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Abstract—The execution behavior of a microprocessor (µP)
in the presence of a fault is difficult to predict because of
the complex interactions across pipeline stages and between
functional units within the architecture. In prior work, we have
observed that fault effects do not introduce any type of anomaly
in the input-output behavior for 10s of thousands to millions
of clock cycles. These characteristics increase the difficulty of
evaluating µP architectures for resilience to information leakage
events, i.e., scenarios where a fault causes sensitive data, such
as an encryption key, to be inadvertently diverted to a primary
output channel. In this article, we use an accelerated fault
emulation platform implemented on a Xilinx ZCU102 board to
evaluate an ASIC implementation of the Potato RISC-V µP
for information leakage events as faults from several different
classes are introduced. The effectiveness and latency associated
with a set of self-assertion-based countermeasures (SABCs), that
perform simple consistency checks on instructions and datapath
values, are investigated. The countermeasures are characterized
as dynamic verification (or as a continuous symptom monitor)
because detection occurs during program execution. The detec-
tion and latency results of the SABCs are compared against
a periodic counter-based countermeasure proposed in previous
work.

Index Terms—Fault analysis, fault emulation (FE), FPGA,
RISC-V.

I. INTRODUCTION

VALIDATING and maintaining the reliability of µP has
been a main stream topic among researchers for more

than three decades [1]. The challenges associated with pro-
viding highly reliable µP implementations stem from multiple
sources, including the difficulty of validating complex system
architectures, the heightened susceptibility of devices running
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at high frequency to soft errors introduced by particle strikes,
power supply noise, adverse environmental conditions, wear-
out and its impact on critical path delays and increasing levels
of process variations.

A wide variety of countermeasures (CM) have been
proposed to detect faults, categorized broadly into four main
classes, including redundant execution, periodic built-in self-
test, dynamic verification, and anomaly detection [2]. A
dynamic verification method, also known as a continuous
symptom monitor, is proposed in this article that targets faults
which result in the leakage of confidential information on an
output channel of the µP.

Fail-secure µP architectures are defined as those that detect
and prevent leakage of sensitive information when internal
faults occur. Countermeasures that detect and mitigate against
information leakage events can be designed under more
relaxed constraints when compared to those that attempt to
minimize internal data corruption, where fast detection and
response times are important. This is true because information
leakage events typically have large latencies between the point
in time when a fault becomes active and when information
leakage occurs on a primary output channel. Moreover, as we
determined in previous work, only a relatively small fraction
of internal faults actually lead to information leakage. The
reduced constraints associated with detecting and preventing
information leakage make it possible to design lighter-weight
countermeasures.

In this article, a set of self-assertion-based countermeasures
(SABCs) are investigated that share similarities to those
proposed in [3] but are designed for, and evaluated against,
information leakage faults. The goal of the SABC is to detect
inconsistencies in a set of monitored signals, which occur
because of the presence of a permanent fault, as instructions
are executed and as data is manipulated through a pipelined
µP architecture. Although all of the proposed SABC uniquely
detect a nonzero fraction of the inserted faults, the range of
their detection capabilities varies widely. More importantly,
for the subset of faults classified as information leakage faults,
only the SABC that monitor the register file are capable of
detecting the vast majority of these faults.

FPGA emulation experiments are carried out in this work to
determine the fault detection capabilities of the SABC. Once a
fault is detected in an on-line system, some type of mitigation
is typically performed. The simplest strategy adopted here is
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to disable the microprocessor and return it to a fail-safe state.
Our on-going work is investigating fail-safe monitors that shut
down a microprocessor if an internal fault occurs in one of
the redundant copies, such that the faulty microprocessor is
not able to interfere with the continued operation of the fault-
free copy. Unfortunately, permanent faults limit the options
available for mitigation to redundancy-based techniques. For
example, transient faults can be handled by restoring the state
to an earlier recorded check-point. Such options are ineffective
for permanent faults.

The specific contributions of this work include the
following.

1) The evaluation of a set of self-assertion-based,
continuous symptom monitors that can serve as coun-
termeasures to information leakage faults.

2) A comparative analysis of the SABC with an off-line,
periodic counter-based CM.

3) An analysis of both the fault detection capability and
latency of the CM for a large set of faults, from which
a set of information leakage faults are identified.

