
Fail-Safe Logic Design Strategies
within Modern FPGA Architectures

Jim Plusquellic
Electrical and

Computer Engineering
University of New Mexico

Albuquerque, New Mexico 87131
Email: jimp@ece.unm.edu

Andrew Suchanek
and Tom J. Mannos

Sandia National Laboratories
Albuquerque, New Mexico 87123

Email: asuchan@sandia.gov
and tjmanno@sandia.gov

Abstract—Fail-safe computing refers to computing systems
that revert to a non-operational safe state when a fault occurs.
In this paper, we investigate circuit level techniques as mitiga-
tions for implementing fail-safe computing processes on field-
programmable gate arrays (FPGAs). The propagation of fault
effects through FPGA primitives including lookup tables (LUTs)
and programmable interconnect points (PIPs) is assessed within
an FPGA architecture created using an open source tool. The
analysis reveals additional vulnerabilities exist within reconfig-
urable architectures over those in equivalent fail-safe application
specific integrated circuit (ASIC) versions; thus requiring a more
elaborate network of redundant circuits and checking logic. An
ASIC version of a fail-safe monitoring circuit is designed and
compared to the equivalent circuit requirements within an FPGA.
A compact fail-safe circuit design technique called DEsign for
Fail-safe in reCONfigurable systems (DEFCON) is proposed. The
benefits and limitations associated with an FPGA-based fail-safe
circuit structure with alarm capabilities, as well as simulation
and formal analyses are presented and discussed.

I. INTRODUCTION

Fail-safe systems need to incorporate redundancy and self-
checking capability, while still optimizing the speed, power
and area of a design. The default action on detection of a fault
is to sound an alarm, halt the system and drive the outputs to
a safe operational state. A simple example is the relay logic in
a fire control system, where the design must sound the alarm
when a fire occurs, but must also do so under any condition
that would de-activate the fire alarm system, such as a broken
wire. In more complex system architectures, the detection of
a failure that leads to an unsafe state usually requires the
insertion of redundant components.

Redundancy simplifies the task of fault detection by utiliz-
ing comparators, which monitor the outputs of the redundant
circuits at runtime and sound the alarm when a difference
is detected. The primary drawback of redundancy is the
significant increase in the size of the design and, given the
large overhead, duplication with compare (DWC) [1] [2]
is preferred over triple-modular redundancy (TMR), which
limits the functionality to detection only, and requires external
actions at the system level to correct the error(s).

The challenges associated with building fail-safe systems
make it difficult to use automated circuit design flows that im-
plement fail-safe properties while minimizing area overhead.

In this paper, we investigate fail-safe design on FPGAs at
the circuit level using an open source FPGA synthesis tool
called OpenFPGA [3] [4]. FPGA artifacts that enable recon-
figurability increase the difficulty of ensuring the redundant
components are independent, e.g., the possibility of fault prop-
agation through unused programmable resources needs to be
considered. Moreover, failure mechanisms, such as upsets to
the configuration state, can change logic functions and routing
characteristics and therefore the self-checking capabilities of
the monitoring circuit are more complex.

We first present a fail-safe DWC circuit as an ASIC and
investigate the changes required to integrate a similar circuit
into an FPGA. We utilize open-source FPGA design tools be-
cause the analysis of fault propagation paths requires detailed
knowledge of the underlying reprogrammable circuit structure
and it is considered proprietary and not available to end users
in commercial FPGAs.

II. BACKGROUND

A DWC technique is proposed for FPGAs in [1] [2] for
detecting upsets in state, i.e., bit values stored in flip-flips
(FFs), block RAM (BRAM) and configuration memory. The
method duplicates the functional design and incorporates self-
checking comparators that flag differences in duplicated signal
components, e.g. primary outputs and those within feedback
paths of the design.

