
Abstract
Secure boot within an FPGA environment is tradition-

ally implemented using hardwired embedded cryptographic
primitives and NVM-based keys, whereby an encrypted bit-
stream is decrypted as it is loaded from an external storage
medium, e.g., Flash memory. A novel technique is proposed
in this paper that self-authenticates an unencrypted FPGA
configuration bitstream loaded into the FPGA during start-
up. The power-on process of an FPGA loads an unencrypted
bitstream into the programmable logic portion which
embeds the self-authenticating PUF architecture. Chal-
lenges are applied to the components of the PUF engine
both as a means of generating a key and performing self-
authentication. Any modifications made to the PUF architec-
ture results in key generation failure, and failure of subse-
quent stages of the secure boot process. The generated key is
used in the second stage of the boot process to decrypt the
programmable logic portion of the design as well as compo-
nents of the software, e.g., Linux operating system and appli-
cations, that run on the processor side of the FPGA.

1 Introduction
SRAM-based FPGAs need to protect the programming

bitstream against reverse engineering and bitstream manipu-
lation (tamper) attacks. Fielded systems are often the targets
of attack by adversaries seeking to steal intellectual property
through reverse engineering, or attempting to disrupt opera-
tional systems through the insertion of kill switches known
as hardware Trojans. Internet-of-things (IoT) systems are
particularly vulnerable given the resource-constrained and
unsupervised nature of the environments in which they oper-
ate.

FPGAs implementing secure boot usually store an
encrypted version of the programming bitstream in an off-
chip non-volatile memory (NVM) as a countermeasure to
these types of attacks. Modern FPGAs provide on-chip bat-
tery-backed RAM and/or fuses for storage of a decryption
key, which is used by vendor-embedded encryption compo-
nents within the FPGA to decrypt the bitstream as it is read
from the external NVM during the boot process [1]. Recent
attack mechanisms that are able to read out on-chip stored
keys therefore threaten the security of the boot process [2].

In this paper, we propose a PUF-based key generation
strategy that addresses the vulnerability of on-chip key stor-
age. Moreover, the proposed secure boot technique is self-
contained in that none of the vendor-embedded security
primitives are utilized. We refer to the system as Self-
Authenticated Secure Boot (SASB). SASB uses a PUF
implemented in the programmable logic (PL) side of an

FPGA to generate the decryption key at boot time, and then
uses it for decrypting an off-chip bitstream, i.e., the second
stage boot image, which can contain PL components as well
as software components such as an operating system and
applications. The decrypted PL components are programmed
directly into the unused portion of the PL side using dynamic
partial reconfiguration while the software components are
loaded into DRAM for access by the processor system (PS).
The decryption key is destroyed once this process completes,
minimizing the time the decryption key is available.

The following are key contributions of the proposed sys-
tem. First, during enrollment at a secure facility, the PUF
within SASB is configured to measure the path delays
through components of the SASB implementation as a
means of generating an encryption key, that is then used to
encrypt the second stage boot image, i.e., the encrypted bit-
stream. Second, during regeneration in the field, the PUF
regenerates the same key while simultaneously self-authenti-
cating the SASB bitstream. This architecture is self-authenti-
cating because any tamper with the existing SASB
implementation will change the delay characteristics of one
or more paths, which in turn, will introduce bit-flip errors in
the regenerated key. Failure to regenerate the enrollment key
prevents the system from booting.

The most significant threat to the proposed system is an
attack in which an adversary adds additional functions to the
unused portion of the PL fabric in the unencrypted SASB
bitstream. Fanout can be easily added to the routing net-
works defined by the FPGA switch boxes, providing multi-
ple opportunities for adversaries to add ‘observation points’
to, e.g., the AES key registers as a means of creating an
information leakage channel. We discuss strategies in the
design of SASB that create custom paths through the FPGA
routing switch boxes. These custom paths, called blocking
paths, are designed to block all fanout points to wires which
carry ‘sensitive’ information, e.g., wires driven by the key
register. The delays of each of the blocking paths is also
measured and used in the key generation process. Therefore,
adversaries who remove or manipulate the configuration of
the blocking paths causes key regeneration to fail.