4) The identification of an architecture-independent com-
ponent, namely, the logic within the branch comparator
unit, that is the optimal location for a continuous
symptom monitor and/or periodic, self-test-based CM.

The remainder of this article is organized as follows.
Section II discusses additional related work. Section III
describes the experimental design and attributes of the fault
injection (FI) experiments. Section IV presents the details of
the proposed SABC, while Section V presents SABC over-
head, the testing process and fault classification. Section VI
presents the fault coverage and latency results for the SABC
and counter CM. Section VII presents our conclusions.

II. RELATED WORK

An overview of the different strategies taken to detect faults
through either continuous checkers (also called concurrent)
or periodic testing is provided in [2], while an overview of
different methods used in fault detection and mitigation are
presented in [4]. Gizopoulos et al. [2] described four general
approaches, including redundant execution, periodic built-in
self-test, dynamic verification, and anomaly detection. The
SABC described in this work fall into the dynamic verification
category, while the counter CM is classified as a periodic built-
in self-test method. The methods are uniquely applied here to
the detection of leakage sensitive faults where the requirement
for detecting faults with latencies on a per-instruction basis
is relaxed and instead, the goal is to detect such faults
before leakage occurs on the primary output channel(s) of
the µP. The following summarizes the contributions of the
most closely related techniques. The faults targeted by these
previous techniques are not analyzed against information
leakage events.

A µP dynamic implementation verification architecture
(DIVA) for detecting transient and permanent faults is
proposed in [3]. DIVA’s checker recomputes the functional unit
result using the instruction input operands and compares the
results before allowing the instruction to commit. Although the

checker design is simplified because it can leverage processor
pipeline decisions, the checker pipeline overhead is still
large, restricting its applicability to superscalar architectures.
Moreover, it assumes that the register file and memory utilize
ECC for error detection and correction as a mitigation against
storage related faults.

A transient fault detection technique is proposed in [5], in
which a program is duplicated to run concurrently as multiple
threads on a µP. It leverages simultaneous multithreading
to make use of µP resources that would otherwise remain
idle waiting on data dependencies. The technique requires the
insertion of a specialized delay buffer into the microarchi-
tecture to enable comparisons between the execution result
streams of the two threads. The authors presents simulation
results that show the runtime penalty associated with executing
two copies is between 10-30%.

Constantinides et al. [6] proposed a hardware-software fault
detection and diagnosis technique that uses a set of special
instructions to access state and control µP execution. The tech-
nique periodically suspends execution and runs a set of special
tests designed to provide high-fault coverage (≥ 99%) while
minimizing performance (5.5%) and area (5.8%) overhead.
The extended instruction set leverages the existing scan-chain
intrastructure to access all microarchitectural state components
while keeping hardware overhead low. The requirement to
detect any type of fault increases the hardware area and
performance overhead significantly.

A hardware-software high-level symptom-based fault detec-
tion technique is proposed in [7] that monitors software
execution for anomalous behavior. Fault detection is per-
formed at a high level by observing hardware traps and µP
performance counters. Although the technique is able to detect
95% of the unmasked faults, the latency for detection can be
high. While most are detected in less than 100 K instructions,
others take longer, up to 10 million instructions.

A shadow register technique is proposed in [8], which
integrates redundant registers and comparators into the existing
register file as a means of detecting transient faults introduced
by particle strikes. The technique as described cannot be used
to detect permanent faults that occur in other components of
the µP architecture.

A hardware-based permanent fault tolerance approach is
proposed in [9]. While the work is performed on routers,
the fault detection and mitigation as well as computing
logic aspects are similar to µP. A reconfigurable hardware
redundancy technique are used for handling permanent faults
in important parts of the logic. A Built-in Self-Test (BIST)
circuitry is integrated into input ports to detect the faults and
configure the hardware redundancy circuit accordingly. Stuck-
at faults are tested by performing cycle-to-cycle input versus
output checks on specific registers, taking advantage of an
inherit idle period to perform fault detection. Fault mitigation
is achieved through the use of hardware redundancy in the
form of spare registers, which are used when the BIST detects
a fault.

A hardware-software approach to protecting against FI
attacks is proposed in [10]. The hardware-based fault detection
unit (FDU) consists of sensors for detecting clock and voltage
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glitches, and concurrent error detection and shadow latches
for detecting faults injected into the datapath. The authors
introduce shadow pipeline registers to detect changes in the
state of the pipeline registers before and after the FI attack,
where one copy is updated in an early pipeline stage and the
second copy is updated in subsequent stages. The technique
is not evaluated against permanent and/or information leakage
faults.