A fault-tolerant technique that utilizes the dual outputs of
6-input LUTs to duplicate a logic function is proposed in
[5]. Based on the effectiveness of the logic masking, the two
duplicated outputs are either ANDed or ORed together in a
downstream LUT, as a means of masking 0-to-1 and 1-to-
0 single event upsets (SEUs), respectively. For example, a
5-input function is fully replicated in the lower 32 bits of
the configuration memory bits (CMB) of the LUT. An integer
linear program is proposed to finalize the optimal duplication
and encoding scheme that attempts to minimize fault rate.

A robust technique for mitigating SEUs is proposed in [6]
that leverages the dual outputs of 6-input LUTs and the carry
chain. Logic functions are decomposed into two subfunctions,
which are combined in the carry chain using AND or OR
gates by controlling the carry-in to 0 and 1, respectively.



The technique does not require changes to the placement and
routing, unlike [5] where downstream AND and OR functions
are needed, therefore reducing routing congestion while adding
resilience to SEUs.

The authors of [7] determined that CMB for routing re-
sources represents 90% of the total number of CMBs in
the FPGA, and are therefore are highly vulnerable to SEUs.
Moreover, they found that about 10% of the SEUs that upset
routing CMBs produce multiple short and open faults on PIPs
that cannot be corrected by TMR because the single fault
assumption on which TMR is based is violated. They propose
a reliability-oriented place and route algorithm that prevents
multiple errors from a PIP fault impacting TMR effectiveness.

The authors of [8] characterize SEU faults in FPGA LUTs
and their interconnects. LUT SEUs only introduce a fault when
that cell is selected, but configuration logic blocks (CLBs)
have intra-CLB routing that is typically fully connected and
MUX-based, so SEUs will always cause an irrelevant signal
to be selected and a fault introduced. Inter-CLB routing is
typically interconnected via bidirectional pass transistors. SEU
disconnection (open) faults are typically modeled as temporary
stuck-at-0/stuck-at-1 faults because FPGA architecture will
pull them low/high to prevent crowbar current in downstream
gates. SEU short faults bridge two adjacent wires and are the
most complex to characterize since they are created when two
drivers drive opposite values and downstream gates interpret
them as different logic signals. Nets that fanout complicate
this further, providing the opportunity for multiple faults to be
injected.

Modern FPGAs possess very large configuration bitstreams,
which increases the amount of time required to find errors
using traversal scrubbing techniques. A rapid scrubbing tech-
nique is proposed in [9] which utilizes the mapping between
critical circuits protected with DWC and configuration frames.

In this paper, we address the challenging issue of designing
and implementing fail-safe circuits within the fabric of an
FPGA. The reconfiguration capability of an FPGA adds com-
plexity to fail-safe design strategies by introducing additional
fault conditions and fault propagation paths, via CMBs in the
wiring, PIPs (connections and switches) and CLBs. A DWC
technique similar to that proposed in [2] is used, but optimized
to minimize routing resources in the FPGA. Moreover, the
proposed DEFCON scheme provides quad-redundancy in the
XOR-based comparators, enabling continued system operation
if a fault occurs in the fail-safe monitor itself, with no
additional overhead. Last, a circuit level analysis using the
netlists provided by OpenFPGA is carried out which considers
fault effects and propagation at a finer level of granularity than
the work described in [2].

III. FAIL-SAFE DESIGN IN CUSTOM-INTEGRATED
CIRCUITS

When considering fail-safe at the lower layers of the design
hierarchy, e.g., logic gates and routing networks, a fail-safe
design strategy needs to ensure the structural integrity of the
components is maintained. One approach to accomplishing this

Fig. 1: ASIC schematic of the duplication-with-comparison
(DWC) fail-safe circuit monitor.

Fig. 2: OneSpin test wrapper.

goal is to replicate the system component, e.g., microprocessor
using a dual-modular-redundancy (DMR) scheme, and add
circuit monitors that trigger an alarm when output signals
from the redundant system components differ. However, this
approach does not protect against faults that occur in the
monitors themselves. Full protection requires a specialized
monitor that is self-checking.

