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ABSTRACT Fail-safe computing refers to computing systems that revert to a non-operational safe state
when a fault occurs. In this paper, we investigate a circuit level technique as mitigation for single event
upsets (SEUs) and fault injection attacks on field programmable gate arrays (FPGAs), and analyze the
effectiveness of the technique as a fail-safe monitor for an encryption algorithm. The propagation of fault
effects through FPGA primitives including lookup tables (LUTs) and programmable interconnect points
(PIPs) is assessed within an FPGA architecture created using an open source tool, and validated using fault
injection experiments on an FPGA. The analysis reveals additional vulnerabilities exist within reconfigurable
architectures over those in equivalent fail-safe application specific integrated circuit (ASIC), thus requiring
a more elaborate network of redundant circuits and checking logic. The configuration memory bits (CMBs),
which configure routing and designate logic functions within the LUTs of the FPGA, add complexity to
fail-safe design strategies by introducing additional fault conditions and fault propagation paths. A resource-
efficient fail-safe circuit design technique calledDEsign for Fail-safe in reCONfigurable systems (DEFCON)
is proposed. The benefits and limitations associated with DEFCON are described in the context of fault
injection experiments carried out as simulations and in FPGA hardware.

INDEX TERMS DEFCON, duplication-with-comparison, fail-safe, fault injection attacks, single-event-
upsets, fault tolerance, dynamic partial reconfiguration.

I. INTRODUCTION
FPGAs are susceptible to single-event-upsets (SEUs) caused
by cosmic radiation, as well as adversarial attacks, via fault
injection attacks. Naturally occurring SEUs threaten the reli-
ability of the device in carrying out critical system functions.
On the other hand, adversaries can purposely introduce SEUs
for the purpose of stealing sensitive information including
encryption keys and inject faults in an attempt to unlock
access to the implemented design. To counter these reliability
issues and safeguard the data integrity of FPGAs, effective
embedded reliability and security monitoring features must
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be integrated into FPGA designs. In this research, a fail-safe
circuit technique is proposed called DEsign for Fail-safe in
reCONfigurable systems (DEFCON), which is designed to
detect faults and to revert the system to a safe operational state
when faults occur.

Fail-safe systems need to incorporate redundancy and self-
checking capability, while still optimizing the speed, power
and area of a design. The default action on detection of a
fault is to sound an alarm, halt the system and drive the
outputs to a safe operational state. A relevant example is the
control system implementing autonomous driving features
in vehicles, where the detection of a fault deactivates the
autonomous driving system and either brings the vehicle to
a stop or hands control over to a human driver. In complex
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system architectures, the detection of a failure, the signaling
of an alarm, and the mitigation process associated with
reverting the system to a safe state nearly always requires the
insertion of redundant components.

The goals of a fail-safe paradigm are distinctive from the
goals of a fault tolerant paradigm. Fault tolerance refers
to the ability for a system to continue operating with full
functionality in the event of a single fault that causes
some component(s) in the system to fail. Fault tolerant
systems that meet this criteria are often referred to as fail-
operational [1]. The most common fault tolerant technique
uses triple modular redundancy (TMR) where the system
is triplicated, and a majority voting mechanism is used to
force the device outputs to the values generated by two
of the redundant copies that agree, and to disregard the
redundant copy that disagrees. The system in this case is able
to continue operating correctly despite the occurrence of the
fault. As an example, TMR is commonly used to provide
protection against faults in critical components of aircraft
flight control systems, enabling the aircraft to operate without
mishap if one of the three copies fails.

In contrast, fail-safe design methods are typically
employed in systems that have zero tolerance to faults,
and which may require sophisticated failure recovery
mechanisms, e.g., in control systems for nuclear power plants
or nuclear weapons. Here, the default action of a fail-safe
system is to sound an alarm and revert the system to a safe
state. This enables corrective actions can take place from a
known safe starting state, which helps guarantee reliable and
correct restoration of system operation.

Redundancy is also used in fail-safe design to detect
failures. However, since mitigation is typically delegated to
a separate controller, and only detection is required, more
resource efficient methods referred to as duplication with
comparison (DWC) can be used [2], [3]. Reducing the
number of redundant copies to two, in contrast to TMR, and
the elimination of the majority voting component, improves
resilience of the fail-safe system by virtue of its smaller
footprint. Note that the mitigation component of a fail-safe
system increases the size of the footprint, partially offsetting
this benefit. However, in the limit, the mitigation component
may be very small, e.g., a hardware reset, which would make
the fail-safe system smaller compared to a TMR equivalent.
Unfortunately, the actions taken by the mitigation strategy
are application dependent, making it difficult to draw a
conclusion with respect to the overall size of DWC versus
TMR-based systems.

The goal of our work is to demonstrate the effectiveness of
a fail-safe system design within FPGAs, and to minimize its
footprint by optimizing the detection and alarm-generating
circuit structures. Although FPGAs make the task much
more difficult over an ASIC implementation, the benefit of
enabling in-field updates as new technologies emerge, e.g.,
a new post-quantum encryption algorithm is embraced as the
new standard, is a significant driver to finding a solution to
fail-safe system design on an FPGA.

A key feature of the proposed DEFCON technique is the
instantiation of two XOR checker circuits in one FPGA
LUT, and the ability of both XOR checker gates to function
properly despite a fault that may disable one of two copies.
XOR checker gates are heavily used as the comparators
in redundancy-based techniques including both DWC and
TMR, to decide if the two redundant copies of the monitored
functional unit outputs are identical. To handle faults that
occur in the XOR checker network itself, two copies of
an XOR checker are inserted for each pair of output bits
monitored in the functional unit. Therefore, XOR checker
circuit components are the dominant components in the
fault detection circuitry of fail-safe systems, and techniques
designed to significantly reduce the size of these bit-wise
checkers, while preserving their independence with respect
to faults, represents an important contribution.

The properties and requirements associated with fail-safe
systems make it difficult to use automated circuit design
flows to implement a design while minimizing area overhead.
In this paper, we investigate fail-safe design on FPGAs at the
circuit level using an open source FPGA synthesis tool called
OpenFPGA [4], [5]. FPGA programming features that enable
reconfigurability also increase the difficulty of ensuring the
redundant components are independent, e.g., the possibility
of fault propagation through unused programmable resources
needs to be considered. Moreover, failure mechanisms that
upset the configuration state can change logic functions
and routing characteristics of the design, and therefore the
self-checking capabilities of the monitoring circuit are more
complex.

We first investigate fault injection and propagation using
an open-source FPGA design tool because the analysis
of fault propagation paths requires detailed knowledge of
the underlying reprogrammable circuit structure, and such
information is not available to end users of commercial
FPGAs. The DEFCON technique is then implemented on a
Zynq 7010 FPGA, and integrated with a DWC version of
the advanced encryption standard (AES) algorithm as the
function to be protected against faults. Both simulation and
hardware experimental results are presented that demonstrate
the benefits and limitations of the DEFCON circuit. The
contributions of this work are summarized as follows.

• An implementation and analysis of a fail-safe DWC
technique called DEFCON on both an open source
FPGA and a commercial Xilinx Zynq architecture,
in which both the monitored functional unit outputs
and the DEFCON circuit itself are protected separately
against single fault occurrences.

• A resource-optimized version of the XOR checker
circuit, in which both copies of the redundant XOR
gate are instantiated into one lookup-table (LUT) on the
FPGA, significantly reducing the overhead associated
with the checker circuit. The XOR checker construction
technique guarantees fault independence of the two pairs
of inputs used by the two XOR gates implemented
within each LUT.
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• A layered redundancy scheme, referred to as quad-
redundancy, which enables 6-input LUT implementa-
tions of the redundant XOR gate to support recovery
and continued system operation in cases where faults
occur within the components of the DEFCON circuit
itself. Faults which occur within the DEFCON monitor
are considered non-critical faults, and therefore, a miti-
gation strategy that fixes them instantly is proposed.

• Simulation and hardware experimental results showing
resource utilization and the effectiveness and limitations
of the DEFCON technique. In addition, a FPGA
implementation of the most closely related fail-safe
technique is implemented and the results compared with
those presented for DEFCON.

We would like to point out that the fault injection strategy
used in the simulation and hardware experiments introduces
faults only in the configuration memory bits (CMBs) of
the FPGA, and not in the flip-flops (FFs) utilized by the
functional units. This is justified because any fault that
changes a stored value in a memory component of the state
machine or data path of the functional units will change the
result computed by one of the redundant copies, and will
always be detected by the DEFCON monitor. On the other
hand, a fault occurring in a CMB may change the circuit
implementation characteristics of a functional unit, and can
result in unexpected behaviors, as we will show. Therefore,
CMB faults represent the critical components to evaluate in
any type of FPGA-based fail-safe circuit design strategy.

