
Abstract
Secure boot within an FPGA environment is tradition-

ally implemented using hardwired embedded cryptographic
primitives and NVM-based keys, whereby an encrypted bit-
stream is decrypted as it is loaded from an external storage
medium, e.g., Flash memory. A novel technique is proposed
in this paper that self-authenticates an unencrypted FPGA
configuration bitstream loaded into the FPGA during the
start-up. The internal configuration access port (ICAP)
interface is accessed to read-out configuration information
of the unencrypted bitstream, which is then used as input to
SHA-3 to generate a digest. In contrast to conventional
authentication where the digest is computed and compared
with a second pre-computed value, we use the digest as chal-
lenges to a hardware-embedded delay PUF called HELP.
The delays of the paths sensitized by the challenges are used
to generate a decryption key using the HELP algorithm. The
decryption key is used in the second stage of the boot process
to decrypt the operating system (OS) and applications. It fol-
lows that any type of malicious tampering with the unen-
crypted bitstream changes the challenges and the
corresponding decryption key, resulting in key regeneration
failure. A ring-oscillator is used as the clock to make the
process autonomous (and unstoppable) and a novel on-chip
time-to-digital-converter is used to measure path delays,
making the proposed boot process completely self-contained,
i.e., implemented entirely within the reconfigurable fabric
and without utilizing any vendor-specific FPGA features.
1  Introduction

SRAM-based FPGAs need to protect the programming
bitstream against reverse engineering and bitstream manipu-
lation (tamper) attacks. Fielded systems are often the targets
of attack by adversaries seeking to steal intellectual property
(IP) through reverse engineering, or attempting to disrupt
operational systems through the insertion of kill switches
known as hardware Trojans. Internet-of-things (IoT) systems
are particularly vulnerable given the resource-constrained
and unsupervised nature of the environments in which they
operate.

FPGAs implementing secure boot usually store an
encrypted version of the programming bitstream in an off-
chip non-volatile memory (NVM) as a countermeasure to
these types of attacks. Modern FPGAs provide on-chip bat-
tery-backed RAM and/or E-Fuses for storage of a decryption
key, which is used by vendor-embedded encryption hard-
ware functions, e.g., AES, within the FPGA to decrypt the
bitstream as it is read from the external NVM during the
boot process [1]. Recent attack mechanisms have been

shown to read out embedded keys and therefore on-chip key
storage threatens the security of the boot process [2].

In this paper, we propose a PUF-based key generation
strategy that addresses the vulnerability of on-chip key stor-
age. Moreover, the proposed secure boot technique is self-
contained in that none of the FPGA-embedded security
primitives or FPGA clocking resources are utilized. We refer
to the system as Bullet-Proof Boot for FPGAs (Bullet-
ProoF). BulletProoF uses a PUF implemented in the pro-
grammable logic (PL) side of an FPGA to generate the
decryption key at boot time, and then uses the key for
decrypting an off-chip NVM-stored second stage boot
image. The second stage boot image contains PL compo-
nents as well as software components such as an operating
system and applications. BulletProoF decrypts and programs
the PL components directly into those portions of the PL
side that are not occupied by BulletProoF using dynamic
partial reconfiguration while the software components are
loaded into DRAM for access by the processor system (PS).
The decryption key is destroyed once this process completes,
minimizing the time the decryption key is available.

Similar to PUF-based authentication protocols, enroll-
ment for BulletProoF is carried out in a secure environment.
The enrollment key generated by BulletProoF is used to
encrypt the second stage boot image. Both the encrypted
image and the unencrypted BulletProoF bitstreams are stored
in the NVM. During the in-field boot process, the first stage
boot loader (FSBL) loads the unencrypted BulletProoF bit-
stream into the FPGA. BulletProoF reads the entire set of
configuration data that has just been programmed into the
FPGA using the internal configuration access port (ICAP)
interface [3] and uses this data as challenges to the PUF to
regenerate the decryption key. Therefore, BulletProoFself-
authenticates. The BulletProoF bitstream instantiates the
SHA-3 algorithm and uses this cryptographic function both
to compute hashes and as the entropy source for the PUF. As
we will show, BulletProoF is designed such that the gener-
ated decryption key is irreversibly tied to the data integrity of
the entire unencrypted bitstream.

BulletProoF is stored unencrypted in an off-chip NVM
and is therefore vulnerable to manipulation by adversaries.
However, the tamper-evident nature of BulletProoF prevents
the system from booting the components present in the sec-
ond stage boot image if tamper occurs because an incorrect
decryption key is generated. In such cases, the encrypted bit-
string is not decrypted and remains secure.

The hardware-embedded delay PUF (HELP) is lever-
aged in this paper as a component of the proposed tamper-
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evident, self-authenticating system implemented within Bul-
letProoF. HELP measures path delays through a CAD-tool
synthesized functional unit, in particular the combinational
component of SHA-3 in the proposed system. Within-die
variations that occur in path delays from one chip to another
allow HELP to produce a device-specific key. Challenges for
HELP are 2-vector sequences that are applied to the inputs
of the combinational logic that implements the SHA-3 algo-
rithm. The timing engine within HELP measures the propa-
gation delays of paths sensitized by the challenges at the
outputs of the SHA-3 combinational block. The digitized
timing values are used in the HELP bitstring processing
algorithm to generate the AES key.

The timing engine times paths using either the fine
phase shift capabilities of the digital clock manager on the
FPGA or by using an on-chip time-to-digital-converter
(TDC) implemented using the carry-chain logic within the
FPGA. The experimental results presented in this paper are
based on the TDC strategy.

The BulletProoF boot process is summarized as follows:
• The first stage boot loader (FSBL) programs the PL side

with the unencrypted (and untrusted) BulletProoF bit-
stream.