The SASB key generation algorithm is designed such
that adversarial modifications that cause path delays to
change beyond a threshold cause an avalanche effect, i.e.,
one path delay that exceeds the threshold causes a large frac-
tion of the key bits to change. This feature is designed to pre-
vent adversaries from carrying out multiple, incremental
attacks which target one key bit (or small subsets) at a time.

The rest of this paper is organized as follows. A survey

Self-Authenticating Secure Boot for FPGAs

G. Pocklassery+, W. Che+, F. Saqib*, M. Areno^ and J. Plusquellic
Enthentica+, University of North Carolina*, Trusted and Secure Systems^, University of New Mexico

of related work is provided in Section 2. An overview of the
existing Xilinx boot process is provided in Section 3. Section
4 provides an overview of the proposed SASB system and
discusses various attack models on the proposed system.
Section 5 describes important concepts of the SASB system.
Conclusions are provided in Section 6.

2 Background
Bitstream reverse engineering represents a vulnerability

to FPGAs. While FPGA companies introduce advanced
methods to encrypt and authenticate bitstreams, reverse
engineering and fault injection attacks continue to evolve.
Reference [3] discusses methods to detect and manipulate
cryptographic components such as S-boxes in the bitstream,
by reverse engineering LUT programming, thereby weaken-
ing cryptographic primitives. Automatic extraction of secret
keys from the FPGA using bitstream fault injection attacks is
the focus of [4]. Reference [5] proposes a method to weaken
hardware cryptography engines by the insertion of Trojans
into low-cost FPGAs (Spartan3-E). The authors of [6] and
[7] discuss several ways to extract cryptographic keys stored
in NVMs.

Battery Backed RAMs (BBRAM) and E-Fuses are also
used for storing keys in FPGAs. While BBRAMs do not suf-
fer from the same security issues as those related to NVM,
the requirement for a battery and its limited lifetime compli-
cate system design. E-Fuses are one-time-programmable
(OTP) and therefore reduce flexibility in key management,
and depending on their design, can also be inspected using
semi-invasive attacks such as device de-processing and
inspection via scanning electron microscopes (SEM) [7].
The HELP PUF is used in this work to address the vulnera-
bilities associated with conventional key storage mecha-
nisms [8].

3 Overview of Secure Boot under Xilinx
Xilinx FPGA vendors incorporate an on-chip 256-bit

AES decryption engine to protect the confidentiality of
externally stored bitstreams [1]. The Xilinx tool flow option-
ally encrypts the bitstream using a randomly generated or
user-specified key. The decryption key is loaded via JTAG at
a secure facility into a dedicated eFuse NVM or battery-
backed BRAM (BBRAM). The in-field boot process deter-
mines if the external bitstream includes an encrypted-bit-
stream indicator and, if so, decrypts the bitstream using
cipher block chaining (CBC) mode of AES. During encryp-
tion, CBC mode XORs the previous block ciphertext with
the next block plaintext before encrypting the current block
(decryption reverses this process) as a mechanism to force
different ciphertexts for replicated components in the plain-
text.

To prevent bit-flip fault injection attacks, Xilinx incor-
porates data authentication into the boot process [4]. SHA-
256 is used to compute a 256-bit keyed hashed message
authentication code (HMAC) of the bitstream. The key com-
ponent allows both the sender of the bitstream to be authenti-
cated and any tamper with the bitstream to be detected with
high probability.

The secure boot process proposed by Xilinx is to first
compute the HMAC of the unencrypted bitstream, which is
then embedded in the bitstream and encrypted by AES. Dur-
ing in-field boot, a second HMAC is computed as the bit-

stream is decrypted and compared with the HMAC
embedded in the decrypted bitstream. If the comparison
fails, the FPGA does not become active. The secure boot
process provides confidentiality and data integrity and is able
to detect transmission failures, attempts to program the
FPGA with a non-authentic bitstream and tamper attacks on
the authentic bitstream. Public key cryptography is used in
modern Xilinx SoC architectures to provide authentication
during the secure boot process. The public key is stored in an
NVM and used to authenticate configuration files including
the First Stage Boot Loader (FSBL). Therefore, public key
cryptography provides secondary authentication and primary
attestation.