II. BACKGROUND
When evaluating fail-safe techniques in FPGAs, two impor-
tant metrics are considered: overhead costs and detection
capabilities. Redundancy within FPGA modules have been
shown to have better performance in detecting faults in the
configuration memory, compared to error detecting code
algorithms, while requiring smaller overhead [6]. The work
in [6] presents 5 fault detection strategies evaluated on
a substitution box (S-Box) in the AES algorithm, most
notably the duplication-with-comparison (DWC) and triple
modular redundancy (TMR) strategies. As expected, the
DWC method uses approximately 2X the resources over the
unprotected design while TMR increases resource utilization
by approximately 3X. The authors conclude that DWC is the
overall better-performing fault detection technique in terms
of overhead and robustness.

A DWC technique blue suitable for fail-safe system design
is proposed for FPGAs in [2] and [3] for detecting upsets in
state, i.e., bit values stored in flip-flops (FFs), block RAM
(BRAM) and configuration memory. The method duplicates
the functional unit and alarm signals, and incorporates
self-checking comparators that flag differences in duplicated
signal components, e.g. primary outputs and those within
feedback paths of the design. This fail-safe circuit design
technique, referred to subsequently as the BYUmethod, is the
most closely related technique to DEFCON. We implement

the BYU method on our FPGAs and present a comparative
analysis in Section V.
Published techniques that target fail-safe operation are very

limited. Here, we describe the closest related FPGA-based
fault tolerance techniques. As indicated earlier, fault tolerance
methods can be characterized as fail-operational, where the
goal of the proposed circuit design techniques is to maintain
system operation despite the presence of a fault.

Several FPGA-based methods attempt to extend the mean-
time-to-failure (MTTR) of a faulted system, using fault
masking techniques, e.g., [7] and [8]. Similar to DEFCON,
Lee et al. [7] propose encoding duplicate logic functions
into a single LUT and propose using both LUT outputs.
The two duplicated outputs are either ANDed or ORed
together in a downstream LUT, as a means of fault masking
0-to-1 and 1-to-0 single event upsets (SEUs), respectively.
An integer linear program is proposed to finalize the optimal
duplication and encoding scheme that attempts to minimize
the fault rate. A related scheme is proposed in [8] that
additionally leverages the embedded carry chain components
within configurable logic blocks. Here, logic functions are
decomposed into two subfunctions, which are combined in
the carry chain using AND or OR gates by controlling the
carry-in to 0 and 1, respectively. The technique does not
require changes to the placement and routing, unlike [7]
where downstream AND and OR functions are needed,
therefore routing congestion is reduced. In contrast to
DEFCON, neither of these methods attempt to encode the
LUT logic function to provide fault independence on the
inputs to the LUT.

The authors of [9] determined that CMBs for routing
resources represents 90% of the total number of CMBs in
the FPGA, and therefore are highly vulnerable to SEUs.
Moreover, they found that about 10% of the SEUs that
upset routing CMBs produce multiple short and open faults
on PIPs that cannot be corrected by TMR because the
single fault assumption of TMR is violated. They propose
a reliability-oriented place and route algorithm that prevents
multiple errors from a single PIP fault from impacting TMR
effectiveness.

The authors of [10] characterize SEUs in FPGA LUTs
and their interconnects. LUT SEUs only introduce a fault
when a particular cell is selected, but configuration logic
blocks (CLBs) have intra-CLB routing that is fully connected
and MUX-based, so SEUs can cause an irrelevant signal
to be selected and a fault introduced. Inter-CLB routing is
typically interconnected via bidirectional pass transistors,
while SEU disconnect (open) faults are typically modeled
as temporary stuck-at-0/stuck-at-1 faults, which are pulled
high or low to prevent crowbar current in downstream gates.
SEU short faults bridge two adjacent wires and are the
most complex to characterize since they are created when
two drivers oppose opposite values and downstream gates
interpret them differently. Nets that fanout further complicate
the model, providing the opportunity for multiple faults to be
injected.
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Modern FPGAs possess very large configuration bit-
streams, which increases the amount of time required to
find errors using traversal scrubbing techniques. A rapid
scrubbing technique is proposed in [11] which utilizes the
mapping between critical circuits protected with DWC and
configuration frames.

The work in [12] presents challenges with hardware
emulated fault injection techniques in commercial FPGAs.
Hardware fault emulated techniques can be exhaustive but
time consuming, as each bit in the bitstream must be flipped
and then restored. In addition, there are cases where the
device will lock-up, requiring a complete power cycle. The
authors present an approach for building an accelerated,
open source fault injection platform called ParFlip using
reconfigurable SoC devices.

A fault injection-based countermeasure is proposed in [13].
The authors propose a parity-based technique to monitor
critical components in an AES engine for fault injection
attacks. Faults are inserted into each byte and are monitored
after every operation and round of encryption, using a parity-
based method. The output of each operation in the AES
engine is compared with the parity outputs using XOR logic
to flag any difference. This technique ensures extensive fault
coverage by evaluating the outputs after each computation
step within each round, making the detection robust against
single faults.

Another hardware redundancy-based fault detection strat-
egy is presented in [14]. This work proposes a fault
detection strategy to enhance security for the SHA-512 hash
algorithm against fault injection attacks, while maintaining
area efficiency and overhead costs. In this approach, the
authors use the DWC method, but instead of duplicating
the entire functional unit output, they focus only on the
critical components to minimize overhead. Additionally, time
redundancy is applied using both normal time redundancy,
where SHA-512 operations are repeated and compared at
different times, and reverse time redundancy, which verifies
correctness by subtracting results in subsequent steps. The
proposed scheme was tested on a Xilinx Virtex-II Pro
FPGA, and similar to our work, fault injection simulations
were performed, where up to 20 faulty bits were randomly
introduced into the input data to assess the fault detection
scheme, achieving 99.99% fault coverage. The results showed
a 1.39% decrease in frequency, a 2.94% increase in area, and
98.61% throughput retention.

A. A UNIFIED APPROACH TO FAIL-SAFE, FAULT
TOLERANCE AND FAULT INJECTION ATTACKS
Methodologies designed to address fail-safe system design,
fault tolerance and fault injection attacks individually within
FPGA frameworks can be expanded in scope to address all
three areas using a unified approach. For example, all of
these areas are concerned with SEUs, independent of whether
they occur naturally or are induced by glitching the supply
voltage or clock, or utilizing electromagnetic radiation or

FIGURE 1. OpenFPGA 6-input LUT with register logic within the CLB.

lasers. For fail-safe and fault injection attacks, DWCmethods
that assert an alarm are adequate because the system needs
to halt operation in either case, and remedial actions need
to follow that maintain a non-operational status, restart the
system and/or alert authorities.

Although fault tolerance requires the system to continue
to operate, DWC techniques that flag fault conditions can
be used here as well, e.g., to enable an unused redundant
copy to be utilized as a means of minimizing downtime [15].
For any of these scenarios, techniques that add resilience or
implement countermeasures need to have a small footprint
in order to minimize their impact on the speed, power and
area of the original design, and to minimize their exposure to
upsets that occur in the protection circuitry itself. The primary
goal of DEFCON is to achieve this objective in the context of
FPGA designs.

III. OPENFPGA FRAMEWORK
The OpenFPGA synthesis framework is used in this paper
to create an FPGA architecture for the simulation-based
experiments and analysis [4], [5]. The python-based tool flow
utilizes an XML-based architectural description to specify
the details of the CLBs, LUTs, FFs, routing architecture,
I/O and custom hardwired IP blocks. OpenFPGA accepts a
circuit description and creates an FPGA architecture large
enough to accommodate the circuit elements. The Verilog-
to-routing (VTR) CAD tool [16] is used within OpenFPGA
to generate the Verilog netlist and the programming bitstream
that implements the circuit description. The netlist can then
be processed into a layout using a standard cell library-based
place-and-route (PNR) CAD tool flow.

Although the OpenFPGA synthesis tool supports a wide
range of components, we utilize only the CLBs, routing
components and I/O in the development of the proposedDEF-
CON technique. The specific implementation characteristics
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of the CLBs, which include LUTs and a local routing
network, as well as the PIPs that define the global routing
network, are needed to fully evaluate fault effects and fault
propagation. This section describes the circuit structure
created byOpenFPGAusing an example FPGAconfiguration
test case provided in the distribution. The test case includes
ten 6-input LUTs, which are enclosed within one CLB, four
connection and switch boxes and a set of 32 I/O.

A schematic of the 6-input LUT (LUT6) is shown in Fig. 1.
The programming bitstream configures the column of FFs
on the left side with a logic function using the configuration
chain (ccff_head), and other elements highlighted in brown.
A sequence of transmission-gate 2-to-1 MUXs is used to
implement the look-up table, with columns of amplifying
buffers inserted after every two stages of MUXing. The
LUT6 can be programmed to provide an upper-half lut5
or lut6 function on out[0] and a lower-half lut5 function
on out[1]. The two outputs can optionally be registered.
The cone-shaped circuit structure associated with the two
sequences of 2-to-1 MUXs in the upper and lower halves of
the LUT6 makes the out[0] and out[1] outputs structurally
independent except for the shared inputs; a property that is
leveraged in the proposed DEFCON scheme.

FIGURE 2. CLB architecture created by OpenFPGA, with 10 LUT6 and local
routing.