• BulletProoF reads the configuration information of the
PL side (including configuration data that describes
itself) through the ICAP and computes a set of digests
using SHA-3.

• For each digest, the mode of the SHA-3 functional unit
is switched to PUF mode and the HELP engine is
started.

• Each digest is applied to the SHA-3 combinational logic
as a challenge. Signals propagate through SHA-3 to its
outputs and are timed by the HELP timing engine. The
timing values are stored in an on-chip BRAM.

• Once all timing values are collected, the HELP engine
uses them (and Helper Data stored in the external NVM)
to generate a device-specific decryption key.

• The key is used to decrypt the second stage boot image
components also stored in the external NVM and the
system boots.
Self-authentication is ensured because any change to the

configuration bitstream will change the digest. When the
incorrect digest is applied as a challenge in PUF mode, the
set of paths that are sensitized to the outputs of the SHA-3
combinational block will change (when compared to those
sensitized during enrollment using the trusted BulletProoF
bitstream). Therefore, any change made by an adversary to
the BulletProoF configuration bitstring will result in missing
or extra timing values in the set used to generate the decryp-
tion key.

The key generated by HELP is tied directly to the exact
order and cardinality of the timing values. It follows that any
change to the sequence of paths that are timed will change
the decryption key. As we discuss below, multiple bits within
the decryption key will change if any bit within the configu-
ration bitstream is modified by an adversary because of the
avalanche effect of SHA-3 and because of a permutation
process used within HELP to process the timing values into
a key. Note that other components of the boot process,
including the first stage boot loader (FSBL), can also be

included in the secure hash process, as well as FPGA embed-
ded security keys, as needed.

The rest of this paper is organized as follows. Related
work is discussed in Section 2. An overview of the existing
Xilinx boot process is provided in Section 3. Section 4
describes the proposed BulletProoF system, while Section 5
describes BulletProoF countermeasures, including an on-
chip time-to-digital-converter (TDC) which leverages the
carry-chain component within an FPGA for measuring path
delays. Section 6 presents a statistical analysis of bitstrings
generated by the TDC as proof-of-concept. Conclusions are
provided in Section 7.
2  Background

Although FPGA companies embed cryptographic primi-
tives to encrypt and authenticate bitstreams as a means of
inhibiting reverse engineering and fault injection attacks,
such attacks continue to evolve. For example, a technique
that manipulates cryptographic components embedded in the
bitstream as a strategy to extract secret keys is described in
[4]. A fault injection attack on an FPGA bitstream is
described in [5] to accomplish the same goal where faulty
cipher texts are generated by fault injection and then used to
recover the keys. A hardware Trojan insertion strategy is
described in [6] which is designed to weaken FPGA-embed-
ded cryptographic engines.

There are multiple ways to store the secret crypto-
graphic keys in an embedded system. While one of the con-
ventional methods is to store them in Non-Volatile Memory
(NVM), [7] and [8] discuss several ways to extract crypto-
graphic keys stored in NVMs, which makes these schemes
insecure. Battery Backed RAMs (BBRAM) and E-Fuses are
also used for storing keys in FPGAs. BBRAMs complicate
and add cost to system design because of the inclusion and
limited lifetime of the battery. E-Fuses are one-time-pro-
grammable (OTP) memory and are vulnerable to semi-inva-
sive attacks designed to read out the key via scanning
technologies [8]. These types of issues and attacks on NVMs
are mitigated by Physical Unclonable Functions (PUF),
which do not require a battery and do not store secret keys in
digital form on the chip [9].
3  Overview of Secure Boot under Xilinx

A hardwired 256-bit AES decryption engine is used by
Xilinx to protect the confidentiality of externally stored bit-
streams [1]. Xilinx provides software tools to allow a bit-
stream to be encrypted using either a randomly generated or
user-specified key. Once generated, the decryption key can
be loaded through JTAG into an dedicated E-Fuse NVM or
battery-backed BRAM (BBRAM). The power-up configura-
tion process associated with fielded systems first determines
if the external bitstream includes an encrypted-bitstream
indicator and, if so, decrypts the bitstream using cipher block
chaining (CBC) mode of AES. To prevent fault injection
attacks [5], Xilinx authenticates configuration data as it is
loaded. In particular, a 256-bit keyed hashed message
authentication code (HMAC) of the bitstream is computed
using SHA-256 to detect tamper and to authenticate the
sender of the bitstream.

During provisioning, Xilinx software is used to compute
an HMAC of the unencrypted bitstream, which is then
embedded in the bitstream itself and encrypted by AES. A



second HMAC is computed in the field as the bitstream is
decrypted and compared with the HMAC embedded in the
decrypted bitstream. If the comparison fails, the FPGA is
deactivated. The security properties associated with the Xil-
inx boot process enable the detection of transmission fail-
ures, attempts to program the FPGA with a non-authentic
bitstream and tamper attacks on the authentic bitstream.

The secure boot model in modern Xilinx SoC architec-
tures differs from that described above because Xilinx SoCs
integrate both programmable logic (PL) and processor com-
ponents (PS). Moreover, the SoC is designed to be proces-
sor-centric, i.e., the boot process and overall operation of the
SoC is controlled by the processor. Xilinx SoCs use public
key cryptography to carry out authentication during the
secure boot process. The public key is stored in an NVM and
is used to authenticate configuration files including the First
Stage Boot Loader (FSBL) and therefore, it provides second-
ary authentication and primary attestation.

The Xilinx Zynq 7020 SoC used in this paper incorpo-
rates both a processor (PS) side and programmable logic
(PL) side. The processor side runs an operating system (OS),
e.g., Linux, and applications on a dual core ARM cortex A-9
processor, which are tightly coupled with PL side through
AMBA AXI interconnect.