The Xilinx Zynq 7020 SoC used in this paper incorpo-
rates both a processor (PS) side and programmable logic
(PL) side. The processor side runs an operating system (OS),
e.g., Linux, and applications on a dual core ARM cortex A-9
processors, which are tightly coupled with PL side through
AXI interconnect.

The primary steps of a secure boot process for the Xil-
inx Zynq SoC is shown in Fig. 1. The Xilinx BootROM
loads the FSBL from an external NVM to DDR (DRAM).
The FSBL programs the PL side and then reads the second
stage boot loader (U-Boot), which is copied to DDR, and
passes control to U-Boot. U-Boot loads the OS images,
which include a bare-metal application, or the Linux OS,
embedded software applications and data files. A secure boot
process requires the boot process to begin with a root of
trust, and then carry out authentication in each of the subse-
quent stages of the boot process. As indicated above, Xilinx
uses public key cryptography, i.e., RSA, for authentication
and attestation of FSBL and other configuration files, and a
hardwired 256-bit AES engine and HMAC to securely
decrypt and authenticate boot images on chip using a
BBRAM or E-Fuse embedded key. The root of trust in the
Xilinx proposed secure boot scheme is the embedded key(s),
i.e., the security of the entire process depends on keeping the
digitally stored, embedded key(s) confidential.

4 Overview of Self-Authenticating Secure Boot (SASB)

The secure boot process proposed in this paper does not
make use of any of the security features provided within the
Xilinx secure boot architecture, i.e., it is a self-contained and
is self-authenticating. A flow diagram of the SASB boot pro-
cess is shown in Fig. 2. The first step is identical to the exist-
ing boot process. The PL component that is programmed
into the PL side by the FSBL is the unencrypted SASB bit-

Fig. 1. Xilinx Zynq SoC boot process.

Zynq 7020 SoC

Zynq BootROM loads

FSBL from Boot image

FSBL programs PL and

passes control to U-Boot

U-Boot loads the OS

images (Linux, software
apps. etc.)

External NVM

Boot Image

1) FSBL.elf
2) Encrypted bitstream
3) U-Boot.elf
4) Linux kernel
5) Device tree
6) Root file system
7) Data files/apps.

stream. The FSBL then passes control to SASB and blocks.
SASB reads the PUF’s challenges and helper data from the
external NVM and carries out key regeneration. The key is
transferred to an embedded PL-side AES engine. SASB
reads the encrypted second stage boot image components
labeled as components 3 through 9 in Fig. 2 from external
NVM and transfers them to the AES engine.

An integrity check is performed at the beginning of the
decryption process as a mechanism to determine if the
proper key was regenerated. The first component decrypted
is the key integrity check component (labeled 3 in Fig. 2).
This component can be an arbitrary string or a secure hash
of, e.g., U-Boot.elf, that is encrypted during enrollment and
stored in the external NVM. An unencrypted version of the
key integrity check component is also stored as a constant in
the SASB bitstream. The integrity of the decryption key is
checked by comparing the decrypted version with the SASB
version. If they match, then the integrity check passes and
the boot process continues. Otherwise, the FPGA is deacti-
vated and secure boot fails.

If the integrity check passes, SASB then decrypts com-
ponents 4 through 9, starting with the application (App) bit-
stream. An App bitstream (or blanking bitstream if the PL
side is not used by the application) is programmed into the
unused components of the PL side by SASB using dynamic
partial reconfiguration. This ensures that any malicious func-
tions that may have been incorporated by an adversary in
unused PL regions of the SASB bitstream are overwritten
(more on this later). SASB then decrypts the software com-
ponents, e.g., Linux, etc. and transfers them directly to DDR.
The final step is to boot strap the processor to start executing
the Linux OS (or bare-metal application).