A JTAG-based FI and detection method is described in [11],
where researchers target the fault-injectable gate-level netlist
of the targeted ASIC. The FI manager (FIM) contains the logic
that drives control and dedicated signals, while the Observation
Domain mainly houses the logic that implements the fault
detection mechanism. An 8051 is implemented with the fault
detection method built-in and is shown through emulation to
be effective in detecting faults manifesting as partial signature
mismatches. The method’s resource utilization is given as
1445 LUTs and 1459 flip-flops for the non-ASIC parts of the
system. As with other prior work in this field, the technique
is not evaluated against information leakage, and requires an
existing JTAG framework.

Kocher et al. [12] proposed a SRAM-based FPGA SEU
assessment methodology that utilizes dynamic partial recon-
figuration (DPR). DPR is used to emulate SEUs through the
introduction of bit errors in the configuration memory bit-
stream of the FPGA, and the Xilinx Essential Bits technology
is used to guide the selection of fault sites. The internal
configuration access port is used to read and write frames
with bit flip errors using an integrated FI infrastructure. The
infrastructure is designed to be self-protecting and reliable,
avoiding the insertion of bit flips in the infrastructure itself and
protecting against the accumulation of errors from previous FI
experiments.

Other recent work on subverting information security mech-
anisms within superscaler microprocessors [13], [14] and
medium-scale microprocessors [15] are not directly addressed
by the countermeasures proposed in this work. For exam-
ple, the SABC are designed to establish the consistency
of data and control signals within the micro-architecture of
the processor, and therefore, are not capable of detecting
malicious actions taken by correctly executing code. However,
the counter-based countermeasure also described in this work
may have extensions to detecting malicious code execution
given that it records micro-architectural behavior of code exe-
cution in advance (under attack-free conditions), and assesses
current execution behavior against this model. On-going
work is investigating potential applications of this tech-
nique as mitigations against side-channel and covert-channel
attacks.

III. SYSTEM OVERVIEW

This section describes the RISC-V architecture used in
the emulation experiments as well as the characteristics of
the fault campaign, FIM and fault emulation (FE) engine.
Also discussed are the CAD tools used in the synthesis and
implementation, the testing process and details regarding the
SABC.

Fig. 1. Block diagram of potato’s five stage pipeline [16].

A. RISC-V Architecture

The Potato µP [16] is used as the RISC architecture in
this work, as an alternative to the Rocket design used in our
previous work, because it is much smaller and possesses a
well-structured VHDL description amenable to the insertion of
the proposed SABC components. Potato is compliant with the
RISC-V v2.0 standard and is implemented as a 32-bit, 5-stage
pipeline (RV32I) (see Fig. 1) and possesses a complete set
of integer instructions, with control and status register (CSR)
and exception handling. All instructions except load and store
execute in 1 cycle. The wishbone B4 standard is utilized as
an internal bus.

B. Fault Campaign Characteristics

A fault campaign is a term used to describe the charac-
teristics of the FI system [17]. Attributes of the FI include
the computing and communication mechanism used by the
FIM to communicate with and control the FE engine, the
characteristics of the design-under-test and fault model, and
the mechanism used to carry out the fault analysis. The fault
campaign utilized in this research possesses the following
characteristics.

1) The Xilinx UltraScale+ MPSoC FPGA on the ZCU102
development board is used as the emulation platform for
the Potato µP.

2) A pair of 32-bit memory-mapped GPIO registers are
used as an AXI-Lite-instantiated communication channel
between the FIM, which executes under Linux on a
Cortex A53 within the processing system (PS) of the
FPGA, and the FE, implemented in the programmable
logic (PL).

3) A set of 34 110 FI circuits are integrated into the
Potato core during an ASIC-based synthesis and place-
and-route (PNR) CAD tool flow. A set of three
GPIO-connected scan chains are controlled by the FIM
and are used to inject a fault and to read-out results for
each FI experiment.

4) The FI circuits implement four fault types, including
stuck-at-0 (SA0), stuck-at-1 (SA1), delay and inversion,
and are configured using the GPIO-connected scan
chains.