The flow diagram shown on the left side of Fig. 1 identi-
fies the basic elements of the Xilinx Zynq SoC secure boot
process. The Xilinx BootROM loads the FSBL from an
external NVM to DRAM. The FSBL programs the PL side
and then reads the second stage boot loader (U-Boot), which
is copied to DRAM, and passes control to U-Boot. U-Boot
loads the software images, which can include a bare-metal
application or the Linux OS, and other embedded software
applications and data files. Secure boot first establishes a
root of trust, and then performs authentication on top of the
trusted base at each of the subsequent stages of the boot pro-
cess. As mentioned, Rivest-Shamir-Adleman (RSA) is used
for authentication and attestation of the FSBL and other con-
figuration files. The hardwired 256-bit AES engine and
SHA-256 are then used to securely decrypt and authenticate
boot images using a BBRAM or E-Fuse embedded key.
Therefore, the root of trust and the entire secure boot process
depends on the confidentiality of the embedded keys.
4  Overview of BulletProoF

BulletProoF is designed to be self-contained, utilizing
only components typically available in the FPGA PL fabric.
Specialized, vendor-supplied embedded security compo-
nents, including E-Fuse, BBRAM and cryptographic primi-

tives such as AES are not used. The BulletProoF boot-up
process is illustrated in Fig. 2 as a flow diagram. Similar to
the Xilinx boot process, the BootROM loads the FSBL
which then programs the PL side, in this case with the unen-
crypted BulletProoF bitstream. The FSBL then hands control
over to BulletProoF, which carries out some of the functions
normally delegated to U-Boot. BulletProoF’s first task is to
regenerate the decryption key. It accomplishes this by read-
ing all of the configuration information programmed into the
PL side using the ICAP interface [3]. As configuration data
is read, it is used as challenges to time paths between the
ICAP and the SHA-3 functional unit (see Fig. 3) and as input
to the SHA-3 cryptographic hash function to compute a
chained set of digests.

As configuration data is read and hashed, BulletProoF
periodically changes the mode of SHA-3 from hash mode to
a specialized PUF mode of operation. PUF mode configures
SHA-3 such that the combinational logic of SHA-3 is used
as a source of entropy for key generation. The HELP PUF
uses each digest as a challenge to the SHA-3 combinational
logic block. HELP measures and digitizes the delays of paths
sensitized by these challenges at high resolution and stores
them in an on-chip BRAM for later processing. The same
timing operation is carried out for paths between the ICAP
and SHA-3 outputs, as discussed above, and the timing data
combined and stored with the SHA-3 timing data in the
BRAM. This process continues with additional configuration
data added to the existing hash (chained) until all of the con-
figuration data is read and processed.

BulletProoF then reads the externally stored Helper
Data and delivers it to the HELP algorithm as needed during
the key generation process that follows. The decryption key
is transferred to an embedded PL-side AES engine. Bullet-
ProoF reads the encrypted second stage boot image compo-

Fig. 1. Xilinx Zynq SoC boot process.
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nents labeled 3 through 9 in Fig. 2 from external NVM and
transfer them to the AES engine.

An integrity check is performed at the beginning of the
decryption process as a mechanism to determine if the
proper key was regenerated. The first component decrypted
is the key integrity check component (labeled 3 in Fig. 2).
This component can be an arbitrary string or a secure hash
of, e.g., U-Boot.elf, that is encrypted during enrollment and
stored in the external NVM. An unencrypted version of the
key integrity check component is also stored as a constant in
the BulletProoF bitstream. The integrity of the decryption
key is checked by comparing the decrypted version with the
BulletProoF version. If they match, then the integrity check
passes and the boot process continues. Otherwise, the FPGA
is deactivated and secure boot fails.

If the integrity check passes, BulletProoF then decrypts
and authenticates components 4 through 9 in Fig. 2 using
256-bit AES in CBC mode and HMAC, resp., starting with
the application (App) bitstream. An application bitstream is
programmed into the unused components of the PL side by
BulletProoF using dynamic partial reconfiguration. Bullet-
ProoF then decrypts the software components, e.g., Linux,
etc. and transfers them to U-Boot. The final step is to boot
strap the processor to start executing the Linux OS (or bare-
metal application).
4.1  BulletProoF Enrollment Process

BulletProoF uses a physical unclonable function (PUF)
to generate the decryption key as a mechanism to eliminate
the vulnerabilities associated with on-chip key storage. Key
generation using PUFs requires an enrollment phase, which
is carried out in a secure environment, i.e., before the system
is deployed to the field. During enrollment when the key is
generated for the first time, HELP generates the key inter-
nally and transfers Helper Data off of the FPGA. As shown
in Fig. 2, the Helper Data is stored in the external NVM
unencrypted. The internally generated key is then used to
encrypt the other components of the external NVM (second
stage boot image or SSBI) by configuring AES in encryption

mode.
BulletProoF uses a configuration I/O pin (or an E-Fuse

bit) to determine whether it is operating in Enroll mode or
Boot mode. The pin is labeled “Enroll/Boot config. pin” in
Fig. 3. The trusted party configures this pin to Enroll mode
to process the “UnEncrypted SSBI” to an “Encrypted SSBI”,
and to create the Helper Data. The Encrypted SSBI and
Helper Data are stored in an External NVM and later used by
the fielded version to boot (see ‘Enroll’ annotations along
bottom of Fig. 3). Therefore, the Enroll and Boot versions of
BulletProoF are identical. Note that the Enroll/Boot config.
pin allows the adversary through board-level modifications
to create new versions of the Encrypted SSBI but the primary
goal of BulletProoF, i.e., to protect the confidentiality and
integrity of the trusted authority’s second stage boot image,
is preserved.
4.2  BulletProoF Fielded Boot Process

A graphical illustration of the secure boot process car-
ried out by the fielded device is illustrated in Fig. 3. As indi-
cated above, the FSBL loads the unencrypted version of
BulletProoF from the external NVM into the PL of the
FPGA and hands over control to BulletProoF. As discussed
further below, BulletProoF utilizes a ring-oscillator as a
clock source that cannot be disabled during the boot process
once it is started. This prevents attacks that attempt to stop
the boot process at an arbitrary point to reprogram portions
of the PL using external interfaces, e.g., PCAP, SelectMap or
JTAG. The steps and annotations in Fig. 3 are defined as fol-
lows:
1. BulletProoF reads configuration data using the ICAP

interface using a customized controller.