SASB uses a physical unclonable function to generate
the decryption key as a mechanism to eliminate the vulnera-

bilities associated with on-chip key storage. Key generation
using PUFs requires an enrollment phase, which is carried
out in a secure environment, i.e., before the system is
deployed to the field. The enrollment process for SASB
involves developing a set of challenges that are used by the
PUF to generate the encryption/decryption key for AES.

During enrollment when the key is generated for the first
time, the PUF accepts challenges, generates the key inter-
nally and transfers helper data off of the FPGA. As shown in
Fig. 2, the challenges and helper data are stored in the exter-
nal NVM unencrypted. The internally generated key is then
used to encrypt the other components of the NVM by config-
uring AES in encryption mode. A special enrollment version
of SASB is created to enable this process to be performed in
a secure environment. The enrollment version performs
encryption instead of decryption as is true for the in-field
version but is otherwise identical.

The proposed system has the following security proper-
ties. First, the enrollment and regeneration processes pro-
posed for SASB never reveal the key outside the FPGA.
Therefore, physical, side-channel-based attacks are neces-
sary in order to steal the key. We do not address side-channel
attacks in this paper, but it is possible to design SASB with
side-channel attack resistance using circuit countermeasures
as proposed in [14]. Second, any type of tamper with the
unencrypted helper data by an adversary will only prevent
the key from being regenerated and a subsequent failure of
boot process. Note that it is always possible to attack a sys-
tem in this fashion, i.e., by tampering with the contents
stored in the external NVM, independent of whether it is
encrypted or not. A more significant concern relates to
whether the helper data reveals information about the
decryption key. As discussed in [10], the HELP PUF within
SASB implements a helper data scheme that does not leak
information about the key. Last, the proposed secure boot
scheme stores an unencrypted version of the SASB bitstream
and therefore, adversaries are free to change components of
SASB and/or add additional functionality to the unused
regions in the PL. This problem is addressed by using a PUF
that can self-authenticate and detect tamper, as we discuss in
the following section.

4.1 Attack Model

The primary attack model addressed by SASB is key
theft. The adversary’s goal is to add a key leakage channel
via a hardware Trojan that would provide backdoor access to
the key. In order to accomplish this, the unencrypted SASB
bitstream needs to be reverse engineered. The attack process
and options available to the adversary are illustrated in Fig.
3.

The attack modifications labeled A1 in Fig. 3 involve

changing wire and LUT configuration information within the
SASB component of the bitstream as a means of providing
back door access to the SASB key. The A2 attack modifica-

tions illustrate the addition of a hardware Trojan that accom-
plishes the same goal. In both cases, the high valued target is
the key register. The leakage channel is created by simply
adding wires that route the key information to pads on the
FPGA. The back door logic added by the adversary simply
waits until the key is generated, which occurs in the 3rd step
of the secure boot process as shown on left side of Fig. 2.

Fig. 2. Proposed Zynq SoC boot process.

Zynq 7020 SoC

Zynq BootROM loads

FSBL from Boot image

FSBL programs PL with

SASB bitstream

External NVM

Boot Image

1) FSBL.elf
2) SASB bitstream,

5) U-Boot.elf (encrypted)
6) Linux kernel (encrypted)
7) Device tree (encrypted)
8) Root file sys. (encrypted)
9) Data & apps. (encrypted)

SASB generates decryption

key and self-authenticates,

PUF challenges and
helper data (unencrypted)

and transfers key directly
to PL AES engine

SASB reads encrypted components, U-Boot, Linux,

SASB uses partial dynamic

PS side boots Linux and

reconfiguration to program
unused PL regions and

pass?

runs apps, etc.