5) The FE is implemented as a set of state machines (SMs)
that serve to collect serial and address bus data as
Potato executes an advanced encryption standard (AES)
algorithm. The SMs are configured via the FIM to
constrain the number of run cycles, which, when used in
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combination with a binary search routine implemented
within the FIM C program, allow the latency of fault
effects to be determined.

6) The fault detection capabilities of the SABC and counter
CM, as well as their detection latencies, are determined
off-line using the data collected from the scan chains.

Although alternative, highly flexible and modular RTL
simulation techniques, e.g., those based on UVM [18], can
be used as the FI platform, the requirement to analyze a
large set of fault sites and fault types drove our decision to
leverage MPSoC FPGAs as a means of accelerating the FI
and data collection process. Moreover, the strategy used to
introduce FI circuitry disabled logic optimization that would
normally occur during synthesis and implementation, and
allowed an assessment of the Potato microprocessor as it
would be implemented using an ASIC methodology. The FI
scan-based control infrastructure, when disabled, is completely
transparent to the functional operation of Potato. An RTL
simulation approach would have produced equivalent results
but at the cost of longer execution times.

As indicated, the faults investigated in this work include
SA0, SA1, delay and inversion. SA0 and SA1 are components
of the stuck-at fault model, commonly used in the context
of manufacturing test. Manufacturing defects can introduce
permanent failure conditions where signals are not able to
switch between 0 and 1, and vise versa, but instead remain
fixed at 0 (SA0) or 1 (SA1). These faults are utilized in
this work to represent some type of catastrophic event that
occurs in a running system, e.g., a power surge or radiation
strike. Similarly, permanent faults which introduce inversion
of logic signals can occur in running systems by stuck-at
defects on the outputs of upstream gates that drive downstream
gates, for example, XOR gates, or by semi-permanent faults
that flip bits in flip-flops that store configuration information.
From a probabilistic point of view, delay faults represent
the most significant concern. Trends in using increasingly
aggressive timing constraints in combination with improving
synthesis tool optimization techniques create a large num-
ber of paths that are classified as critical, increasing the
likelihood of occurrence of delay faults. Normal wear-out,
via hot-carrier injection (HCI) and negative-bias temperature
instability (NBTI), or radiation exposure change threshold
voltages over time, effectively adding small delta delays to the
gates along critical paths. The cumulative increase in delay
along the path over time can lead to critical paths failing to
meet the setup-time requirement, especially when the device
is exposed to adverse environmental conditions.

C. System Architecture

A block diagram of the system level architecture is shown
in Fig. 2. The configuration of the PS and PL sides of
the Zynq UltraScale+ MPSoC are shown, as well as some
peripherals on the Xilinx ZCU102 development board. A
Linux kernel is configured to run on the quad-core Cortex-
A53 ARM µP [19]. The host computer communicates through
an Ethernet connection to the Linux operating system. The
FIM is implemented as a C program which communicates

Fig. 2. Block diagram of the experimental setup with FI and counter circuit
scan chains for accelerating data collection.

with the FE through GPIO registers. The FIM reprograms
the PL before each FI experiment as a means of clearing the
Potato processor state, in particular the block rams used to
implement the caches, of any fault effects from the previous
experiment. Although only a subset of the faults disrupt access
patterns to the caches, and made program execution dependent
on the state left by the previous fault, reprogramming clears
the caches and guarantees that all FEs start from the same
initial state. The processor configuration access port (PCAP)
is used to minimize the time overhead associated with the
reprogramming operation.

D. Fault Injection Circuit With Counter

The FI circuit with three scan chains is shown along the
bottom of Fig. 3. The first scan chain, with input labeled
scan_in[0], is used to selectively enable one of the faults,
while scan inputs [1] and [2] are used to select from one of
four fault types. The scan chain consists of 34 110 elements,
i.e., one instance of the FI is added to each of the gate input
signals driving the logic gates within an instance of Potato’s
core ASIC design.

The term FI with counter or fault injection circuit with
counter (FIC) refers to the entire circuit shown in Fig. 3,
which includes both a counter and a FI circuit instance. The
scan chains are extended into the counter circuit component
to enable the count values to be scanned out after each FI
experiment. The counters record the number of rising and
falling transitions that occur on the node labeled in during
execution of the program.