The CLB architecture is shown in Fig. 2. The configurable
routing network allows any of the 20 LUT6 outputs to be
connected locally with any of the 60 LUT6 inputs within the
CLB. The 61-to-1 MUXs, which drive the LUT6 inputs, add
40 external inputs from other CLBs and I/O, and a constant
‘0’, as configuration options. All routing within the CLB is
fan-out free, and there are no instances of reconvergent-fan-
out in the circuit structures. Reconvergent-fan-out describes
a circuit topology in which inputs fan-out to a logic gate
network and reconverge downstream on gate inputs closer
to the outputs. The lack of reconvergent-fan-out reduces the
complexity of designing fail-safe circuits.

FIGURE 3. Routing architecture created by OpenFPGA.

The FPGA architecture used in our simulations is given
in Fig. 3, which shows a single CLB surrounded by a
set of four connection blocks (CB0,3) and switch blocks
(SB0,3). The MUXing details of CB2 and SB0 shown in
the call-outs illustrate that signal fan-out is implemented in
the CBs, and the CB and SB provide only a partial set of
routing options, in contrast to the fully interconnected routing
network provided within the CLB. The I/O block includes
output pads driven from the CBs and input pads, which enter
the internal routing network via the SBs. The configuration
chain that controls the select inputs to theMUXs is not shown
for clarity nor are the implementation details of the MUXs.
These architectural details are important to understanding
fault effects and are covered by examples in the following
section.

A. DEFCON IMPLEMENTATION ON AN
OPEN-SOURCE FPGA
In this section, we describe the DEFCON circuit design and
its implementation on an FPGA.We evaluate its effectiveness
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FIGURE 4. Proposed DEFCON fail-safe circuit design.

in providing fail-safe operation using simulation experiments,
i.e., whether it is able to detect a fault on the outputs of the
functional units it protects, and within the monitor itself. The
design ensures detection of stuck-at and CMB faults that are
active for one or more clock cycles, and in such cases, ensures
that the alarm signal(s) will assert at most two clock cycles
after fault activation.

1) XOR CHECKER COMPONENT
A schematic of the proposed DEFCON circuit is shown
in Fig. 4. The DWC circuit consists of a set of redundant
2-input XOR gates (R-XOR), each designed to monitor a pair
of redundant signals, A00 and A10. The A00 and A10 connect
to the same 1-bit outputs of a pair of redundant functional
units, which represent the signals that DEFCON is designed
to protect (not shown). The functional units might be, for
example, a redundant pair of electronic control units (ECUs)
in a vehicle and the output signals might be control signals
to the anti-lock brake system or a driver assistance feature.
The inputs A01 and A11 are the same two redundant functional
unit outputs replicated again at the output of the functional
units. The rational for this quad-based replication strategy is
discussed in the following sections.

The R-XOR LUT6 in the upper left of Fig. 4 is
programmed to implement a special version of a 2-input XOR
gate. As mentioned earlier, the structure of the MUX network
defines two independent logic cones for the out[0] and out[1]
signals from Fig. 1, labeled here as j and k, but the LUT6 is
typically programmed without regard to the fault dependence
or independence of the LUT’s inputs. For example, if a fault
occurs on A00 within the LUT6, both cones of logic will be
affected unless the CMB of the LUT6 is programmed in a
special way.

In order to prevent any specific input from affecting
both logic cones, the CMB of the LUT6 is programmed
such that the 2-input XOR truth table function is replicated
multiple times. Here, the upper 32 bits of the CMB repeat the
2-input XOR functional output pattern ‘‘0110’’. Although
only the first 8 cells are shown, the pattern is in fact
replicated 8 times over the upper 32 CMB as ‘‘0110 0110
0110 0110 0110 0110 0110 0110’’. The lower 32 bits of the
CMB are also programmed to implement a 2-input XOR but
locally replicate each truth table output value four times in
consecutive CMB cells. The full bit sequence for the lower
half of the CMBs is ‘‘0000 1111 1111 0000 0000 1111 1111
0000’’.

This specific configuration bit pattern removes the depen-
dency of the two logic cone outputs on the four inputs shown
in the figure, and allows a single LUT to implement a fully
self-checking comparator, i.e., one LUT for each duplicated
functional unit output signal that is monitored. Here, only
inputs A00 and A10 affect the functional output value of the
top cone, and only inputs A01 and A11 affect the output of
the bottom cone. For example, if {A00,A10} is ‘‘01’’ and
{A01,A11} is ‘‘01’’, i.e., a fault occurred on the functional unit
outputs, and a second stuck-at-1 fault occurs on A00 (which
disables the top cone because the top cone inputs are now
‘‘11’’), the bottom cone will still propagate a ‘1’ to k because
A01 and A11 drive the inputs of an independent XOR function.
This is true because the programming bit pattern for the lower
cone replicates the ’1’ across all four selections associated
with the A00 and A10 inputs, making these inputs irrelevant to
the logic value selected by the A01 and A11 inputs. Therefore,
the fault cannot be masked.

Also note that the proposed redundancy scheme also
detects faults that occur in the CMB. For example, if a CMB
flips from ‘1’ to ‘0’ in one of the XOR pattern sequences
of either logic cone, and a second fault occurs in one of the
monitored functional unit outputs, one of the redundant logic
cones will always detect the fault and will generate a ’1’ on
either the j or k output.

Under the single fault assumption, alternative program-
ming patterns are possible while preserving the fail-safe
property. For example, the upper half pattern ‘‘0110 xxxx
xxxx 0110 0110 xxxx xxxx 0110’’ also works, where x
denotes ‘don’t care’, because assuming A01 and A11 are fault-
free, only patterns ‘‘00’’ and ‘‘11’’ are possible. If a fault
occurs on A00 or A10, then either the first or last of the two
CMB regions is selected by A01 and A11. However, a benefit
of specifying the fully replicated XOR pattern, is that it
enables the detection of two faults, one on each pair of inputs.

As noted in Fig. 1, the lut5[0] signal passes through an
additional 3-to-1 MUX. The DEFCON configuration of the
in[5] and mode signals is ‘1’ from Fig. 1, and for the select
inputs of the 3-to-1 MUX, it is ‘‘01’’. A stuck-at-0 fault on
the output of the OR gate driven by the in[5] or mode input
signals is masked and made harmless by the 3-to-1 MUX
configuration. A CMB fault on the 3-to-1MUX select signals
is ignored for the faulty case ‘‘00’’ since the in[5] and mode
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signal assignments select the output of the upper logic cone
on both the ‘‘01’’ and ‘‘00’’ inputs. If, on the other hand,
a CMB fault selects the hardwired ‘0’ on the ‘‘10’’ input, the
fault will be masked in the upper cone. However, the bottom
cone will still detect any fault that occurs on the outputs of the
monitored functional units, i.e., only a second checker fault
is masked in this scenario.

The two outputs of the LUT6 are optionally registered as
shown on the far right of Fig. 1. The fail-safe configuration
for the 2-to-1 select MUXs is 0, which allows the lut5 signals
to bypass the registers. If a fault occurs in a CMB associated
with the output MUXs, forcing one of out[0] or out[1] to
be registered, the alarm signal will be delayed by one clock
cycle. However, similar to the masking scenario discussed
above, the fault-free output will always detect a functional
unit fault immediately.

2) ALARM SIGNAL COMPRESSION NETWORK
The output signals from the R-XOR gates are OR’ed
together using non-redundant OR (NR-OR) gates. Two LUTs
configured as NR-OR gates are shown in the center of Fig. 4.
Unlike the R-XOR gate, the redundant inputs of the NR-OR
gates are located in two different LUTs. This alternative form
of redundancy allows the output pairs of up to three R-XOR
output signals to be combined (or collected) using only two
LUTs, i.e., a 3-to-2 compression ratio.

In contrast, the redundant version of the OR gate (R-OR)
shown on the far right in Fig. 4 can monitor only 2.5 R-XOR
gate output pairs, to provide a 2.5-to-2 compression ratio.
This is true because only 5 of the 6 inputs can be used in the
R-OR version because both lut5 outputs are used. Therefore,
the NR-OR version reduces overall system overhead. Note,
however, that both versions guarantee that at least one of
the alarm output signals will be asserted if a functional fault
occurs even if a second fault occurs internally within a LUT,
e.g., a node is stuck-at or a CMB bit flip occurs.

The CMB programming sequence for the R-OR gate,
shown on the right side of Fig. 4, is different than the
R-XOR gate in two ways. First, it implements the OR logic
function, and second, it is setup to handle a fifth input. The
upper cone is programmed with the sequence ‘‘11111110
11111110 11111110 11111110’’, while the bottom cone
is programmed with the sequence ‘‘11111111 11111111
11111111 00000000’’. A portion of both sequences is
shown in the figure. These sequences implement two fault-
independent functions, i.e., a 3-input OR gate in the top cone
and a 2-input OR in the bottom cone.

The NR-OR and R-OR network components define a
hierarchy of 3-to-2 and 2.5-to-2 compression functions,
which eventually combine all of the R-XOR redundant
outputs to two alarm signals, Alarm1 and Alarm2, shown on
the far right of Fig. 4. The number of gates and levels in
the hierarchy depend on the number of functional unit output
signals monitored and the number of NR-OR vs R-OR gates
used for compression of the alarm signals.