Y

N

FPGA deactivates

 device tree, etc. from external NVM, decrypts and
 performs integrity check on generated key

3) key integrity ck (encrypted)

4) App bitstream (encrypted)

transfers software images to DDR

The goal of SASB is then to prevent a valid key from
being read out through the back door. SASB implements a
defense mechanism that detects tamper and scrambles the
key if either of the modifications shown in Fig. 3 are
attempted. The defense mechanism is based on measuring
path delays within SASB at high resolution and then deriv-
ing the key from these measurements. Therefore, correct
regeneration of the key is dependent on the delays of a set
of paths. These paths were measured during enrollment to
generate the key used to encrypt the second stage boot
image. SASB re-measures the same paths when the system
is booted in the field. The path delays are measured at a reso-
lution that can detect any type of malicious change. The
SASB key generation algorithm is constructed such that a
change in any of these path delays causes a large number of
bits in the key register to change. Therefore, the key read by
the adversary is wrong and the system fails to boot. The
details of this self-authentication operation are discussed in
the next section.

5 Details of SASB

SASB leverages a PUF called the Hardware Embedded
Delay PUF, first proposed in [8]. HELP measures path
delays in arbitrarily-synthesized functional units, i.e., multi-
pliers and cryptographic primitives, and uses the within-die
variations that occur in these delays as a mechanism to gen-
erate a unique, device-dependent key. The HELP architec-
ture as originally proposed is shown in Fig. 4(a). HELP
utilizes the ‘Functional Unit’ as a dedicated source of
entropy. The HELP Engine includes a set of modules as
shown that measure path delays in the Functional Unit, and
then uses these digitized delays in a key generation algo-
rithm.

Fig. 4(b) shows the architecture proposed in this paper,
which eliminates the ‘Functional Unit’ and instead uses the
implementation logic of the HELP engine itself as the
source of entropy. As we will show, all of the modules
within HELP except for the Launch-Capture module can be

configured to operate in one of two modes1. Mode 1 is the
original mode, in which the module carries out its dedicated
function as part of the HELP algorithm. Mode 2 is a special

1. Note that modifications to the LC module that change

the behavior of the timing engine will prevent the key

regeneration process from completing successfully.

Therefore, this module does not require a self-authen-

tication mode.

Launch-Capture (LC) mode, that allows the Launch-Capture
module to apply 2-vector sequences to its inputs (challenges)
and then measure the delays of a set of paths through the
modules. The digitized representation of these path delays
are stored in a BRAM and used later to generate the key
when the modules are switched back to Mode 1.

The dual mode structure for a typical module is shown
in Fig. 5. All the changes are implemented in an HDL, i.e.,
no hand-crafting of the wires and LUTs is necessary. The
original HDL modules for HELP are written in a two-seg-
ment style to enable the second mode to be easily integrated.
In two-segment style, the HDL statements that describe the
storage elements, i.e., the State and DataPath registers (FFs),
are described in a separate process block from the HDL that
describes the NextState and DataPath combinational logic.

The elements shown in blue represent the changes
required to provide two modes of operation for each of the
HELP modules. The Mode Ctrl signal is used to switch
between modes. All modules within HELP are converted
into this type of self-authenticating structure except for those
responsible for coordinating the launch-capture (LC) tests.
All of the mode-configurable modules are tested simulta-
neously when configured in Mode 2 to ensure that the delays
of paths between modules are also included in the key gener-
ation process. The module inputs (labeled mod. ins) in Fig. 5
are fanned-out to a dedicated set of Capture FFs to allow the
inter-module paths to be timed.

The resource utilization of the original HELP architec-
ture is estimated to be approximately 6000 LUTs (including
the 3000 LUTs for the functional unit). The utilization with

Fig. 3. Attack model illustration.

External NVM

SASB

Helper data

Challenges

Layout of SASB in FPGA

SASB PL logic
AES

k
ey

Application PL logic

RE

Encypted
2nd stage
boot images

PS side

PL side

leakage
channel

A1

A2

Fig. 4. (a) Original HELP architecture, and (b) proposed
changes.

HELP Engine

HELP measures
path delays in

this logic

Launch-Capture,

Modulus, Bit Gen
modules

PNDiff, TVComp,

Functional Unit

HELP Engine
Launch-Capture,

Modulus, Bit Gen
modules

PNDiff, TVComp,

HELP
self-authenticates
by measuring path
delays in its own

modules

(a) (b)

Fig. 5. Dual mode architecture of the HELP modules.