As an example, Fig. 1 shows a schematic of a DWC circuit
with self-checking capabilities. The DWC design is a simple
comparator to illustrate the concept, with two redundant mas-
ters, InA and InB, writing data to a common slave, Out, over a
serial interface. The serial data is sampled at synchronization
points, i.e., when sync is asserted, and compared. If InA and
InB both agree, then the data from one of the inputs passes
through all four blocking AND gates to Out. Otherwise, it is
blocked, and an alarm is triggered.

The proposed circuit structure detects faults that occur
both within the system components driving the inputs and
internally. For example, if a fault occurs within one of the
system components and the inputs differ, then the XOR gate
driving the input of the Miscomp1 FF will assert. On the next
clock, the Miscomp1 FF output will be asserted, forcing a
zero on the Out signal (the fail-safe state of this signal) via
the chain of AND gates shown along the top of the figure. The
Alarm1 output will also be asserted after two clock cycles.

The remaining schematic components are designed to detect
faults within the monitor itself. For example, if the XOR gate
driving the input of Miscomp1 is faulty, then the redundant
XOR gate Miscomp2 will detect a difference on the inputs (if
one occurs) and force Out to 0, and then assert Alarm2.

Note that the redundancy does not guarantee correct oper-



ation of the circuit, only that the fail-secure property is main-
tained under any single fault. Once the circuit has detected
an alarm, both alarm signals remain asserted and the output
remains blocked until the asynchronous rstN signal is asserted
low, resetting the circuit.

A formal fault analysis tool suite, called OneSpin [10],
is used to carry out a fault analysis of this circuit. Because
the circuit employs detection only and not correction, fault
analysis will result in many false positives if just comparing
the outputs to the fault-free case. We therefore create the
wrapper shown in Fig. 2 to detect unauthorized events and
assert one of two flag signals.

• Signal fail to block asserts if the output is able to toggle
following a miscompare, indicating the data is not being
blocked.

• Signal fail to alarm asserts if neither Alarm1 nor Alarm2
assert and remain asserted following a miscompare.

Under normal conditions, these signals will never assert. We
confirmed this is the case using OneSpin’s DV-Verify, which
proves that when no fault is present, it is not possible for the
logic of the circuit to assert either of the two signals. Only by
forcing one of these unauthorized events to occur in simulation
were we able to see them assert.

With this logic in place, OneSpin’s Fault Propagation Anal-
ysis (FPA) application confirms that no fault on any of the
DWC internal signals can propagate to the fail to block or
fail to alarm outputs. As a sanity check, we tested again with
each of the blocking gates bypassed, one at a time. In each
case, OneSpin detected the broken redundancy by proving that
a fault on a different gate could propagate to the unauthorized
event signals.

A. OpenFPGA Framework

Fig. 3: OpenFPGA 6-input LUT with register logic within the
CLB.

The OpenFPGA synthesis framework is used to create the
FPGA architecture for the analysis carried out in this paper

Fig. 4: CLB architecture created by OpenFPGA, with 10 LUT6
and local routing.
[3] [4]. The python-based tool flow utilizes an XML-based
architectural description to specify the details of the CLBs,
LUTs, FFs, routing architecture, I/O and custom hardwired IP
blocks. The verilog-to-routing (VTR) CAD tool [11] is used
within OpenFPGA to generate a verilog netlist. The netlist can
then be processed into a layout using a standard cell library-
based place-and-route (PNR) CAD tool flow.

Although the OpenFPGA synthesis tool supports a wide
range of components, we utilize only the CLBs, routing
components and I/O in the development of the proposed fail-
safe circuit design. The specific implementation characteristics
of the CLBs, which include LUTs and a local routing network,
as well as the PIPs that define the global routing network, are
needed to fully evaluate fault effects and fault propagation.
This section describes the circuit structure created by OpenF-
PGA using a small example FPGA configuration test case
provided in the distribution. The test case includes ten 6-input
LUTs, which are enclosed within one CLB, four connection
and switch blocks and a set of 32 I/O.

