range associated with tiefanned-out and propagates along two paths. Each SW can
SHA-3 path delays. However, a calibration process needs tBe configured with e&SWconsignal to either route the two
be carried out at start-up to allow continuity to be maintainedPaths straight through both MUXsSfvcon= ‘0") or the
across the range of delays that will be measured. paths can be swappe8\/cor= ‘1’). The configurability of
522 Calibration the Test Path component provides a larger variety of path

R ; engths that calibration can use, and therefore, improves the
The MPS component and calibration are designed téaccuracy of the computddPSOffsets

expand the measurement range of the TDC while minimiz- T
s g The tap points in the MPS component are selected such
L . ) that any path within the Test Path component can be timed
1. To minimize Clk skew, thé/PSClksignal drives without underflow or overflow by at least two consecutive
a Xilinx BUFG primitive and a corresponding MPSselcontrol settings. If this condition is met, then cali-
clock tree on the FPGA. bration can be performed by selecting successively longer




Table 1: Calibration data from Chip C1

MPS SWecon configuration 0 SWecon configuration 1 SWecon Ave | MPSOffset
2-7
™ |0 (1 |2 |3 |4 |5 (6310 |1 (2|3 |4 ]|5]|6 |7-31] 031
0 ol] 113 128 128 128 128 .. b5 6 119 122 128 [128 [128]... . NA NA
1 17 39 71 74 118 128 ... 0 11 45 49 |87 107 128 |.. NA NA
Diffs| 74| 74] NA| NA| NA[NAT... | NA| 75] 74] 73| NA| NA|[ NAT ... 74.4375 74.437
1 177 39 71 74 118 128 ... 0 11 45 H©9 [87 107 128 |.. NA NA
2 0O O 23 294 67 86 .. O 0O 0 |0 41 61 82 .. NA NA
Diffs| NA| NA| 48| 47| 46| NA| ... | NA][ NA]| NA| NA| 46 46| NA| ... 46.5624 121.00Q0

paths in the Test Path component and timing each of therMPSOffseiassociated with the first test of a path that pro-
under two (or more)MPSsel settings. By holding the duces a validlVal is added to thaVal to produce the final
selected test path constant and varying MieSselsetting, PN value (see Fig. 7).

the computedTVals represents the delay along tiBJF, 6 Statistical Analysis

chain within the MPS between two consecutive tap points. The HELP PUF within BulletProoF must be able to

Table 1 shows a subset of the results of applying calibral€3€nerate the decryption key without bit flip errors and
tion to a Xilinx Zynq 7020 FPGA. The left-most column without any type of interaction with a server. We propose a

identifies the MPSsel setting (labeled MPS). The rows .bit flip error avoidance SC“‘?m.e in [1.5] that creates three cop-
labeled with a number in the MPS column g.ive figals  1es of the key and uses majority voting to eliminate inconsis-
obtained for each of the test paths (TP) 0-31 under a set ncies that occur in one of thg copies at each bit position.
SWeonconfigurations 0-7 SWconconfigurations are ran- he scheme is identical to tra_ldltlonal trlple-modula_r-redun-
domly selected 32-bit values that control the state of Tesfa"cY (TMR) methods used in fault tolerance designs. We
Path switches from Fig. 5. In our experiments, we carried ou xtend this technique here to allow aadiional capies, e.g.,

calibration with 8 differentSWconvectors as a means of MR 7MR, 9MR, etc., and combine it with a second reli-
obtaining sufficient data to compute the set dfIPSOffsets ablllty—enhancmg method, called '\"afg'“'ng [9][11]. We call
accurately the combined method secure-key-encodin$KE because