State FFs
2
1

DataPath FFs

NextState logic

DataPath logic

Capture

Capture

Clk2

Clk1

Clk2

To timing

evaluation

module

Mode ctrl

1
2challenges

challenges

n

m

p

q

mod. ins

mod. ins

Clk2

FFs

FFs

mod. ins

Capture
FFs

r

the proposed changes is nearly equivalent because the over-
head introduced by the dedicated functional unit (3000
LUTs) is eliminated in the SASB architecture, offsetting the
overhead associated with the additional components shown
in Fig. 5.

The HELP algorithm carries out a series of LC tests,
called clock strobing. The 2-vector sequences (challenges)
are delivered to the State and Datapath FFs by adding MUXs
as shown on the left side of Fig. 5. Therefore, these registers
also serve as the Launch FFs for Mode 2 of operation. A
launch is carried out by putting the first vector, V1, into these

registers. The second vector, V2, is then applied to the MUX

inputs. On the next rising edge of Clk1, transitions are

launched into the combinational logic blocks. The delay of
the paths are timed by capturing transitions that occur on the
outputs of the combinational logic blocks by a set of Capture
FFs. The Capture FFs are driven by a second clock, Clk2,

that is a phase shifted version of V1. A digital clock manager

is used to generate Clk2.

Each of the challenges are applied multiple times. For
each LC test, the phase shift of Clk2 is incremented forward

with respect to Clk1 by a small ∆t (approx. 18 ps using the

DCM in a Xilinx Zynq FPGA). Each of the paths driving the
n and m outputs which have transitions will, for one of the
LC tests, succeed in propagating its transition to the corre-
sponding Capture FF before Clk2 is asserted. When this

occurs, the XOR gate monitoring the output becomes 0. The
first occurrence of a 0 in the repeated sequence of LC tests
applied causes the controlling LC module to store the current
value of the phase shift as the digitized delay for the path.
The XOR == 0 event occurs at different phase shifts for each
of the paths so LC testing continues with larger and larger
phase shifts until all paths are timed. The digitized path
delays are stored in a BRAM for processing later by the
HELP algorithm in Mode 1.

The challenges are designed in advance to provide com-
plete coverage, i.e., all LUTs are tested using at least one
delay test. Therefore, any changes to the logic functions
implemented within the LUTs, and any wiring changes to
the inputs or outputs of the LUTs will change the delay char-
acteristics of the measured paths. Adversaries can also snoop
on data values that are produced during key regeneration
(Mode 1) as a mechanism to steal the key. This can be
achieved by adding fanout branches to the existing wires.
Unfortunately, the corresponding changes in the path delays
are too small to be detected by the proposed self-authentica-

tion method. We propose a separate mechanism for dealing
with fanout branch insertion in the following sections.

5.1 SASB Isolation Region

SASB is designed to minimize its usage of PL resources
as a means of maximizing the resources available for an
application bitstream. Moreover, SASB is configured into a
Xilinx pblock as shown in Fig. 6 (not drawn to scale). We
refer to this region as an isolation region because the LUTs
and switch boxes within this region are used either by the
SASB modules or are configured into dummy paths and
timed in the same fashion as described for Mode 2 operation
of the SASB modules. Note that the isolation region pro-
posed here is fundamentally different than the fence con-
struct proposed by Xilinx [1]. Unlike the fence, the SASB
isolation region implements an active self-authentication
mechanism against tamper.

The unused LUTs are identified using a tcl script once
the synthesis completes [13]. Several unused LUTs are
shown on the right side of Fig. 6. Dummy paths are con-
structed by creating a path through these LUTs with the end-
points connected to a Launch and Capture FF. The objective
is to create dependencies between key generation and all of
the unused LUT resources within the isolation region as a
mechanism to prevent adversaries from using these LUTs to
construct a key snooping Trojan.