A schematic of the 6-input LUT (LUT6) is shown in Fig.
3. The programming bitstream configures the column of FFs
on the left side with a logic function using the configuration
chain (ccff head), and other elements highlighted in brown.
A sequence of transmission-gate 2-to-1 MUXs are used to
implement the look-up table, with columns of amplifying
buffers inserted after every two stages of MUXing. The LUT6
can be programmed to provide an upper-half LUT5 or LUT6
function on out[0] and a lower-half LUT5 function on out[1].
The two outputs can optionally be registered. The circuit
structure of the LUT6 makes the lut5 outputs structurally
independent except for the shared inputs.

The CLB architecture is shown in Fig. 4. The configurable
routing network allows any of the LUT6 outputs to be con-
nected locally with any of the LUT6 inputs. The 61-to-1
MUXs add 40 external inputs from other CLBs and I/O, and
a constant ‘1’, as configuration options for the LUT inputs.
All routing within the CLB is fan-out free, and there are no
instances of reconvergent-fanout in the circuit structures.



Fig. 5: Routing architecture created by OpenFPGA.

The routing architecture of the test case is shown in Fig.
5, which shows a single CLB instantiated in the center of
the figure surrounded by a set of four connection blocks
(CB0,3) and switch blocks (SB0,3). The MUXing details of the
CB and SB shown above and below the routing architecture,
respectively, illustrates that signal fanout is implemented in
the CBs, and the CB and SB provide only a partial set
of interconnect options. The I/O block includes output Pads
driven from the CBs and input Pads which enter the routing
network via the SBs.

B. Fail-Safe Design in an Open-source FPGA

In this section, we describe a DWC circuit optimized for
an FPGA and evaluate its effectiveness in providing fail-safe
operation, i.e., whether it is able to detect a fault on the outputs
of the functional units it protects, and within the monitor itself.
The design ensures that if a fault occurs in the functional paths
or CMB, the alarm signal(s) will assert at most two clock
cycles after the fault activation, and will detect faults that are
active for one or more clock cycles. Another design goal of
the monitor is to minimize FPGA resource utilization.

Fig. 6: Proposed DWC fail-safe circuit.

1) XOR Checker Component: A schematic of the proposed
DWC circuit is shown in Fig. 6. The DWC circuit consists of
a set of redundant 2-input XOR gates (R-XOR), each designed
to monitor a pair of redundant signals, inA and inB. The inA
and inB connect to the same outputs of a pair of redundant
functional units (not shown). The functional units might be,
e.g, a pair of ECUs in a vehicle and the output signals might
be control signals to the anti-lock brake system or a driver
assistance feature. The pair of non-redundant ORs (NR-OR)
components connect to R-XOR outputs, which serve to merge
the alarm signals from up to three R-XORs.

The LUT6 labeled R-XOR in the upper left of the figure
is programmed to implement a special version of a 2-input
XOR gate. The inA and inB signals from the functional
units are fanned out locally, i.e., within the CLB shown in
Fig. 4, to drive four of the LUT inputs. As mentioned earlier,
the hierarchical MUX structure defines two independent logic
cones for the out[0] and out[1] signals from Fig. 3, labeled here
as j and k, but the inputs are not independent. For example,
if a fault occurs on inA[0] within the R-XOR (checker fault),
both cones of logic will be affected.

A workaround is to program the LUT6 function with a
specific pattern that implements the 2-input XOR truth table
multiple times. Here, the upper 32 CMB bits of the LUT repeat
the 2-input XOR functional output pattern “0110”. Although
only the first 8 cells are shown, the pattern is in fact replicated
8 times as “0110 0110 0110 0110 0110 0110 0110 0110”.
The lower 32 CMB bits of the LUT are also programmed to
implement a 2-input XOR but locally replicate each truth table
value four times. The full sequence for the lower 32 CMB is
“0000 1111 1111 0000 0000 1111 1111 0000”.