o the Helper Data does not leak any information about the
TVals of 0 and 128 indicate underflow and overflow, secret key. The Helper Data generated during enroliment is
respectively. The rows labeleDiffs are differences com-  stored in an NVM and is read in during the key regeneration
puted using the pair of Valsshown directly above thBiffs  process as discussed earlier in reference to Fig. 3.
values in each column. Note that if eithEval of a pairis 0 The Margin method creates weak bit regions to identify
or 128, the difference is not computed, and is signified usingoyr Numbers (PN from Fig. 7) that have a high probability
‘NA"in the table. Only the data and differences for MPS 0 f generating bit flip errors. We refer to these PN as unstable
and 1 (rows 3-5) and MPS 1 and 2 (rows 6-8) are showrynq their corresponding bits as weak. A Helper Data bit-
from the larger set generated by calibration. As an examplestring is generated during enroliment that records the posi-
the TValsin rows 3 and 4, column 2 are 91 and 17 respec+jons of the unstable PN in the sequence that is processed.
tively, which represents the shortest test path 0 delay undgie|per Data bits that are 0 inform the enrollment and regen-
MPSsebetting 0 and 1, respectively. Row 5 gives the differ- gration key generation process to skip over these PN. On the
ence as 74. ThBiffs in a given row are expected to be same pther hand, the PN classified as stable are processed into key
because the same tidPSselvalues are used. Variations in pjts and are called strong bits. The SKE enrollment process
the Diffs occur because of measurement noise and within-digonstructs an odd number of strong bit sequences, where
variations along the carry chain, but are generally very smallgach sequence is generated from independent PN but are oth-
e.g., 2 or smaller as shown for the data in the table. erwise identical (redundant) copies of each other. During
The Avecolumn on the right gives the average values ofregeneration, the same sequences are again constructed pos-
the Diffs across each row using data collected fro®\®con  sibly with bit-flip errors. Majority voting is used to avoid bit
configurations. TheMPSOffsetcolumn on the far right is flip errors in the final decryption key by ignoring errors in 1
simply computed as a running sum of theecolumn values of the 3 copies (or 2 of the 5 copies, etc.) that are inconsis-
from top to bottom. Once calibration data is available andtent with the bit value associated with the majority. The num-
the MPSOffsetvalues computed, delays of paths within the ber of copies is referred to as tiedundancy settingnd is
SHA-3 are measured by settibngPSselto 0 and then carry- given as 3, 5, 7, etc.
ing out a timing test. If th&'Val is 128 (all 0’s in the carry Reference [11] describes several other features of the
chain) then theMIPSClkarrived at theThermFFsbefore the  HELP algorithm. For example, HELP processes sets of 4096
transition on the functional unit path arrived at the carryPN into a multi-bit key in contrast to other PUFs which gen-
chain input. In this case, th€lPSselvalue is incremented erate key bits one-at-a-time. HELP also includes several
and the test is repeated until thd/al is non-zero. The other parameters beyond the Margin and the number of
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Fig. 8. InterChip Hamming Distance (left), Probability of Failure (middle) and Smallest Bitstring Size (right) statistics obtained
from PN generated from a set of 30 Xilinx Zynq 7020 chips across extended industrial temperature-voltage specifications (-40°C to
100°C, +/- 5% supply voltage). Statistical results are reported for multiple values of the HELP algorithm parameters Margin and
Modulus averaged across 400 LFSR seed pairing combinations (mean values are used the Reference mean and range parameters,
see [11] for details).

redundant copies used in the majority voting scheme jusfented by all combinations of temperatures f@00°C,

discussed. For example, HELP allows the user to specify
pair of LFSR seeds that are then used to pseudo—random%soc' 85°C, 100°C) and voltages (0.95V, 1.00V and 1.05V).