FIGURE 5. DEFCON functional unit output blocking design.

3) OUTPUT SIGNAL CONTROL IN DEFCON
DEFCON incorporates a mechanism to force the functional
unit output signals to a fail-safe state once a fault is detected
and one or both alarm signals are asserted. In the following,
we assume the fail-safe state for functional unit outputs is ‘0,’
but any bit-pattern is possible.

The output blocking circuit for two functional unit outputs,
A and B, is shown in Fig. 5. The LUT6 (labeled Block)
again makes use of the dual LUT6 outputs. One copy of
the redundant functional unit output signals is routed to the
LUT6 inputs along with the two alarm signals. The truth table
function is coded to pass the current state ofA11 andB11 under
the condition that both alarms are ’0’, and to force the lut5
outputs to ’0’ otherwise. The input labeled in[4] is used in a
quad-redundancy scheme discussed below.

As we will show in the results section, under dual-fault
conditions, where one fault occurs on a functional unit output
and a second occurs in the DEFCON monitor, there are a
small number of cases where DEFCON fails to block the
functional unit output signals. In particular, we have observed
in our simulation experiments that there are a small number
of DEFCON monitor faults that allow the functional unit
outputs to be stuck at the non-fail-safe value (’1’ in our
experiments) despite the fact that one or both of the alarms are
asserted. Similarly, several instances occur when a fail-safe
output signal, e.g., AFS , is erroneous even when neither
of the alarms are asserted. Unfortunately for this second
scenario, adding fully redundant versions of the Block gate
does not allow a decision to be made regarding which of the
redundant outputs represent the correct functional unit output
value.
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FIGURE 6. Simulation model for validation with fail-safe checks on three
functional unit output signal pairs.

4) QUAD-REDUNDANCY IN DEFCON
A notable advantage of the proposed architecture over
that proposed in [2] and [3] is the quad-redundancy that
exists within each R-XOR LUT. Quad-redundancy allows
DEFCON to mitigate SEUs at run-time that might occur in
the R-XOR LUTs of the DEFCON monitor. If, for example,
only one of the alarm signals is asserted, this is an indication
that a fault has occurred in a CMB of the DEFCON monitor
itself. The signal labeled in[4] in Figs. 4 and 5 can be asserted
to verify whether a CMB fault has occurred by switching to
the redundant copy in each of the two LUT subfunctions, i.e.,
by switching to CMB bits {16} through {31} in the upper
cone and {48} through {63} in the bottom cone of the LUT6.
If the asserted alarm signal returns to 0, then the proposed
fail-safe system can continue to operate with full fail-safe
detection capabilities in place and delay the repair of the
CMB until a later time.

B. SIMULATION EXPERIMENT SETUP
The faults considered in our analysis are upsets in the
CMB bits. Note that stuck-open and stuck-closed PIP faults
are equivalent to stuck-at faults in the CMB that control
the PIPs [17]. Bridging faults between independent wire
segments (not connectable via a PIP) are not considered in our
analysis. Moreover, the PIP components in the OpenFPGA
architecture are unidirectional which eliminates the need to
consider the complex fault propagation behavior that results
from using bidirectional PIPs [11].

The test circuit configuration used in the simulation
experiments is shown in Fig. 6. The outputs from two
redundant copies of a functional unit are labeled Func0 and
Func1. A DEFCON circuit configuration is constructed to
monitor the three 1-bit redundant outputs signals from the
functional units. The redundant output signals A, B and C are

each replicated at the inputs of the FPGA to remove single
point of failures along their routes within the FPGA. All
twelve signals enter the FPGA through I/O pads as shown
in the OpenFPGA architecture of Fig. 3. This models system
architectures that use the FPGA as a board-level monitor for a
pair of synchronized microprocessors, all as separate devices,
or architectures in which the functional units are included
within the FPGA architecture itself.

The DEFCON implementation utilizes six LUTs from the
array of ten contained within the CLB (see Fig. 3) to create
three R-XOR gates, two NR-OR gates and a R-OR gate
using the CMB sequences described earlier. Two additional
LUTs are used to implement the ‘Block’ gates, as shown
in Fig. 6. The routing MUXs within the CLBs, SBs, and
CBs, are programmed to create the connection framework as
shown. The CMB chain is 2,562 bits in length, with 740 bits
dedicated to configuring the 10 LUTs in the CLB, 960 bits
for configuring the local routing MUXs within the CLB,
32 bits for defining the direction of the I/O pads, 400 bits for
configuring the SB MUXs and 430 bits for configuring CB
MUXs. The two alarm signals, alarm1/2, represent the output
of the DEFCON monitor, while AFS , BFS and CFS , represent
the fail-safe outputs of the functional units. The alarm signals
can be routed to a kill switch or a module that implements a
recovery procedure.

We analyze the fail-safe properties of DEFCON by
simulating faults in the structural netlist representation of
the OpenFPGA architecture shown in Fig. 3. Faults are
introduced into the simulation model in one of two ways.
First, faults are created on the outputs of the functional units
by assigning opposite values to a pair of redundant outputs,
e.g., {A00, A01, A10, A11} = ‘‘0011’’ (note that the replicated
wires, e.g., {A00, A01} are always assigned the same value).
There are 8 fault-free assignments in which the output pairs
are assigned the same value and 24 faulty assignments where
exactly one of the outputs of a pair is assigned opposite
values, i.e., a single-fault model within the functional units
is assumed. We refer to these signal input components of the
simulation model using the term FuncUnit.

Faults are also introduced into the DEFCON monitor
itself. For each of the FuncUnit test scenarios, faults are
simultaneously introduced, one-at-a-time, into the CMB
chain by flipping one of the 2,562 CMB bits. We use the term
FPGAUnit in reference to these components of the simulation
model. Therefore, the fault simulation experiments are
carried out under a dual-fault model, with exactly one fault
introduced into the FuncUnit and one in the FPGAUnit. The
simulation results report the number of detections, i.e., alarm
signal assertions, under this dual-fault model.

C. SIMULATION EXPERIMENT CHALLENGES
A well known challenge with simulating faults in FPGA
designs is the creation of combinational loops, which occur
when the fault creates a connection between an output and
an input to the same combinational logic network. The
flexibility within the routing architecture of an FPGA makes
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FIGURE 7. (a) An example of a one-hot MUX implementation in which a
CMB bit flip enables two transmission gates to drive the MUX output,
with input a driving a 1 and input b driving a 0. The simulator is unable to
resolve the logic value on the MUX output and assigns an x . (b) A test
scenario in which the LUT input inA[0] is driven by an x , resulting in an
output value of x on the top cone output (lut5[0]). The DEFCON
redundancy scheme is still able to evaluate the logic function in the
bottom cone with inputs inA[1] and inB[1], and produces a well-defined
0 or 1 on the output (lut5[1]).

this possible. Faults that create combinational loops prevent
the simulator from producing any results, and therefore are
removed from the set of simulated faults in our analysis. The
number of simulation failures is reported in a separate column
of the results table presented in the next section.

One-hot, pass-gate MUX implementations represent a
second challenge when simulating faults in FPGAs. Routing
configurability within FPGAs is implemented using MUXs
within CLBs, CBs and SBs. Therefore, a large number of
MUXs are needed to implement the various configuration
options within the routing network. One-hot, pass-gate MUX
implementations are area-efficient but exhibit undesirable
characteristics when faults occur, potentially creating shorts
and floating output node conditions.

The left side of Fig. 7 illustrates a condition that only
occurs within pass-gate implementations of MUXs. Here,
a bit flip within the CMB1 cell enables the second pass-gate,
which creates a short between inputs a and b. In hardware,
the logic value on the output node is defined by the resistance
ratio of the two pass gates, e.g., 0.5 V for a 1.0 V supply
voltage. The simulation tool handles this shorting condition
by assigning an x (undefined) logic value as shown. A second
fault scenario is also possible in which a CMB bit flip
disables all pass gates (not shown), resulting in the output

node floating to an unknown value in hardware. The simulator
in this case assigns a z (high impedance) logic value. In either
scenario, pass-gate MUXs introduce additional challenges
over gate implementations in fault tolerant and fail-safe
system designs.

Fortunately, the redundancy scheme proposed in DEFCON
is able to operate correctly despite both types of fault
conditions. The right side of Fig. 7 shows the behavior of
the LUT outputs lut5[0] and lut5[1] when the inA[0] LUT
input is driven with an x. The output of the top cone is also
x because the select inputs to the first stage of MUXs is
driven with an unknown logic value, and the CMB inputs
to those MUXs possess different values. The bottom cone,
on the other hand, is able to operate correctly despite the fault
and generates a well-defined ’0’ or ’1’ on the lut5[1] output,
which is determined by the values of inputs inA[1] and inB[1].
This is true because the first (and second) stage MUX inputs
are all driven with the same input value, making the actual
value on the faulted input inA[0] irrelevant.