The specified configuration bit pattern removes the depen-
dency of the inputs on both logic cones, and allows a single



LUT to implement a fully self-checking comparator, i.e., one
LUT for each duplicated functional unit output signal that
is monitored. Here, only inputs inA[0] and inB[0] affect
the functional output value of the top cone, and only inputs
inA[1] and inB[1] affect the output of the bottom cone. For
example, if inA and inB are “01”, i.e., a faulty condition for
the functional units, and a stuck-at-1 occurs on inA[0], then
the bottom cone will propagate a ‘1’ to n because inA[1]
and inB[1] drive the inputs to an independent XOR function.
Therefore, the fault cannot be masked. Also note that the
proposed redundancy scheme also detects faults that occur
in the CMB. For example, if a CMB flips from ‘1’ to ‘0’
in one of the XOR pattern sequences of either logic cone,
and a second fault occurs in one of the monitored functional
units, the redundant logic cone will prevent the fault from
being masked. Last, the single LUT implementation reduces
the routing congestion associated with the self-checking XOR
gate, in comparison to the scheme proposed in [2].

As noted in Fig. 3, the lut5[0] signal passes through an
additional 3-to-1 MUX. The fail-safe configuration of the in[5]
and mode signals is ‘1’, and for the select inputs of the 3-to-1
MUX, it is “01”. A fault on either in[5] or mode is masked
and made harmless by the 3-to-1 MUX configuration. A CMB
fault on the 3-to-1 MUX select signals is ignored for the faulty
case “00” since the in[5] and mode signal assignments select
the output of the upper logic cone on both the “01” and “00”
inputs. If, on the other hand, a CMB fault selects the hardwired
‘0’ on the “10” input, the fault will be masked. This is the only
fault that can lead to a failure in the DEFCON scheme.

The two outputs of the LUT6 can be registered as shown
on the far right of Fig. 3. The fail-safe configuration for the
2-to-1 select MUXs is 0, which allows the lut5 signals to by-
pass the registers. If a fault occurs and the registered input
is selected, the occurrence of a second upstream fault will be
detected but with one cycle of latency.

2) OR Merge Component: The pair of NR-OR components
in Fig. 6 are designed to implement a 6-to-1 compression
function. Unlike the R-XOR, the inputs fan-out to different
LUTs to implement DWC functionality, which adds routing
congestion. However, this configuration provides high levels of
compression for the alarm signals, which reduces the number
of OR gates and the overall system overhead. An alternative
R-OR, shown on the right side of the figure, is designed in the
same fashion as the R-XOR gate but with five inputs, i.e., m
and n fanout out locally to four of the R-OR inputs with r[0]
driving the fifth input. The CMB is again programmed with a
special version of the OR function that allows m[0], n[0] and
r[0] to control the upper logic cone output and m[1] and n[1]
to control the bottom cone output. Similar to the analysis of
R-XOR, the R-OR guarantees an alarm signal will be asserted
if any incoming signal is a ‘1’ even if an internal node is
stuck-at-0 or a CMB flips from ‘1’ to ‘0’.

The NR-OR and R-OR network component defines a hi-
erarchy of 6-to-1 and 2.5-to-2 compression functions, which
eventually combine all of the R-XOR redundant outputs to two
alarm signals, Alarm1 and Alarm2. The number of gates and

Fig. 7: Simulation model for validation with fail-safe checks
on three functional unit output signal pairs.
levels in the hierarchy depends on the number of functional
unit output signals monitored, and the number of NR-OR vs
R-OR gates used for compression of the alarm signals.

C. Discussion

One benefit of keeping redundant copies in the same LUT, in
contrast to the architecture proposed in [1] [2], is the avoidance
of CB and SB routing faults. Although a fault can upset a CMB
in the CLB shown in Fig. 4, and select the wrong input for a
redundant input wire to an R-XOR, the fault will be detected,
in contrast to the more complex fault behavior that occurs in
SBs where faults in bi-directional MUXs can lead to shorts
between multiple redundant wires and lead to fault masking.

A second notable advantage of the proposed architecture is
the quad redundancy that exists within each R-XOR LUT. This
quad redundancy allows the fail-safe system to mitigate faults
at runtime that occur in the R-XOR LUTs. If for example,
only one of the Alarm signals is asserted, this is usually an
indication of a fault occurring in the DWC network. The signal
labeled in[4] in Fig. 6 can be toggled to verify whether an R-
XOR fault has occurred by switching to the redundant copy
in each of the two LUT subfunctions, i.e., switch to CMB
bits [16] through [31] in the upper half and [48] through [63]
in the bottom half of the LUT. If the asserted Alarm signal
returns to 0, then the proposed fail-safe system can begin a
scrubbing operation on the R-XOR CMB while continuing to
operate with full fail-safe detection capabilities in place.