2. Everyn-th configuration word is used as a challenge to
time paths between the ICAP and the SHA-3 outputs

with SHA-3 configured inPUF mode1. The digitized
timing values are stored in an on-chip BRAM.

3. The remaining configuration words are applied to the
inputs of SHA-3 infunctional modeto compute a
chained sequence of digests.

4. Periodically, the existing state of the hash is used as a
challenge with SHA-3 configured inPUF mode to gen-
erate additional timing data. The digitized timing values
are stored in an on-chip BRAM.

5. Once all configuration data is processed, the HELP
algorithm processes the digitized timing values into a
decryption key using Helper Data which are stored in an
External NVM.

6. BulletProoF runs an integrity check on the key.

7. BulletProoF reads the encrypted 2nd stage boot image
(SSBI) from the external NVM. AES decrypts the image
and transfers the software components to U-Boot and
the hardware components into the unused portion of the
PL using dynamic partial reconfiguration. Once com-
pleted, the system boots.

1. This is done to prevent a specific type of reverse-engi-
neering attack discussed later.

Fig. 3. BulletProoF enrollment and regeneration process.
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4.3  Security Properties

The primary goal of BulletProoF is to protect the second
stage boot images, i.e., prevent them from being decrypted,
changed, encrypted and installed back into the fielded sys-
tem. The proposed system has the following security proper-
ties in support of this objective:
• The enrollment and regeneration process proposed for

BulletProoF never reveals the key outside the FPGA.
Therefore, physical, side-channel-based attacks are nec-
essary in order to steal the key. We do not address side-
channel attacks in this paper, but it is possible to design
the AES engine with side-channel attack resistance
using circuit countermeasures as proposed in [10].

• Any type of tamper with the unencrypted BulletProoF
bitstream or Helper Data by an adversary will only pre-
vent the key from being regenerated and a subsequent
failure of boot process. Note that it is always possible to
attack a system in this fashion, i.e., by tampering with
the contents stored in the external NVM, independent of
whether it is encrypted or not.

• Any attempt to reverse engineer the unencrypted bit-
stream in an attempt to insert logic between the ICAP
and SHA-3 input will change the timing characteristics
of these paths, resulting in key regeneration failure. For
example, the adversary may attempt to rewire the input
to SHA-3 to allow external configuration data (con-
structed to exactly model the data that exists in the
trusted version) to be used instead of the ICAP data.

• The adversary may attempt to reverse-engineer the
Helper Data to derive the secret key. As discussed in
[11], the PUF used by BulletProoF uses a helper data
scheme that does not leak information about the key.

• The proposed secure boot scheme stores an unencrypted
version of the BulletProoF bitstream and therefore,
adversaries are free to change components of Bullet-
ProoF and/or add additional functionality to the unused
regions in the PL. As indicated, changes to configura-
tion data read from ICAP are detected because the paths
that are timed by the modified configuration data are
different, which causes key regeneration failure.

• BulletProoF uses a ring oscillator as a clock source.
Therefore, once BulletProoF is started, it cannot be
stopped by the adversary as a mechanism to steal the
key (this attack is elaborated on below).

• BulletProoF disables the external programming inter-
faces (PCAP, SelectMap and JTAG) prior to starting to
prevent adversaries from attempting to perform dynamic
partial reconfiguration during the boot process. Bullet-
ProoF actively monitors the state of these external inter-
faces during boot, and destroys the timing data and/or
key if any changes are detected.

• BulletProoF erases the timing data from the BRAM
once the key is generated, and destroys the key once the
2nd stage boot image is decrypted. The key is also
destroyed if the key integrity check fails.

5  Additional BulletProoF CounterMeasures
The primary threat to BulletProoF is key theft. This sec-

tion discusses two important attack scenarios and counter-
measures designed to deal with them.
5.1  ICAP Data Spoofing Countermeasure

The first important attack scenario is shown by the red
dotted lines in Fig. 3. The top left dotted line labeled ‘Attack
scenario’ represents an adversarial modification which is
designed to re-route the origin of the configuration data from
the ICAP to I/O pins. With this change, the adversary can
stream in the expected configuration data and then freely
modify any portion of the BulletProoF configuration. The
simplest change she can make is to add a key leakage chan-
nel as shown by the red dotted line along the bottom of the
figure.

The countermeasure to this attack is to ensure the adver-
sary is not able to make changes to the paths between the
ICAP and the SHA-3 without changing the timing data and
decryption key. A block diagram of the BulletProoF archi-
tecture that addresses this threat is shown in Fig. 4. In partic-
ular, timing data is collected by timing the paths identified as
“A” and “B”. For “A”, the 2 vector sequence (challenge) V1-
V2 is derived directly from the ICAP data. In other words,
the launch of transitions along the “A” paths is accomplished
within the ICAP interface itself. Signal transitions emerging
on the ICAP output register propagate through the SHA-3
combinational logic to the time-to-digital converter or TDC
shown on the right (discussed below). The timing operation
is carried out by de-assertinghash_modeand then launching
V2 by asserting ICAP control signals using the ICAP input
register (not shown). The path selected by the 200-to-1 MUX
is timed by the TDC. This operation is repeated to enable all
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Fig. 4. Implementation details of ICAP and SHA-3 interface with annotations showing paths that are timed (“A” and “B”) and
hash mode (“C”).