Unfortunately, the simulator is not able to determine
that the value on out5[1] is well-defined, and will make a
conservative assignment of x to both lut5[0] and lut5[1]. The
simulator propagates x through the remaining components of
the netlist, resulting in a large number of x assignments to the
alarm1 and alarm2 signals from Fig. 4.
We address this issue by adding assertions to the simulation

model. The assertions monitor the input values of the six
LUTs in the DEFCON design and re-assign a 0 or 1 to lut5[0]
or lut5[1] when conditions similar to those shown in Fig. 7
are met. For example, lut5[1] is re-assigned a 0 if inA[1] and
inB[1] are the same logic value and 1 otherwise, eliminating
the x assignment. By adding these assertions, we were able to
reduce the number of x assignments to the downstream alarm
signals significantly. For example, in theFuncUnit simulation
with {A00/01, A10/11}= ‘‘0011’’ and with Bx andCx assigned
‘‘0000’’, the number of x assignments to alarm1 without
assertions is 257, which is reduced to 35 with the assertions
included.

D. SIMULATION RESULTS
As indicated earlier, simulation experiments are carried out
using a dual-fault model, in which single faults are introduced
in the FuncUnit and FPGAUnit simultaneously. We present
the results for the alarm signals and functional unit outputs
separately in the following two sub-sections.

1) ALARM SIGNAL ANALYSIS
The alarm signal analysis focuses on the number of times
a functional unit output fault is successfully detected. The
results are shown in Table 1 for four of the thirty-two
FuncUnit test case scenarios. The results for the remaining
test case scenarios are very similar to those shown here.

The FuncUnit test case labeled ‘‘Fault-Free’’ refers to
consistent assignments to the functional unit outputs, e.g.,
A00/01 and A10/11 are set to ‘‘0000’’ or ‘‘1111’’, while
‘‘Fault X’’ test cases refer to inconsistent assignments, e.g.,
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TABLE 1. Fault detection results for DEFCON.

TABLE 2. Blocked outputs results.

‘‘0011’’ and ‘‘1100’’. Although there are eight possible
configurations for each row with three functional outputs,
we show results for only one configuration, e.g., {A00/01,
A10/11, B00/01, B10/11, C00/01, C10/11} = ‘‘000000000000’’,
‘‘001100000000’’, ‘‘000000110000’’ and ‘‘000000000011’’,
respectively.

The numbers in the columns of Table 1 represent the results
across all of the 2,562 CMB fault insertion experiments,
with each of the CMB bits flipped, one-at-a-time. Column 2
identifies the number of times at least one of the alarms
is asserted, and Columns 3 and 4 represent the number of
times Alarm1 is asserted and Alarm2 is asserted, respectively.
Column 5 counts the number of faults in which both alarm
signals are undefined (x). Column 6, labeled Missed, counts
the number of faults that deactivate both alarm signals,
which includes the faults counted in column 5 as undefined.
Column 7 represents the number of test cases where the
simulation failed because of combinational loops. Column 9
counts the number of faults that are correctable by asserting
the Correctsw signal from Fig. 6.
The Fault-Free results show that only 77 faults cause one

or both of the Alarm signals to be asserted. Given these
alarm conditions are not linked to failures in the FuncUnit,
but rather are associated with faults in the DEFCON monitor
itself, a small number of fault assertions is a desirable feature.
Of these detectable faults,Correctsw is able to instantly repair
6 of the faults that occur within the R-XOR gates.

The Fault A/B/C test results given on rows 3 through 5
reflect the effectiveness of the DEFCONmonitor. TheMissed
column represents test cases in which the DEFCON monitor
fails to detect a FuncUnit fault in the presence of a second
fault in the DEFCON monitor, where ‘fail’ is defined as
neither of the alarm signals being asserted. The DEFCON
redundancy scheme was able to detect all 2,562 CMB faults
in all test scenarios, with none of the CMB faults resulting
in both alarms being set to ‘x’. Moreover, the number of
times each alarm signal is asserted is also large, indicating
many faults cause both alarm signals to assert. Although a
small number of test cases result in combinational loops,
with results unknown, DEFCON accomplishes the goal of
flagging functional unit failures under the dual-fault model.

Interestingly, the number of times both alarms are unde-
fined for the Fault-Free test scenario is 12, despite the
resolution discussed in reference to Fig. 7. The root cause for
all 12 cases is related to the dominant value for the OR gates.
In nearly all Fault-Free test cases, the inputs to the three OR
gates are 0 and x. Logic 0 is the non-dominant value for the
OR gate, so if all inputs are 0 and x, the output of the OR gate
is x. The NR-OR gates are also not as robust as the R-OR gate
because they have only a single output, and an x on either
NR-OR output propagates an x to both alarms. Although it
is possible to re-wire the inputs of R-OR to prevent this,
i.e., by connecting both redundant inputs from each NR-OR
gate to the same redundant OR gate inside R-OR, doing so
creates combinational loops for some faults. Moreover, these
cases are somewhat moot because the x on both alarms would
immediately resolve to a 1 on at least one of the alarms if a
fault occurs in the functional unit, because 1 is the dominant
value of the OR.

2) FUNCTIONAL UNIT OUTPUT SIGNAL ANALYSIS
In this section, we analyze the effectiveness of DEFCON
in blocking the functional unit output signals under both
the single-fault and dual-fault scenarios described earlier.
Using ’0’ as the fail-safe output value, we simulated the
OpenFPGA design using four different test scenarios. The
‘‘Fault-Free’’ FuncUnit test case again refers to consistent
assignments to the functional unit outputs, but using all ’1’s
in this analysis, i.e., {A00/01, A10/11, B00/01, B10/11, C00/01,
C10/11} = ‘‘111111111111’’. The ‘‘Fault X’’ test cases
refer to inconsistent assignments, namely, ‘‘001111111111’’,
‘‘111100111111’’ and ‘‘111111110011’’, respectively.

The data shown in the columns of Table 2, from left to right,
give the FuncUnit test scenario, the number of times one
or both alarms are asserted, the number of fault simulation
cases in which the functional outputs (AFS , BFS and CFS )
are successfully blocked, the number of times DEFCON
fails to block a functional unit output, the total number of
unsuccessful blocks among the test cases and the number of
test cases in which the output(s) is undefined.

The Fault-Free results show the largest number of unsuc-
cessful blocks and indeterminate states, but also represent the

10 VOLUME 12, 2024



P. A. Bhakta et al.: Fail-Safe Logic Design Strategies Within Modern FPGA Architectures

innocuous cases because the functional unit outputs are fault-
free. Here, we observe cases where neither alarm is asserted
but one or more functional unit outputs are erroneous. The
results shown in rows 2 through 4, and columns 4 through 6
represent DEFCON fail cases. However, the number of
dual-fault test cases in which DEFCON fails is small at only
2 and 3. Here, one or both alarms are asserted but DEFCON
fails to block one or more of the functional unit output
signals. Unfortunately, the number of indeterminate values
is significant for these rows, so it is impossible to assess
the overall effectiveness of the scheme. Although not shown,
DEFCON is successful in blocking all functional unit outputs
when only the functional unit outputs are faulted.

E. RESOURCE UTILIZATION
The combination of both redundant (R) and non-redundant
(NR) LUT instantiations makes DEFCON a compact archi-
tecture. One LUT is required for each pair of functional
unit outputs that needs to be monitored. The NR-OR gates
provide a 3-to-2 compression ratio, receiving input from up
to 3 R-XOR gates and producing two pairs of output signals.
The R-OR gates can also be used to provide compression
of upstream alarm signals, but as discussed earlier, the
compression ratio is somewhat less, at 2.5-to-2, requiring a
larger network if used instead of NR-OR gates. However,
R-OR gates are more robust to FPGAUnit failures because
of the dual outputs.

The DEFCON monitor LUT utilization is upper-bounded
by nlogn. For example, doubling the number of functional
unit outputs from 3 to 6 doubles the number of X-OR
and NR-OR gates, and triples the number of R-OR gates
from 1 to 3. Here, we assume that R-OR gates are used
in the final compression stages, resulting in an increase in
LUT utilization from 6 to 13. Further reductions in resource
utilization are possible by using NR-ORs in all stages of the
alarm signal compression network.

IV. FPGA EXPERIMENTAL EVALUATION OF DEFCON
In this section, we implement and analyze the effectiveness
of DEFCON on a Xilinx Zynq 7010 FPGA. The Advanced
Encryption Standard (AES) algorithm is the selected func-
tional unit for the DEFCONmonitor. An open source Verilog
HDL description of the AES algorithm is obtained from [18]
and synthesized using Xilinx Vivado. A design is constructed
in which the AES algorithm is duplicated and instrumented
with DEFCON. The AES engines are configured to perform
encryption with a 128-bit key.