D. Analysis

The faults considered in our analysis are upsets in the CMB
bits. Note that stuck-open and stuck-closed PIP faults are
equivalent to stuck-at faults in the CMB that control the PIPs
[12]. Bridging faults between independent wire segments (not
connectable via a PIP) are not considered. Moreover, the PIP
components in the OpenFPGA architecture are unidirectional
which eliminates the need to consider the complex fault
propagation behavior that results from using bidirectional PIPs
[9].

We analyze the fault detection capabilities of DEFCON by
simulating faults in the structural netlist representation of the
OpenFPGA architecture described above. The length of the
CMB chain is 2,562 bits. The simplest approach to emulating



TABLE I: Fault Detection Results for DEFCON
State Both Alrm0 Alrm1 Missed Loops Fixable
Fault-free 16 18 18 - 0 6
Faulty A 4875 4998 4999 10 15 0
Faulty B 4875 4998 5000 9 15 0
Faulty C 4872 4996 4997 11 16 0

faults is to flip each of the CMB bits, one-at-a-time, and count
the number of times each of the Alarm signals is asserted
in the 2,562 simulation experiments. Unfortunately, the one-
hot, pass-gate MUX implementation approach taken within
the OpenFPGA framework (see callout in Fig. 3) causes a
large number of undefined (X) and high impedance (Z) results
making it difficult to evaluate the effectiveness of DEFCON,
because, under fault conditions, wires can float, i.e., have no
drivers, or can have multiple drivers.

As a work-around, we create a fault model which emulates
logic gate-based MUXs, as a means of eliminating the the
undefined and high impedance simulation results from one-
hot circuit configurations. This increases the number of faults
in the model to 5,132 because 2-level MUXs used in the
netlist architecture expand the number of valid assignments. A
second well known challenge with simulating FPGA designs
is the presence of combinational loops, which can occur
under certain fault conditions due to the flexibility in the
routing network. The results presented below therefore include
the number of faults that could not be assessed because of
simulation failure.

The results are shown in Table I for the four test scenarios
shown on the rows. Fault-free refers to consistent assignments
to the two functional unit outputs, e.g., A0 and A1 are
set to “00” or “11”, while Faulty A refers to inconsistent
assignments, e.g., “01” and “10”. Although there are 8 possible
configurations for each row in our simulation model with three
functional outputs, we show results for only one configuration,
e.g., A0, A1, B0, B1, C0, C1 = “000000” because similar
results were obtained for the remaining configurations. Also
note that the faulty configuration experiments introduce two
faults into the model and therefore, provide data on the effec-
tiveness of the technique when faults occur simultaneously in
a functional unit and in the DEFCON monitor.

The Fault-free results show that only 20 faults cause one or
both of the Alarm signals to be asserted. Given these alarm
conditions are not linked to functional unit output failures,
but rather are associated with faults in the DEFCON monitor
itself, a small number of fault assertions is a desirable feature.
Of the 20 fault assertions, the Correctsw is able to instantly
repair all 6 faults that occur within the R-XOR gates. In
contrast, a fault on a functional unit output A0, A1 = “01”
output is detected in 5,122 of the 5,132 cases. Therefore,
DEFCON fails to detect a functional unit failure for 10 faults
that occur in the monitor. For B0, B1 and C0, C1 = “01”,
only 9 and 11 faults are missed, respectively. The fail cases
result when a stuck-at-0 fault occurs in the functional unit
output routing network, preventing the downstream R-XOR
checker from detecting a difference. These fail scenarios can
be addressed by duplicating the functional unit outputs at the

expense of doubling the number of R-XOR checkers. Note that
the Correctsw has no effect when the functional unit outputs
are faulty because it is only designed to repair monitor faults
under fault-free conditions.