The tactic of stringing together the unused LUTs into
structural paths does not address Trojans that create paths
from, e.g., the key register, directly to the FPGA I/Os. LUT
resources are not required to create routes. Instead, the
switch boxes must be protected. This can be accomplished
by preventing adversaries from creating fanouts on wires
connected to the registers that store the regenerated key
(other wires that process sensitive information related to the
key can also be treated in this fashion). The basic idea is to
route fanout-blocking paths through switch boxes used to
route key information. The switch boxes provide the only
opportunity for adversaries to create fanout to these wires.
The fanout-blocking paths effectively use all of the available
fanout connections through the switch that can be connected
to the key register.

An example of a fanout-blocking-path is shown in Fig.
7. A key bit is generated and stored in the LUT shown on the
right. The wire shown in yellow routes from the key register
to another component in the isolation region, e.g., an input to
AES. The point at which the yellow wire enters the switch
box on the right represents a vulnerability. The switch box
allows fanout connections to be made to wires passing
through the switch box [9]. The white wire shows an exam-
ple of a fanout connection that can be made to the yellow
wire. In Xilinx Zynq-7000 FPGAs, the number of possible
fanouts (PIPs) permitted in a switch box node is 32. We iden-
tify these fanout branch options within the switch boxes used
to route the key register bits and add fanout-blocking paths,
such as the one shown in magenta. A launch and capture FF
are added to the endpoints of the fanout-blocking paths (the
magenta wire is driven from one as shown on the right in the
figure) to allow these paths to be timed, and participate in the
key generation process. Adversaries who attempt to re-route
the fanout-blocking path to gain access to the fanout connec-
tion will change the delay of the path, which will result in

Fig. 6. The SASB Isolation Region.

FPGA PL side

Application Region
of PL

SASB

Unused LUTs

key generation failure. Therefore, the key bit snooped is pur-
posely corrupted by SASB because of the change in the path
delay.

5.2 Sensitivity Analysis of Self-Authentication Technique

The security of the proposed scheme is rooted in the
ability to detect changes to the routing of existing wires
within the SASB modules and to the fanout-blocking paths.
In this section, we present results that show the change in
delay that results from minimal changes to the routing con-
figuration of a path. The data is obtained from measurements
on a Xilinx Zynq 7020 using the timing engine implemented
within SASB.

Vivado implementation view is used to create manually
-routed paths through two switch boxes between two adja-
cent slices. A second configuration is created that adds one
additional switch box to the path, to model an adversarial
attack that attempts to re-route a fanout-blocking path repre-
sented by the first configuration. The delay of the first con-
figuration is 558 ps while the second configuration adds 72
ps. The increased delay in this ‘hardest-to-detect’ attack
model is large enough to cause a bit flip error in the HELP
bitstring generation algorithm.

5.3 Blanking Bitstream Countermeasure

As indicated, the adversary can place a key snooping
Trojan circuit into the unused Application Region of the PL.
An effective countermeasure to preventing this is to enable
SASB to write a blanking bitstream into the Application
Region using the Xilinx ICAP interface before the key is
generated [11][12]. This would destroy the Trojan before it
could be activated. SASB includes a module that performs a
partial dynamic reconfiguration on the Application Region
of PL from Fig. 6 using a state machine that automatically
generates blanking data required by the ICAP interface.
Given that SASB is unencrypted, the adversary might
attempt to disable this state machine or change its function-
ality. As a countermeasure, SASB also self-authenticates the
blanking bitstream state machine as part of the key genera-
tion process. This technique can also be used to eliminate the
requirements for fanout-blocking paths in the isolation
region. By moving the SASB module away from the edges
of the design to allow the blanking region to surround SASB,
any attempt to create routes that leak the key register to I/O
would be eliminated by the blanking bitstream operation.

5.4 SASB Key Generation with Avalanche Effect

In order to prevent incremental attacks, the key genera-
tion process creates dependencies between the bitstrings
generated by HELP and the AES key. Therefore, any single
bit flip that occurs in the HELP bitstrings because of tamper

to a path will propagate to multiple key bits. The avalanche
effect is a well know property of secure hashing algorithms
such as the SHA-3. Therefore, the bitstrings generated by the
HELP algorithm, as components of SASB are self-authenti-
cated, are used as input to a SHA-3 implementation embed-
ded within the SASB bitstream. The digest is then used as
the AES key to decrypt the second stage boot loader images.