2
0
0
-t

o
-1

 M
U

X

8-bit

32- to 72-bits

A

B

C

timing
values

LaunchMUXCtrl

1

0



of the 72 individual paths along the “A” route to be timed.
Note that the ICAP output register is only 32-bits, which is
fanned-out to 72-bits as required bykeccak-f[200]version of
SHA-3 [12].

The timing operation involving the ‘chained’ sequence
of hashes times paths along the routes labeled by “B” in Fig.
4. The current state of the hash is maintained inkstatewhen
hash_modeis deasserted by virtue of disabling updates to
the FFs using theen input. Vector V1 of the two-vector
sequence is all 0’s and the launch of V2 is accomplished by
deassertingLaunchMUXCtrl.

Hash mode of operation, labeled “C” in Fig. 4, is
enabled by assertinghash_mode. Configuration data is
hashed into the current state by assertingload_msgon the
first cycle of the SHA-3 hash operation.LaunchMUXCtrl
remains deasserted in hash mode.
5.2  Clock Manipulation Countermeasure

The adversary may attempt to stop BulletProoF during
key generation or after the key is generated, reprogram por-
tions of the PL and, e.g., create a leakage channel that pro-
vides direct access to the key. The clock source and other
inputs to the Xilinx digital clock manager (DCM), including
the fine phase shift functions used by HELP to time paths,
therefore represent an additional vulnerability [13].

A countermeasure that addresses clock manipulation
attacks is to use a ring oscillator (RO) to generate the clock
and a time-to-digital-converter (TDC) as an alternative path
timing method that replaces the Xilinx DCM. The RO and
TDC are implemented in the programmable logic and there-
fore the configuration information associated with them is
also processed and validated by the hash-based self-authenti-
cation mechanism described earlier.

As discussed previously, HELP measures path delays in
the combinational logic of the SHA-3 hardware instance.
The left side of the block-level diagram in Fig. 5 shows an
instance of SHA-3 configured with components that were
described in the previous section (Fig. 4). The right side
shows an embedded time-to-digital converter (TDC) engine,
with components labeled Test Paths, Carry Chain and Major
Phase Shift, which are used to obtain high resolution mea-
surements of the SHA-3 path delays.

The white and orange colored routes and elements in the

Xilinx ‘implementation view’ diagram of Fig. 6 highlight
carry-chain (CARRY4) components within the FPGA that
are leveraged within the TDC. A CARRY4 element is a
sequence of 4 high-speed hardwired buffers, with outputs
connected to a set of 4 FFs labeledThermFFsin Figs. 5 and
6. The Carry Chain component in Fig. 5 is implemented by
connecting a sequence of 32 CARRY4 primitives in series,
with individual elements labeled as CC0 to CC127 in Fig. 5.
Therefore, the Carry Chain component implements a delay
chain with 128 stages. The path to be timed (labeledpath in
Figs. 5 and 6) drives the bottom-most CC0 element of the
carry chain. Transitions on this path propagate upwards at
high speed along the chain where each carry chain element
adds approx. 15 ps of buffer delay. As the signal propagates,
the D inputs of theThermFFschange from 0 to 1, one-by-
one, over the length of the chain. TheThermFFsare config-
ured as positive-edge-triggered FFs and therefore, they sam-
ple the D input when their Clk input is 0. The Clk input to
the ThermFFsis driven by a special Major Phase Shift Clk
(MPSClk) that is described further below.

The delay of a path through the SHA-3 combinational
logic block is measured as follows. First, theMPSClksignal
at the beginning of the path delay test is set to 0 to make the
ThermFFssensitive to the delay chain buffer values. The
path to be timed is selected usingFselectand is forced to 0
under the first vector, V1, of the 2-vector sequence. There-
fore, the signalpath and the delay chain buffers are initial-
ized to 0, as illustrated on the left side of the timing diagram

Fig. 5. Functional unit and time-to-digital converter (TDC) engine architecture.
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Fig. 7. Timing Diagram for the timing engine.
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in Fig. 7. The launch event is initiated by applying V2 to the
inputs of SHA-3 while simultaneously asserting theLaunch
signal, which creates rising transitions that propagate as
shown by the red arrows on the left side of Fig. 5. The
Launchsignal propagates into the MPSBUFx delay chain
shown on the right side of Fig. 5 simultaneous with thepath
signal’s propagation through SHA-3 and the carry chain.
The Launch signal eventually emerges from theMajor
Phase Shiftunit on the right asMPSClk1. When MPSClk
goes high, theThermFFsstore a snap-shot of the current
state of carry chain buffer values. Assuming this event
occurs as the rising transition onpath is still propagating
along the carry chain, the lower set ofThermFFswill store
1’s while the upper set store 0’s (see timing diagram in Fig. 7
for a illustration). The sequence of 1’s followed by 0’s is
referred to as athermometer code or TC. The Decoder
component in Fig. 5 counts the number of 0’s in the 128
ThermFFsand stores this count in theTVal (timing value)
register. TheTVal is added to anMPSOffset(discussed
below) to produce a PUF Number (PN), which is stored in
BRAM for use in the key generation process.

5.2.1   Underflow and Overflow
The differences in the relative delays of thepath and

MPSClksignals may cause an underflow or overflow error
condition, which is signified when theTVal is either 0 or
128. Although the carry chain can be extended in length as a
means of avoiding these error conditions, it is not practical to
do so. This is true because of very short propagation delay
associated with each carry chain element (approx. 15 ps) and
the wide range of delays that need to be measured through
the SHA-3 combinational logic (approx. 10 ns), which
would require the carry chain to be more than 650 elements
in length.