pair the 4096 PN to create 2048 PN differences. HELP also ~ The bar graphs shown in Fig. 8 present the statistical
defines a third reliability-enhancing technique that is basedesults for InterChip hamming distance (HD), in (a) and (b),
on applying linear transformations to the 2048 PN differ- Probability of Failure in (c) and (d) and Smallest Bitstring
ences, and a modulus operation designed to remove patfize in (e) and (f) for SKE using redundancy settings of 5
length bias effects. The decryption key produced by HELP igtop row) and 7 (bottom row). Here, the final bitstring is con-
dependent on the values assigned to these parameters. It f§fructed by using majority voting across 5 and 7 copies of
lows then that a comprehensive evaluation of bitstring statisStrong bit sequences, respectively. The results for the nine
tical quality requires the analysis to be performed undeModuli and two Margins are shown along the x and y axes,
different parameter combinations. rgspectlvely. As |r_1d|cated_earl|er, HELP processes 2048 PN
The statistical results reported here investigate one set dfifferences at a time, which produces a bitstring of length
challenges, two Margins of 3 and 4, and nine Moduli 2048 bits.
between 14 and 30. The statistics are averaged across 400 The InterChip HD is computed by pairing enrollment
groups of 2048 PN difference created using different LFSRbitstrings (of length 2048 bits) under all combinations and is
seed pairs. Although this represents only a small portion ofjiven by Egq 1. The symboNC indicates the number of
the total challenge-response space of HELP, it is sufficientlychips, which is 30 in our experiments, aR€Cindicates the
diverse to provide a good model of the expected behavionumber of chip combinations, which is 30*29/2 = 435. The
under different challenge sets and parameter combinationssymboINB; is the number of bits classified as strongisth
Unlike previously reported statistics on the HELP PUF, bitstrings of the( j) pair. The subscripti(1, K) is interpreted
the results shown here are generated using the TDGs chipi, TV cornerl (enrollment) and bik. Hamming dis-
described in Section 5.2. The three standard statistical quatance is computed by summing the XOR of the individual
ity metrics evaluated include uniqueness (using inter-chighbits from the bitstring pair under the condition that both bits
hamming distance), reliability (using intra-chip hamming are strong (bit positions that have a weak bit in either bit-
distance) and randomness (using the NIST statistical tesftring of the pair are skipped). Th¢D; e, values computed
suite). The analysis is carried out using data collected from ggividually using 400 different LFSR seed pairs are aver-
set of 30 Xilinx Zyng 7020 chips (on Zedboards [16]). The aged and reported in Fig. 8(a) and (b). The bar graph shows
data is collected under enrollment conditions &t@51.00V  near ideal results with InterChip HDs between 48% and 51%
and over a set of 15 temperature-voltage (TV) corners reprefideal is 50%).



In summary, assuming the reliability requirements for

NB
za(Bs. 0Bs, . ) BulletProoF are 16, the HELP PUF parameters need to be
, NE NE - Lk= 7T Lk set to SKE 7 and Margin 4, and the Modulus set to be > 20.
HDinter = NeG z z — NE x 100 When these constraints are honored, the InterChip HD is
i=1j=i+1 a >48% and nearly all NIST tests are passed. Decryption key

sizes of 128 or larger can be obtained by running the HELP
algorithm with 20 or more LFSR seed pairs, or by generating
Eq. 1. additional sets of 4096 PNs as configuration data is read and

The Probability of Failure results shown in Fig. 8(c) and Processed as described in Section 4.

(d) are computed using the K2, expression given by Eq. 7 Conclusions

2. Here, bitstrings from the same chip under enroliment con- A PUF-based secure boot technique called BulletProoF
ditions are paired with the bitstrings generated under theS proposed that is designed to self-authenticate as a mecha-
remaining 15 TV corners. The symbNIC is the number of Nism to detect tamper. An unencrypted version of Bullet-
chips (30),NT is the number of TV corners (16) aldB, is I?rooF, which is stored in an exterr.]aI.NVM, is loaded by the
the number of bits classified as strong during enroliment/i"'St stage boot loader. The PUF within BulletProoF regener-
Note that Margining creates a Helper Data bitstring only"’,‘teS a decryption key using bltst_ream configuration informa-
during enrollment, which is used to select bits in the enroli-tion as challenges, and this key is used to decrypt the second
ment and regeneration bitstrings for the XOR operation. ArStage boot images and to boot the system. The configuration

average HRy, is computed using the values computed for INformation is read using the ICAP interface and represents
ira he FPGA implementation of BulletProoF itself. This self-

each of the 400 LFSR seeds. The bar qra‘?hs plot thg éveraé\uthenticating process detects tamper attacks that modify the
HDjnira @S an exponent to ¥pwhere 1¢° indicates 1 bit flip | yTs or routing within BulletProoF in an attempt to create a
error in 1 million bits inspected. The best results areleakage channel for the key. The conceptual design of Bullet-
obtained from SKE 7 with a Margin of 4 (Fig. 8(d)) where ProoF is described and experimental results presented that
the Probability of Failure is < 1®for Moduli >=22. demonstrate a novel embedded time-to-digital-converter,
which is used by the HELP PUF to measure path delays and

NB. generate the encryption/decryption key.
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