Note that the avalanche effect behavior of SHA-3 does
not increase the reliability requirements of the PUF. This is
true because key regeneration has zero tolerance to bit flip
errors, and is independent of the hashing operation. How-
ever, key regeneration is now being performed over a much
larger sequence of bits and therefore, the reliability require-
ments of the HELP algorithm are increased by a factor pro-
portional to the compression performed by the hashing
operation. The HELP algorithm includes several reliability-
enhancing techniques and corresponding parameters that can
be tuned to increase the reliability of HELP’s bitstring regen-
eration process to achieve a specific requirement for key
regeneration.

6 Conclusions
A PUF-based secure boot technique called SASB is pro-

posed that is designed to self-authenticate as a mechanism to
detect tamper. An unencrypted version of SASB, which is
stored in an external NVM, is loaded by the first stage boot
loader. The PUF within SASB regenerates a decryption key
by measuring variations in path delays that occur within the
SASB modules. This self-authentication process detects
tamper attacks that modify the LUTs or routing within the
SASB modules in an attempt to create a leakage channel for
the key. The conceptual design of SASB is described and
experimental results presented that investigate the sensitivity
of the timing measurements to changes in the structural char-
acteristics of paths, as a illustration that such changes can be
detected and will result in failure to boot the system.

7 References
[1] S. M. Trimberger, J. J. Moore, “FPGA Security: Motivations, Features,

and Applications”, Invited paper, Proceedings of the IEEE, Vol. 102,
No. 8, 2014, pp. 1248-1265.

[2] S. Skorobogatov, “Flash Memory ’Bumping’ Attacks”, Cryptographic
Hardware and Embedded Systems, 2010.

[3] P. Swierczynski, M. Fyrbiak, P. Koppe, C. Paar, “FPGA Trojans
Through Detecting and Weakening of Cryptographic Primitives”,
Computer-Aided Design of Integrated Circuits and Systems, 2015.

[4] P. Swierczynski, G. T. Becker, A. Moradia and C. Paar, “Bitstream Fault
Injections (BiFI) - Automated Fault Attacks against SRAM-based
FPGAs”, Transactions on Computers, 2018.

[5] P. Swierczynski, M. Fyrbiak, P. Koppe, et al., “Interdiction in Practice—
Hardware Trojan Against a High-Security USB Flash Drive”, J Cryp-
togr Eng, 2017.

[6] D. Konopinski and A. Kenyon, “Data recovery from damaged electronic
memory devices”, London Communications Symposium, 2009.

[7] http://chipdesignmag.com/display.php?articleId=5045
[8] J. Aarestad, P. Ortiz, D. Acharyya, J. Plusquellic, HELP: A Hardware-

Embedded Delay-Based PUF, Design and Test of Computers, 2013.
[9] https://www.xilinx.com/support/documentation/user_guides/

ug474_7Series_CLB.pdf
[10] W. Che, M. Martin, G. Pocklassery, V. K. Kajuluri, F. Saqib, and J.

Plusquellic, “A Privacy-Preserving, Mutual PUF-Based Authentica-
tion Protocol”, Cryptography, 2017.

[11] https://forums.xilinx.com/t5/Embedded-Processor-System-Design/
How-to-use-PCAP-to-config-the-PL-in-zynq/td-p/280230

[12] https://www.xilinx.com/support/documentation/ip_documentation/
axi_hwicap/v3_0/pg134-axi-hwicap.pdf

[13] https://www.xilinx.com/support/documentation/sw_manuals/
xilinx2016_2/ug904-vivado-implementation.pdf

[14] K.Tiri, I.Verbauwhede, “Charge Recycling Sense Amplifier Based
Logic: Securing Low Power Security ICs Against DPA”, Solid-State
Circuits Conference, 2004.

Fig. 7. Fanout branches within a Xilinx switch box.

Key register
fanout
branches

Key register
route

Fanout blocking path

Switch box

Launch FF