In modern FPGAs, a carry chain of 128 elements is triv-
ially mapped into a small region of the programmable logic.
The shorter length also minimizes adverse effects created by
across-chip process variations, localized temperature varia-
tions and power supply noise. However, the shorter chain
does not accommodate the wide range of delays that need to
be measured, and instances of underflow and overflow
become common events.

TheMajor Phase Shift(MPS) component is included as
a means of dealing with underflow and overflow conditions.
Its primary function is to extend the range of the paths that
can be timed. With 128 carry chain elements, the range of
path delays that can be measured is approx. 128 * 15 ps
which is less than 2 ns. The control inputs to the MPS,
labeledMPSselin Fig. 5, allow the phase ofMPSClkto be
adjusted to accommodate the 10 ns range associated with the
SHA-3 path delays. However, a calibration process needs to
be carried out at start-up to allow continuity to be maintained
across the range of delays that will be measured.

5.2.2   Calibration
The MPS component and calibration are designed to

expand the measurement range of the TDC while minimiz-

1. To minimize Clk skew, theMPSClksignal drives
a Xilinx BUFG primitive and a corresponding
clock tree on the FPGA.

ing inaccuracies introduced as the configuration of the MPS
is tuned to accommodate the length of the path being timed.
From Fig. 5, theMPSClkdrives theThermFFClk inputs and
therefore controls how long theThermFFscontinue to sam-
ple the CCx elements. The 12-to-1 MUX associated with the
MPS can be controlled using theMPSselsignals to delay the
Clk with respect to thepathsignal. The MPS MUX connects
to theBUFx chain at 12 different tap points, with 0 selecting
the tap point closest to the origin of the BUF path along the
bottom and 11 selecting the longest path through theBUFx
chain. The delay associated withMPSselset to 0 is designed
to be less than delay of the shortest path through the SHA-3
combinational logic.

An underflow condition occurs when thepath transition
arrives at the input of the carry chain (at CC0) after the
MPSClk is asserted on theThermFFs. The MPS controller
configures theMPSselto 0 initially, and increments this con-
trol signal until underflow no longer occurs. This requires
the path to be retested at most 12 times, once of eachMPSsel
setting. Note that paths timed withMPSsel> 0 require the
additional delay along the MPSBUFx chain, called an
MPSOffset, to be added to theTVal. Calibration is a process
that determines theMPSOffsetvalues associated with each
MPSsel > 0.

The goal of calibration is to measure the delay through
the MPSBUFx chain between each of the tap points associ-
ated with the 12-to-1 MUX. In order to accomplish this, dur-
ing calibration, the role of thepath andMPSClksignals are
reversed. In other words, thepathsignal is now the ‘control’
signal and theMPSClksignal is timed. The delay of thepath
signal needs to be controlled in a systematic fashion to create
the data required to compute an accurate set ofMPSOffset
values associated with eachMPSsel setting.

The calibration process utilizes the Test Path component
from Fig. 5 to allow systematic control over thepathdelays.
During calibration, theCalsel is set to 1 which redirects the
input of the carry chain from SHA-3 to the Test Path output.
TheTPselcontrol signals of the Test Path component allow
paths of incrementally longer lengths to be selected during
calibration, from 1 LUT to 32 LUTs. Although paths within
the SHA-3 combo logic unit can be used for this purpose, the
Test Path component allows a higher degree of control over
the length of the path. The components labeled SW0 through
SW31 refer to a ‘switch’, which is implemented as 2 parallel
2-to-1 MUXs (similar to the Arbiter PUF but with no con-
straints on matching delays along the two paths [14]). The
rising transition entering the chain of switches at the bottom
is fanned-out and propagates along two paths. Each SW can
be configured with aSWconsignal to either route the two
paths straight through both MUXs (SWcon= ‘0’) or the
paths can be swapped (SWcon= ‘1’). The configurability of
the Test Path component provides a larger variety of path
lengths that calibration can use, and therefore, improves the
accuracy of the computedMPSOffsets.

The tap points in the MPS component are selected such
that any path within the Test Path component can be timed
without underflow or overflow by at least two consecutive
MPSselcontrol settings. If this condition is met, then cali-
bration can be performed by selecting successively longer



paths in the Test Path component and timing each of them
under two (or more)MPSsel settings. By holding the
selected test path constant and varying theMPSselsetting,
the computedTVals represents the delay along theBUFx
chain within the MPS between two consecutive tap points.

Table 1 shows a subset of the results of applying calibra-
tion to a Xilinx Zynq 7020 FPGA. The left-most column
identifies the MPSsel setting (labeled MPS). The rows
labeled with a number in the MPS column give theTVals
obtained for each of the test paths (TP) 0-31 under a set of
SWconconfigurations 0-7.SWconconfigurations are ran-
domly selected 32-bit values that control the state of Test
Path switches from Fig. 5. In our experiments, we carried out
calibration with 8 differentSWconvectors as a means of
obtaining sufficient data to compute the set of 7MPSOffsets
accurately.

TVals of 0 and 128 indicate underflow and overflow,
respectively. The rows labeledDiffs are differences com-
puted using the pair ofTValsshown directly above theDiffs
values in each column. Note that if eitherTVal of a pair is 0
or 128, the difference is not computed, and is signified using
‘NA’ in the table. Only the data and differences for MPS 0
and 1 (rows 3-5) and MPS 1 and 2 (rows 6-8) are shown
from the larger set generated by calibration. As an example,
the TVals in rows 3 and 4, column 2 are 91 and 17 respec-
tively, which represents the shortest test path 0 delay under
MPSselsetting 0 and 1, respectively. Row 5 gives the differ-
ence as 74. TheDiffs in a given row are expected to be same
because the same twoMPSselvalues are used. Variations in
theDiffs occur because of measurement noise and within-die
variations along the carry chain, but are generally very small,
e.g., 2 or smaller as shown for the data in the table.