A block diagram of the experimental design is shown in
Fig. 8. The processor side (PS) contains an ARM Cortex
A9, which executes a C program under the Linux operating
system that serves as the fault injection manager (FIM).
A fault-free version of the duplicated AES engine with
DEFCON is synthesized into a partial bitstream for run time
programming into a dynamic partial reconfiguration (DPR)
region in the programmable logic (PL) side of the SoC.
The partial bitstream is created using Vivado and transferred

FIGURE 8. Block diagram of the processor, static and DPR programmable
logic regions on the Xilinx Zynq 7010 SoC device. A C program reprograms
the DPR Region through the PCAP interface, introducing one bit flip into
the programming bitstream for each experiment. Two copies of the AES
engine are placed and routed together into the DPR region, along with
two DEFCON monitors. DEFCON1 compares the two 128-bit internal
datapath registers that are updated on each round of encryption, while
DEFCON2 monitors the 32-bit readout circuit. A blocking circuit (Block)
forces 0’s on the read1B bus when any of the 4 registered alarm signals
(alarmxR ) is asserted. The static design routes control and data signals
using 4 GPIO registers from the processor to the DPR region.

to a flash memory card on the Avnet ZYBO Z7-10 board
[19], [20].

As shown in Fig. 8, the DPR region resources used by the
two AES implementations are completely independent, with
separate control signals (ctrl1 and ctrl2), 32-bit data input
(write1 and write2) and data output (read1B and read2) buses.
Similarly, each copy of AES has separate key, plaintext and
ciphertext round registers. The control signals and data input
buses are connected to separate GPIO channels to prevent
Vivado from performing routing-reduction optimizations on
these signals. The data output bus is configured with a MUX
to enable the read1B, read2 and read1UB ciphertext outputs
to be read after the encryption. Here, subscripts B and UB
refer to blocked and unblocked, respectively. The read2 and
read1UB are used only as information to help determine the
impact of the inserted faults and would not be included in
a fielded version of DEFCON. Similarly, the 4 registered
(alarmxR) and 4 unregistered (alarmxUR) alarm signals would
normally be reduced to only two registered alarms signals
but are wired out separately to assist with classifying fault
behaviors.

The Vivado implementation view of the design is shown
in Fig. 9, which includes both a static (left) and pblock
region (right) surrounded by a magenta rectangle. Xilinx
Vivado uses the pblock construct to designate regions as
reconfigurable. The annotations given as AES1, AES2 and
DEFCON , illustrate only the general regions in which these
elements are placed and routed, where, in reality, these
components are actually interwoven with no hard boundaries
between them. All routing from the static to dynamic regions
and vice versa is constrained to occur only once, i.e.,
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FIGURE 9. Xilinx Zynq 7010 experimental design with two copies of the
AES engine and the DEFCON monitor placed in a dynamic partial
reconfiguration (DPR) region, highlighted by a magenta rectangle on the
right. The static design shown on the left side includes only GPIO
registers that enable the C program running on the processor to deliver
control and data to the programmable logic and MUXs for implementing
the fanout of these signals, which are routed across separate interfaces
into the DPR region.

no control or data signals are routed into the DPR regions and
then back out again. This represents a model in which these
signals route to and from I/O pads on the device, in contrast
to our setup where these signals route to the processor side
of the SoC through GPIO. The size of the design requires
a DPR region that spans both the upper and lower clock
regions on the right side of the device. Each region possesses
1,554,592 bits of programming data, yielding 3,109,184 fault
emulation experiment (FEE) bits. Our FIM is able to perform
approximately 6.6 fault emulation experiments per second,
requiring nearly 2.7 days to complete all fault emulation
experiments in each of the two clock regions.

Two DEFCON checker circuits are added to the hard-
ware design, labeled DEFCON1 and DEFCON2 in Fig. 8.
DEFCON1 error checks the 128-bit ciphertext round registers
from the two AES engines while DEFCON2 error checks
the two 32-bit read-out buses. The alarms for DEFCON1 are
registered to enable any mis-compares during any of the
10 rounds of encryption to record the alarm condition for
readout at the end of the encryption operations. Similarly, the
ciphertext read-out operation requires 4 cycles of 32-bit reads
to complete, and therefore,DEFCON2 also registers its alarm
signals. The registered alarm signals (alarmxR), as well as the
end state of the unregistered alarm wires (alarmxUR) are read
by the C program after the encryption and read-out operations
complete, or after a time-out in cases where the fault prevents
completion. Note that when DEFCON is deployed in the
field, any trigger of an alarm would immediately halt the
encryption and/or read-out operations, force the outputs to
a fail-safe state, and then initiate a mitigation operation for
recovery. For our testing and evaluation, we allow encryption
and read-out to complete independent of the state of the

FIGURE 10. Schematic of the DEFCON1 which monitors the two 128-bit
ciphertext round registers from the two AES engines. Resources used
include 128 R-XOR LUTs, 54 NR-OR LUTs and 1 R-OR LUT. The alarm1 and
alarm2 signals connect to registers (not shown) that store ‘1’ if a
mis-match occurs during any of the 10 rounds.

alarms, and read out ciphertext1 using the read1B channel,
as well as ciphertext2 and the unblocked ciphertext1 using
the read2 and read1UB, respectively. All three copies of the
ciphertext are stored along with the 8 alarm signals to a file
for off-line analysis.

A. DEFCON MONITOR DESIGN
The DEFCON monitors are constructed in the same way
as those shown in Fig. 4 for the OpenFPGA experiments
except the number of bits monitored increases to 128 for
DEFCON1 and to 32 for DEFCON2. Also, the depth of
the NR-OR tree circuit is increased to four levels for
DEFCON1 and three levels for DEFCON2. A schematic
diagram for DEFCON1 is shown in Fig. 10. The resources
required to implement it include 128 copies of R-XOR LUTs,
54 copies of NR-OR LUTs and one copy of the R-OR LUT.
DEFCON2 requires 32 copies of R-XOR LUTs, 14 copies of
the NR-OR LUTs and one copy of the R-OR LUT. In total,
both DEFCON monitors utilize 230 LUTs.

The Block circuit is constructed with redundant deactiva-
tion signals as shown in Fig. 11. The two NOR gate outputs
are routed to a set of 32 AND-gate LUTs, which gate the
passage of the read1UB 32-bit bus to the output signal read1B.
If any of the registered alarm signals is asserted, the read1B
outputs are forced to 0’s (we use 0s as the fail-safe output
values but any arbitrary assignment is possible).

B. TESTING PROCESS
The actions carried out in software by the FIM are shown by a
block diagram in Fig. 12. The following summarizes the fault
emulation process.

• The FIM reads the fault-free partial bitstream into a
memory array.
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FIGURE 11. Schematic of the Block circuit which forces 32-bit chunks of
ciphertext1 to 0’s when any of the registered alarms are asserted. The
block signal is replicated to add resilience to deactivation when faults
occur. Resources consist of 2 NOR LUTs and 32 AND LUTs.

• The DPR region is programmed with the fault-free
partial bitstream and theGPIO control signals are used to
load the key and plaintext, configure theAES engines for
128-bit encryption, and simultaneously start both AES
engines to carry out a fault-free encryption operation.
The fault-free ciphertext is fetched and stored inmemory
for use in the subsequent FEE.

• A fault emulation loop is executed in which a single bit
flip error is introduced into the partial bitstream, starting
at the base address of the Type 2 packets [21].

• The faulty partial bitstream is written to the PCAP
interface using a system call from the FIM C program.

• The GPIO control registers are again used to load the
key and plaintext, configure the AES engines for 128-bit
encryption and start the AES engines in lock-step.

• The AES done signals are monitored for completion.
If asserted, the data unloading procedure is commenced.
A 1 millisecond time-out enables continuation in cases
where the fault prevents the AES engines from asserting
the done signals.

• Data unloading consists of issuing an address and start
signals to the AES engines that indicate which 32-bit
chuck of the ciphertext register is to be transferred to
the read1UB and read2 data buses. Ciphertext is retrieved
by the FIM from the GPIO data registers and stored to
a file. As indicated earlier, the data unloading process
retrieves ciphertext from three different sources to assist
with determining the behavior of the faulted circuit.

• The 8 alarm bit values are also read and stored to a
file. The alarm status values with correctsw set to ‘0’ are
read first, and then read again after the correctsw control
signal is asserted. If the alarmxUR bits return to ‘0’, then
the fault is classified as repairable.

• The fault emulation loop is repeated for each of the faults
that can be inserted into the Type 2 data packet region of
the partial bitstream. This process is repeated for both
the upper and lower clock regions in the DPR region.

C. EXPERIMENTAL RESULTS
In this section, we analyze the data collected from four
Xilinx Zynq 7010 SoCs. Our primary goal is to determine
the number of benign faults, the number of faults that are
detected by the alarms and the number of faults that are
missed. From the OpenFPGA analysis, and the analysis
presented in Fig. 7, faults introduced into the transmission
gate MUX structures used in the switch boxes can create
shorting and open conditions. Although the implementation
details for the Zynq device layout are not available, we expect
similar conditions can occur in the hardware. We confirm
this by comparing the results across devices, and attribute
any differences to within-die process variations, which act
to make shorting and open fault behaviors device dependent,
similar to the conclusions presented in [22].