IV. CONCLUSION

In this paper, we propose a compact, fail-safe design strat-
egy for FPGAs that is able to detect single fault occurrences
at runtime in the LUTs, switches and routing of an FPGA,
and forces the output state of the protected circuit to output
values that represent a fail-safe condition for the system. We
refer to the technique as DEFCON (DEsign for Fail-safe in
reCONfigurable systems). Simulation results are presented that
illustrate the effectiveness of the approach.

ACKNOWLEDGMENT

This R & D was supported by the Laboratory Directed Re-
search and Development (LDRD) program at Sandia National
Laboratories (LDRD # 225963). Sandia National Laboratories
is a multimission laboratory managed and operated by Na-
tional Technology and Engineering Solutions of Sandia, LLC.,
a wholly owned subsidiary of Honeywell International, Inc.,
for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-NA-0003525.

REFERENCES

[1] J. Johnson, W. Howes, M. Wirthlin, D. L. McMurtrey, M. Caffrey,
P. Graham, and K. Morgan, “Using duplication with compare for on-
line error detection in fpga-based designs,” in 2008 IEEE Aerospace
Conference, 2008, pp. 1–11.

[2] D. L. McMurtrey, “Using duplication with compare for on-line error
detection in fpga-based designs,” in Theses and Dissertations, vol. 1094,
2006.

[3] X. Tang, E. Giacomin, A. Alacchi, B. Chauviere, and P.-E. Gaillardon,
“Openfpga: An opensource framework enabling rapid prototyping of
customizable fpgas,” in 2019 29th International Conference on Field
Programmable Logic and Applications (FPL), 2019, pp. 367–374.

[4] X. Tang, E. Giacomin, B. Chauviere, A. Alacchi, and P.-E. Gaillardon,
“Openfpga: An open-source framework for agile prototyping customiz-
able fpgas,” IEEE Micro, vol. 40, no. 4, pp. 41–48, 2020.

[5] J.-Y. Lee, Y. Hu, R. Majumdar, L. He, and M. Li, “Fault-tolerant
resynthesis with dual-output luts,” in 2010 15th Asia and South Pacific
Design Automation Conference (ASP-DAC), 2010, pp. 325–330.

[6] J.-Y. Lee, Z. Feng, and L. He, “In-place decomposition for robustness in
fpga,” in 2010 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), 2010, pp. 143–148.

[7] L. Sterpone and M. Violante, “A new reliability-oriented place and route
algorithm for sram-based fpgas,” IEEE Transactions on Computers,
vol. 55, no. 6, pp. 732–744, 2006.

[8] N. Jing, J.-Y. Lee, Z. Feng, W. He, Z. Mao, and L. He,
“Seu fault evaluation and characteristics for sram-based fpga
architectures and synthesis algorithms,” ACM Trans. Des. Autom.
Electron. Syst., vol. 18, no. 1, jan 2013. [Online]. Available:
https://doi.org/10.1145/2390191.2390204

[9] S. Zheng, H. You, G. He, Q. Wang, T. Si, J. Jiang, J. Jin, and N. Jing, “A
rapid scrubbing technique for seu mitigation on sram-based fpgas,” in
2019 IEEE International Symposium on Circuits and Systems (ISCAS),
2019, pp. 1–5.

[10] “Onespin,” https://www.onespin.com/, accessed on Sept. 23, 2022, 2022.
[11] J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu, K. Nasartschuk,

M. Nasr, S. Wang, T. Liu, N. Ahmed, K. B. Kent, J. Anderson, J. Rose,
and V. Betz, “Vtr 7.0: Next generation architecture and cad system for
fpgas,” ACM Trans. Reconfigurable Technol. Syst., vol. 7, no. 2, jul 2014.

[12] J. Yao, B. Dixon, C. Stroud, and V. Nelson, “System-level built-in
self-test of global routing resources in virtex-4 fpgas,” in 2009 41st
Southeastern Symposium on System Theory, 2009, pp. 29–32.