TheAvecolumn on the right gives the average values of
theDiffs across each row using data collected from 8SWcon
configurations. TheMPSOffsetcolumn on the far right is
simply computed as a running sum of theAvecolumn values
from top to bottom. Once calibration data is available and
the MPSOffsetvalues computed, delays of paths within the
SHA-3 are measured by settingMPSselto 0 and then carry-
ing out a timing test. If theTVal is 128 (all 0’s in the carry
chain) then theMPSClkarrived at theThermFFsbefore the
transition on the functional unit path arrived at the carry
chain input. In this case, theMPSselvalue is incremented
and the test is repeated until theTVal is non-zero. The

MPSOffsetassociated with the first test of a path that pro-
duces a validTVal is added to theTVal to produce the final
PN value (see Fig. 7).
6  Statistical Analysis

The HELP PUF within BulletProoF must be able to
regenerate the decryption key without bit flip errors and
without any type of interaction with a server. We propose a
bit flip error avoidance scheme in [15] that creates three cop-
ies of the key and uses majority voting to eliminate inconsis-
tencies that occur in one of the copies at each bit position.
The scheme is identical to traditional triple-modular-redun-
dancy (TMR) methods used in fault tolerance designs. We
extend this technique here to allow additional copies, e.g.,
5MR, 7MR, 9MR, etc., and combine it with a second reli-
ability-enhancing method, called Margining [9][11]. We call
the combined method secure-key-encoding orSKE because
the Helper Data does not leak any information about the
secret key. The Helper Data generated during enrollment is
stored in an NVM and is read in during the key regeneration
process as discussed earlier in reference to Fig. 3.

The Margin method creates weak bit regions to identify
PUF Numbers (PN from Fig. 7) that have a high probability
of generating bit flip errors. We refer to these PN as unstable
and their corresponding bits as weak. A Helper Data bit-
string is generated during enrollment that records the posi-
tions of the unstable PN in the sequence that is processed.
Helper Data bits that are 0 inform the enrollment and regen-
eration key generation process to skip over these PN. On the
other hand, the PN classified as stable are processed into key
bits, and are called strong bits. The SKE enrollment process
constructs an odd number of strong bit sequences, where
each sequence is generated from independent PN but are oth-
erwise identical (redundant) copies of each other. During
regeneration, the same sequences are again constructed pos-
sibly with bit-flip errors. Majority voting is used to avoid bit
flip errors in the final decryption key by ignoring errors in 1
of the 3 copies (or 2 of the 5 copies, etc.) that are inconsis-
tent with the bit value associated with the majority. The num-
ber of copies is referred to as theredundancy settingand is
given as 3, 5, 7, etc.

Reference [11] describes several other features of the
HELP algorithm. For example, HELP processes sets of 4096
PN into a multi-bit key in contrast to other PUFs which gen-
erate key bits one-at-a-time. HELP also includes several
other parameters beyond the Margin and the number of

Table 1: Calibration data from Chip C1

MPS SWcon configuration 0 SWcon configuration 1 SWcon
2-7

Ave MPSOffset

TP 0 1 2 3 4 5 6-31 0 1 2 3 4 5 6 7-31 0-31

0 91 113 128 128 128 128 ... 65 86 119 122 128 128 128 ... ... NA NA

1 17 39 71 74 113 128 ... 0 11 45 49 87 107 128 ... ... NA NA

Diffs 74 74 NA NA NA NA ... NA 75 74 73 NA NA NA ... ... 74.4375 74.4375

1 17 39 71 74 113 128 ... 0 11 45 49 87 107 128 ... ... NA NA

2 0 0 23 27 67 86 ... 0 0 0 0 41 61 82 ... ... NA NA

Diffs NA NA 48 47 46 NA ... NA NA NA NA 46 46 NA ... ... 46.5625 121.0000

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...



redundant copies used in the majority voting scheme just
discussed. For example, HELP allows the user to specify a
pair of LFSR seeds that are then used to pseudo-randomly
pair the 4096 PN to create 2048 PN differences. HELP also
defines a third reliability-enhancing technique that is based
on applying linear transformations to the 2048 PN differ-
ences, and a modulus operation designed to remove path-
length bias effects. The decryption key produced by HELP is
dependent on the values assigned to these parameters. It fol-
lows then that a comprehensive evaluation of bitstring statis-
tical quality requires the analysis to be performed under
different parameter combinations.

The statistical results reported here investigate one set of
challenges, two Margins of 3 and 4, and nine Moduli
between 14 and 30. The statistics are averaged across 400
groups of 2048 PN difference created using different LFSR
seed pairs. Although this represents only a small portion of
the total challenge-response space of HELP, it is sufficiently
diverse to provide a good model of the expected behavior
under different challenge sets and parameter combinations.

Unlike previously reported statistics on the HELP PUF,
the results shown here are generated using the TDC
described in Section 5.2. The three standard statistical qual-
ity metrics evaluated include uniqueness (using inter-chip
hamming distance), reliability (using intra-chip hamming
distance) and randomness (using the NIST statistical test
suite). The analysis is carried out using data collected from a
set of 30 Xilinx Zynq 7020 chips (on Zedboards [16]). The
data is collected under enrollment conditions at 25oC, 1.00V
and over a set of 15 temperature-voltage (TV) corners repre-

sented by all combinations of temperatures (-40oC, 0oC,
25oC, 85oC, 100oC) and voltages (0.95V, 1.00V and 1.05V).