We first describe some important limitations to our
experimental setup, which uses the processor system (PS)
and programmable logic (PL) side of an SoC to implement a
fail-safe system. The first limitation relates to the inability of
DEFCON to detect faults in circuit components that convey
information after the checker itself. For example, from Fig. 8,
faults that occur in the routing of the 32-bit read1UB bus
through the Block circuit to the point where read1B crosses
from the DPR region to the static region will not be detected.
The redundant alarm signals and redundant implementation
within the Block circuit itself add resiliency to the Block
circuit to some types of faults but cannot ensure that data
is not corrupted on transmission to the static region despite
those cases in which the ciphertext is correct in both instances
of the AES engine.

An intuitive way to fix this issue might be to connect
DEFCON2 to the outputs of theBlock circuit. However, doing
so requires a more complex pipeline structure to prevent
corrupted data from reaching the static portion of the design
(or I/O pads in actual fielded version of DEFCON). For
example, if a routing fault occurs on the read1B data bus,
DEFCON2 would then assert alarm3R on the next rising
edge of the clock, which in turn would force the Block
circuit to produce the fail-safe values on the read1B data
bus. However, the pipeline registers for the read1B data bus
placed downstream at the interface to the static region just
captured corrupted data, and therefore, must be reset. The
pipeline registers could be instrumented with an emergency
asynchronous reset signal, which would force the registers
to the fail-safe values. However, this strategy is not fail-safe
for faults that can now occur in the routing to and after
the pipeline registers. A second strategy might make use
of the unregistered alarm3UR signal as input to the Block
circuit, as a means of eliminating the pipeline registers, but
this design creates combinational loops and the possibility
of oscillations. The best solution is to fix the placement and
routing of the blocking circuit directly on the interface to the
static region (or I/O pads) to eliminate downstream routing,
but doing so requires the creation of a special constraints
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FIGURE 12. Software flow diagram showing the actions carried out by the fault injection manager (FIM).

TABLE 3. Experimental results from the first Zynq 7010 device (3,109,184 total faults).

file. Future work will investigate the improvements that are
possible with this type of customized solution.

Bear in mind that under the single fault model, a fault that
causes one of the AES engines to malfunction, will always
cause both alarm1 and alarm2 to be asserted except in the rare
case where the fault creates a short between a wire in an AES
engine and one of the alarms, in which case, it may happen
that one of the alarms is disabled. In either case, the FIM will
record a positive detection of the fault. Therefore, all single
fault occurrences within the AES engines will be detected.
This assumes any single fault can cause at most two wires to
be shorted together, and in such cases, it is also assumed that
the two wires are not the exact same wires from both AES
engines. Although possible, it is extremely unlikely that two
identical wires would be routed through the same switch box.
As we will show, no such instances occurred in our design.

However, there are several cases that will result in one
or more alarms being asserted without any error occurring
in either of the AES engines, hereafter referred to as false
positive detections. From the OpenFPGA analysis, the most
common false positive scenario occurs when the fault affects
the DEFCON monitor itself, either in the routing of the
monitoring wires or as upsets in the CMB of the DEFCON
LUTs. The correctsw can be used to instantly repair faults
occurring in the LUT CMB, but routing faults require a
scrubbing operation, i.e., reprogramming the DPR region.
Another scenario considers the possibility that the fault
shorts one of the alarms to VCC. This latter scenario
is distinguishable in our setup because only one of the
4 registered and unregistered alarms will be asserted. Other
scenarios are possible, and are described in reference to the
tables used to present the results.

The FIM runs a fault-free emulation as the first test
and saves the correct ciphertext in an array. The fault-free

ciphertext is compared with the ciphertext read from read1B
(the ciphertext channel with the Block circuit in series).
If a mismatch occurs and none of the 8 alarmx flags are
set, the fault is classified as a miss. In our experiments,
all of the observed misses occur for faults that affect the
routing or LUTs after the DEFCON2 circuit. We validated
this by verifying the ciphertext read from the read1UB and
read2 channels is the correct ciphertext, ruling out failures
in the AES engines. Moreover, in all cases, 32-bit chunks
of correct ciphertext appear in the ciphertext read from the
read1B channel. If, in contrast, either of the AES engines are
affected by the fault, the AES round transformations would
eliminate all matching 32-bit chunks of the correct ciphertext
by virtue of the avalanche effect. Note that in a fielded version
of DEFCON, we would not know the correct ciphertext,
so these compare operations are done for diagnostic purposes
only in this work.

For discussion of the results, we partition the 8 alarm
signals into two groups of 4 bits, with the first group
corresponding to alarms 1 and 2, and the second group to
alarms 3 and 4. The bit values corresponding to the alarms
signals are coded as hex values between 0 and F with the
two high-order bits of each hex digit corresponding to the
unregistered alarm signals, while the two low-order bits
correspond to the registered alarm signals. For example,
an alarm status code of 3 is decoded as (alarm1UR, alarm2UR,
alarm1R, alarm2R ) = 0011, which indicates that the
registered alarm signals detect a fault, but the unregistered
alarm wires are not asserted and therefore fail to detect a
fault. Note that in an actual DEFCON fielded system, only
the registered alarms would be used. The unregistered alarms
are used in this work only for diagnostic information.

The leftmost column of Table 3 lists the status categories of
the registered alarm signals, while columns 2 and 3 give the
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TABLE 4. Blocking results.

number of FEE classified under each of the status categories
for the top and bottom halves of the DPR region, respectively.
Column 4 shows the row-wise sums of Columns 2 and
3. Columns 5 counts only those faults that are correctable
from the set that assert at least one registered alarm signal.
We first note that the top and bottom halves each have
1,554,592 CMB, and therefore, the total number of fault
emulation experiments carried out is 3,109,184. The AES
instances and DEFCON circuits utilize 76.1% of the LUT
resources and 34.0% of the FF resources, as reported by
Vivado. The most important status conditions are listed on
the rows in the table and are explained as follows:

• Benign: These faults are characterized as having the cor-
rect ciphertexts and no alarms are set. Despite the
reasonably high utilization of resources used by the
design, most of the CMBs are not utilized to implement
the design, and therefore, faults injected into these
CMBs have no effect on the functional operation. These
results are consistent with previous studies which found
that, on average, only 10% of the CMBs are utilized in
any given design [23].

• Active: These faults are characterized as having one of
the ciphertexts corrupt, either because the fault impacts
one of the AES engines or because the read-out circuit
is corrupted. The CMBs corresponding to the active
faults are referred to in previous work (and by Xilinx)
as essential configuration bits [22].

• At least one Alarm: These faults are characterized as
being detected by one or both of the DEFCONmonitors.

• False Positives: These DEFCON monitor faults are
characterized as having no effect on the ciphertexts but
raise one or more alarm signals. Note that these faults
are also counted in the ‘At least one Alarm’ class.

• Missed: These faults are characterized as corrupting
the read1B ciphertext but none of the alarm signals are
asserted.

• Untestable: These faults are characterized as impacting
the clock network and locking up the FPGA, making it
impossible to retrieve the ciphertext and alarm results.

The following conclusions are made based on the tabulated
results in Table 3 and observations of the ciphertexts and full
set of alarm signals.

• Fault detection capabilities: The DEFCON technique is
able to detect 99.78% of the Active faults in the Top
region and 98.98% of the Active faults in the Bottom
region.

• Missed faults: Using ciphertext from all three channels,
we confirmed that all miss cases occurred because
of faults in the routing and LUTs downstream from
DEFCON2, i.e., the AES engines computed the correct

FIGURE 13. Open fault model and their impact on the registered and
unregistered Alarm signals.

ciphertext, but it was not transmitted properly through
the read1B channel.

• Correctable faults: The number of correctable faults
observed in the FEE is 324, which is consistent with
the number of R-XOR and R-OR gates used in the two
DEFCON monitors, i.e., 2*128 + 2*32 = 320 R-XOR
and 2*2 R-NOR (as discussed earlier, two faults are
correctable in each redundant LUT gate).

• Faults which assert only the registered alarms signals
(Alarm code = 3): These faults occur in the routing
of the ciphertext to the DEFCON checkers. Examples
of faults that can cause this alarm status condition are
shown in Fig. 13, which annotates a set of stuck-at-0
faults with red squares. A Stuck-at-0 fault occurs when
a CMB fault creates an open circuit and presumably,
the weak pull-down forces the floating net to logic
‘0’. Here, we show an example sequence of bit values
that might be produced by both AES engines as they
execute the 10 rounds of an encryption operation, given
as ‘‘1001010110’’. In this example, the first round has
a ‘1’ in the high-order (left-most) bit position. The
stuck-at-0 fault prevents the R-XOR from receiving the
‘1’ from the top ciphertext round register and asserts
an alarm on one of out1[0] or out2[0] depending on
which stuck-at-0 fault is activated. This causes both
registered alarm signal, alarmxR, to record a ‘1’ because
of the fan-out on the input to the R-OR collector gate
(see Fig. 10). Once the encryption engines finish, the
ciphertext in the register has ‘0’ for the high order bit.
This causes the unregistered alarmxUR signals to return
to ’0’ because the faulty value and the true value are
identical. The alarm code in this case is given as ‘‘0011’’
indicating both unregistered alarms are deasserted and
both registered alarm signals are asserted.