The bar graphs shown in Fig. 8 present the statistical
results for InterChip hamming distance (HD), in (a) and (b),
Probability of Failure in (c) and (d) and Smallest Bitstring
Size in (e) and (f) for SKE using redundancy settings of 5
(top row) and 7 (bottom row). Here, the final bitstring is con-
structed by using majority voting across 5 and 7 copies of
strong bit sequences, respectively. The results for the nine
Moduli and two Margins are shown along the x and y axes,
respectively. As indicated earlier, HELP processes 2048 PN
differences at a time, which produces a bitstring of length
2048 bits.

The InterChip HD is computed by pairing enrollment
bitstrings (of length 2048 bits) under all combinations and is
given by Eq 1. The symbolNC indicates the number of
chips, which is 30 in our experiments, andNCC indicates the
number of chip combinations, which is 30*29/2 = 435. The
symbolNBa is the number of bits classified as strong inboth

bitstrings of the (i, j) pair. The subscript (i, 1, k) is interpreted
as chipi, TV corner1 (enrollment) and bitk. Hamming dis-
tance is computed by summing the XOR of the individual
bits from the bitstring pair under the condition that both bits
are strong (bit positions that have a weak bit in either bit-
string of the pair are skipped). TheHDinter values computed
individually using 400 different LFSR seed pairs are aver-
aged and reported in Fig. 8(a) and (b). The bar graph shows
near ideal results with InterChip HDs between 48% and 51%
(ideal is 50%).

SKE 5

SKE 7

(a) InterChip HD

(b) InterChip HD

(c) Probability of Failure

(d) Probability of Failure

(e) Smallest Bitstring Size

(f) Smallest Bitstring Size

Fig. 8. InterChip Hamming Distance (left), Probability of Failure (middle) and Smallest Bitstring Size (right) statistics obtained
from PN generated from a set of 30 Xilinx Zynq 7020 chips across extended industrial temperature-voltage specifications (-40oC to
100oC, +/- 5% supply voltage). Statistical results are reported for multiple values of the HELP algorithm parameters Margin and
Modulus averaged across 400 LFSR seed pairing combinations (mean values are used the Reference mean and range parameters,

see [11] for details).
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The Probability of Failure results shown in Fig. 8(c) and
(d) are computed using the HDintra expression given by Eq.
2. Here, bitstrings from the same chip under enrollment con-
ditions are paired with the bitstrings generated under the
remaining 15 TV corners. The symbolNC is the number of
chips (30),NT is the number of TV corners (16) andNBe is
the number of bits classified as strong during enrollment.
Note that Margining creates a Helper Data bitstring only
during enrollment, which is used to select bits in the enroll-
ment and regeneration bitstrings for the XOR operation. An
average HDintra is computed using the values computed for
each of the 400 LFSR seeds. The bar graphs plot the average
HDintra as an exponent to 10x, where 10-6 indicates 1 bit flip
error in 1 million bits inspected. The best results are
obtained from SKE 7 with a Margin of 4 (Fig. 8(d)) where
the Probability of Failure is < 10-6 for Moduli >=22.

The Smallest Bitstring Size results are plotted in Fig.
8(e) and (f). These results portray the worst caseNBe values,
which is associated with one of the chips, from the HDintra
analysis carried out using Eq. 2. The smallest bitstrings sizes
(and the average bitstring sizes not shown) remain relatively
constant across Moduli and are in the range of 7-12 bits per
set of 2048 PN differences for Margin 4 and 20-25 for Mar-
gin 3. Therefore, to generate a 128-bit decryption key,
approx. 20 LFSR seed pairs need to be processed in the
worst case.

The NIST statistical test results are not shown in a graph
but are summarized as follows. Unlike the previous analyses,
the bitstrings used as input to the NIST software tools are the
concatenated bitstrings produced across all 400 seeds for
each chip. With 30 chips, NIST requires that at least 28 chips
pass the test for the test overall to be considered passed. The
following NIST tests are applicable given the limited size of
the bitstrings: Frequency, BlockFrequency, two Cumulative-
Sums tests, Runs, LongestRun, FFT, ApproximateEntropy
and two Serial tests. Most of ApproximateEntropy tests fail
by up to 7 chips for SKE 5, Margin 3 (all of the remaining
tests are passed). For SKE 5, Margin 4, all but four of the
tests passed and the fails were only by 1 chip, i.e., 27 chips
passed instead of 28 chips. For SKE 7, all but 1 test is passed
for Margins 3 and 4 and the test that failed (LongestRun)
failed by 1 chip.
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In summary, assuming the reliability requirements for
BulletProoF are 10-6, the HELP PUF parameters need to be
set to SKE 7 and Margin 4, and the Modulus set to be > 20.
When these constraints are honored, the InterChip HD is
>48% and nearly all NIST tests are passed. Decryption key
sizes of 128 or larger can be obtained by running the HELP
algorithm with 20 or more LFSR seed pairs, or by generating
additional sets of 4096 PNs as configuration data is read and
processed as described in Section 4.
7  Conclusions

A PUF-based secure boot technique called BulletProoF
is proposed that is designed to self-authenticate as a mecha-
nism to detect tamper. An unencrypted version of Bullet-
ProoF, which is stored in an external NVM, is loaded by the
first stage boot loader. The PUF within BulletProoF regener-
ates a decryption key using bitstream configuration informa-
tion as challenges, and this key is used to decrypt the second
stage boot images and to boot the system. The configuration
information is read using the ICAP interface and represents
the FPGA implementation of BulletProoF itself. This self-
authenticating process detects tamper attacks that modify the
LUTs or routing within BulletProoF in an attempt to create a
leakage channel for the key. The conceptual design of Bullet-
ProoF is described and experimental results presented that
demonstrate a novel embedded time-to-digital-converter,
which is used by the HELP PUF to measure path delays and
generate the encryption/decryption key.
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