• Faults which assert both the registered and unregistered
alarms (Alarm code = F): This is by far themost common
error code, which occurs when a fault affects the routing
or LUT networks in one of the AES implementations.
The fault corrupts the ciphertext in one or more rounds
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of the AES encryption operation and causes both of
the registered and unregistered alarms to be set in both
DEFCON circuits.

• Faults in the R-OR truth tables (Alarm code = 5 or A):
Only one of the registered and unregistered alarm signals
are asserted. This case occurs when a fault affects one of
the selected ‘0’ bits in the R-OR LUT. Here we observe
the ciphertexts are correct on all three read-out channels.
This condition occurs exactly 4 times given that only
two R-OR gates exist in the design, one for each of
the DEFCON monitors. The fault effect is illustrated in
Fig.14 where a single fault in the CMB highlighted in
red affects just one of the alarm signals (the upper MUX
network of the LUT and alarm signal are not shown).
In this case, asserting the correctsw signal, highlighted
in blue, can instantly repair the fault by switching to the
upper 16 bits of the redundant truth table encoding of the
LUT.

• Non-determinism: We observed a small number of
faults, less than 20 in any given FPGA and Top
or Bottom region, that produce a constant incorrect
ciphertext on all read-out channels, and therefore, none
of the alarms are asserted. Moreover, the ciphertext is
exactly the same across all FEE in which this occurred.
We also found that the FEE that produce this strange
condition are non-deterministic, i.e., by re-running the
FEE a second time, the ciphertexts become fault-free
on all three channels. It remains a mystery as to the
root cause of this strange behavior. Our best guess is
that the system command that reads the partial bitstream
from the SD card and streams it into the PCAP interface
from the PS side malfunctions occasionally and forces
the PL side into some type of failed state. The process
of re-running these FEE eliminated the errors in every
instance, and therefore, we classify these faults as
Benign in Table 3. Future work will further investigate
the root cause.

The Block circuit results are partitioned into 4 categories as
shown in Table 4, namely Full Block, Partial Block, Missed,
and False Positive. When any of the alarms are asserted,
the Block circuit blocks the ciphertext and forces all bytes
to zero. The number of block failures, given by the Missed
column, corresponds exactly to the number of missed alarm
assertions given by the Missed row in Table 3. As mentioned,
these misses are attributed to faults that occur after the
Block component in the routing and LUTs downstream from
DEFCON2. We also observe cases where, despite a positive
detection of a fault with one or more alarms asserted, only
a portion of the ciphertext is blocked. This occurs when the
fault occurs in the readout MUXing structure, where the fault
is not detected byDEFCON2 until the faulty input component
to the MUX is accessed during the readout operation.
The faults listed in the False Positive column of Table 4
indicate that the blocking circuit prevents readout even
though the ciphertexts are correct. These cases are attributed

FIGURE 14. DEFCON R-OR gate illustrating repair capability using
Correct_sw signal.

to experiments in which the fault occurs in the routing and
LUTs of the DEFCON1 or DEFCON2 components.

1) FPGA DEPENDENT FAULT BEHAVIOR
The results presented in Table 3 for one of our FPGAs
differs from the results obtained using data collected from
three additional FPGAs. Given the same design is used in
all FPGAs, the differences observed are most likely due to
faults that create shorts in the routing network. The relative
drive strength of the LUTs and buffers driving the shorted
nodes vary because of process variation effects, which adds
non-determinism to the resulting logic values interpreted by
downstream LUTs.

As an example, Fig. 15 shows two LUTs, LUT1 and LUT2,
driving two nets with opposite logic values. The fault in this
case enables an N-channel switch between two output nets
in a switch box. The wires and switch box MUXs define
a voltage divider network where the voltage values present
on the inputs of downstream LUTs, LUT3 and LUT4, are
larger and smaller than the logic ‘0’ and logic ‘1’ voltage
values, respectively. Although we show 0.4v and 0.6v as the
downstream voltage values in this example, the actual values
are dependent on the relative resistances of R1, R2 and R3.
The receiver LUTs are tasked with interpreting the erroneous
input voltages as logic values, and may or may not produce
the correct output value. It is also possible that the pass-gate
MUXing network within the LUT creates additional shorts
causing the output voltages on LUT3 and LUT4 to propagate
indeterminate logic levels further downstream.
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FIGURE 15. Fault model of a FE experiment in which the fault creates a
short circuit between two driver LUTs, labeled LUT1 and LUT2, by enabling
a connection between two independent nets. The fault in this example
flips the CMB driving the gate of the N-channel transistor from a 0 to a 1.

TABLE 5. Counts of the number of differences observed in fault behavior
of three additional FPGAs with respect to reference FPGA.

Although it is not possible to verify these conditions exist
within the commercial FPGAs used in our experiments, the
differences observed in fault behavior among the 4 FPGAs
confirm that some type of contention exists in a subset of the
FEE. The number of such instances is given in Table 5, where
we tabulate differences in the alarm values and ciphertexts
for each of the three additional FPGA devices listed in
the first column when compared with the values from the
reference FPGA presented above. Here, we report the sum
of the differences observed in both the Top and Bottom
regions. The second column labeled Alarm gives the number
of faults where some difference exists in the 4 registered
alarm values of the two FPGAs. TheDetection column counts
only those faults from the second column where one FPGA
detects the fault (at least one alarm asserted) while the second
FPGA does not (no alarms asserted). Therefore, these faults
allow some FPGAs to function properly, and produce the
correct ciphertext, despite the fact that the fault is active, e.g.,
it creates a short in the routing network.

The fourth column counts the number of faults in which the
ciphertexts are different. Again, differences in the ciphertext
indicate that the fault’s effect is FPGA dependent. The fifth
column labeled Same counts the faults that produce the same
faulty behavior, i.e., the incorrect ciphertexts match as well as
the alarm status values, in particular, both alarms are non-zero
and equal in value. The sixth column labeled Total illustrates
that the vast majority of the active faults introduce identical
faulty behaviors. Here, Total represents the number of faults
that generate some type of error, either in producing wrong
ciphertexts and/or by asserting one or more alarms.

V. BYU VS DEFCON
In this section we analyze and compare the design of DEF-
CON and the DWC technique proposed by McMurtrey et al.

FIGURE 16. Comparison of DEFCON vs BYU XOR LUT implementations.
The BYU design uses two LUT2 gates to compare the redundant output
bits labeled A0_0, B0_0, A0_1 and B0_1, which is accomplished in
DEFCON using only one LUT.

TABLE 6. DEFCON and BYU LUT utilization.

TABLE 7. BYU vs DEFCON experimental fault analysis (3,109,184 total
faults).

[3], as well as the experimental results obtained from both
designs. Here we refer to the design in [3] as the BYU
circuit. The BYU technique uses two 2-input XOR LUTs
to compare each redundant output bit from the 128-bit AES
engines, which is twice the number utilized byDEFCON. The
DEFCON and BYU circuit structures are shown in Fig. 16(a)
and (b), respectively. Similar to DEFCON, the error signals
are collected and drive two final alarm signals using a binary
tree of 4-input OR LUTs.

The resource utilization of each technique is shown in
Table 6. Here we observe that the DEFCON design offers
a significant advantage over the BYU design, using a total
of 183 LUTs verses the 680 used by the BYU design.
Although it is difficult to accurately count, the number of
routing resources used by the BYU design would also be
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larger by approximately the same proportion because of the
additional XOR LUTs required in the BYU design.

Table 7 compares the fault detection capabilities of both
designs. As expected, the number of Benign faults is slightly
larger, and the number of Active faults is slightly smaller, for
the DEFCON design because fewer resources are used by the
DEFCON monitor circuitry. The number of faults classified
as False Positives, Missed and Untestable are very similar
across both designs, with the small differences likely due to
optimizations carried out by the Vivado place and route tool.
Therefore, the XOR packing strategy proposed for DEFCON
does not present any drawbacks with respect to fault detection
capabilities.

VI. CONCLUSION
In this paper, we propose a compact, fail-safe monitor
implemented on an FPGA that is able to detect a difference
on the outputs of two redundant functional units while being
robust to a second failure that occurs in the monitor itself.
We refer to the technique as DEFCON (DEsign for Fail-safe
in reCONfigurable systems). A novel redundancy scheme
is proposed in DEFCON in which a single LUT is able
to provide two independent functions. A special encoding
of the configuration memory bits in the LUT enables it to
accommodate a fault(s) on one set of inputs, while correctly
performing the specified function delegated to a separate set
of inputs. A fifth input to the LUT enables quad-redundancy,
which allows the LUT to switch instantly to a distinct set of
configuration memory bits and continue operating correctly
when a fault occurs in the LUT itself. Simulation results
show that DEFCON can correctly assert an alarm when
the monitored functional unit suffers a fault and when a
simultaneous (dual) fault occurs in the configuration memory
bits implementing the DEFCON monitor in the FPGA.
Moreover, in nearly all dual-fault test scenarios, DEFCON
is able to successfully block and force fail-safe values on all
functional unit outputs. The DEFCON circuit is validated in
hardware on a set of FPGAs, and compared with the most
closely related technique in terms of resource utilization and
detection capabilities.
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