In this research, the counters serve two purposes. First,
they are used to expand the list of Active (unmasked) faults,
over the list derived from an analysis of the serial output and
address bus behavior alone. Second, in recent work [20], we
proposed counters as a periodic, built-in self-test CM for the
detection of information leakage faults in the Rocket RISC-V
design, showing that only a small subset of counters are needed
to detect all such faults plus a large fraction of the Active
faults. We carry out a similar analysis in this article and

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on May 28,2024 at 20:15:17 UTC from IEEE Xplore.  Restrictions apply. 



SOMOYE et al.: SABCs WITHIN A RISC-V MICROPROCESSOR FOR COVERAGE 1681

Fig. 3. Schematic of FI circuit (bottom) with counter (top). The Cnter and
ScanCnter FFs[14:0] are not shown. The dotted line labeled scan[0] routes to
the mux driving FF[7] of the ScanCnter, similar to the connection made by
scan[1] to the mux driving FF[15]. The scan_out[1] and scan_out[0] signals
connect to the outputs of FF[8] and FF[0] of the ScanCnter, respectively,
similar to the signal labeled scan_out[2] on the output of FF[16].

compare the detection capability and latency of the counter
CM with the results obtained for the SABC.

E. Potato Synthesis

The synopsys design compiler [21] is used to pro-
duce a gate-level netlist of Potato from a behavioral HDL
description using an ASIC standard cell library [22], with
integrated design-for-testability (DFT) scan chain. Cadence
Encounter [23] is then used to perform PNR. A custom C
program adds a set of three additional scan chains and FIC
circuits shown in Fig. 3 into the netlist extracted from the
layout to create a set of instrumented designs. Each design
contains a set of 4000 FIC circuits, while the remaining 30 110
nodes are instrumented with only the FI circuit (no counter).
This counter partitioning scheme is necessary because the
size of the implemented design is too large to fit into the
FPGA with all 34 110 nodes instrumented with the FIC
circuit. A set of nine separate designs are created with the
FIC circuit inserted on distinct subsets of nodes to enable
counter values to be obtained for all nodes. This required
the FE experiments to be repeated for each of the nine
designs.

The instrumented designs are used as input to the Xilinx
Vivado CAD tool to generate the bitstreams [24]. The struc-
tural constraints imposed by the FI circuits prevent Vivado
from carrying out optimizations on the standard cell netlist,
making the reported results relevant to a structurally equivalent
ASIC implementation.

IV. PROPOSED SELF-ASSERTION-BASED

COUNTERMEASURES

The SABC detect permanent faults by adding redundancy
and assertions to specific computations carried out in the
pipelined architecture of Potato. The signals monitored in
Potato’s pipeline are annotated with circled numbers in Fig. 4.
In most cases, the labeled signals are routed to a countermea-
sure module which checks that their values are consistent with
redundant calculations and/or state information. Each SABC
has a corresponding error flag that is set when the assertion
fails.

We note that certain types of permanent faults can disable
a SABC, in particular, those that prevent its error flag signal
from being asserted, and therefore, additional redundancy-
based techniques are required to prevent information leakage
for these cases. Assuming the probability of a permanent fault
on a SABC error signal or within the counter is proportional
to their area, the likelihood would only be a small fraction,
less than 0.023, of a permanent fault occurring within Potato
itself (this fraction is derived from the area overhead anal-
ysis in Section V-A and assuming error signal wires have
negligible overhead.) Alternatively, it is possible to provide
protection against their occurrence, using, e.g., a duplication-
with-comparison technique (DWC). DWC is commonly used
to enhance the reliability of critical system signals, while
minimizing additional resources [25]. Given the redundant
components associated with SABC are already present, only
the error signals themselves would need to be duplicated. As
we discuss in the following, this would involve duplicating
a set of four signals, one for each of the four SABC.
Similarly, the counter and corresponding error signal can be
replicated with only a minor impact on area overhead. Doing
so, would ensure that an instance of a permanent fault on a
countermeasure would not disable it.

An overview of the four SABC is given as follows, with
details provided in the following sections.

1) Reconstitute Full Instruction (RFI): The RFI SABC
component is designed to check the uniformity of
instruction-related control signals before and after
decoding as a means of determining if the instruction
fetched from memory is the same as the instruction that
executed.

2) Derive Intent of Operation (DIO): The DIO SABC is
similar but validates µP state information by comparing
the expected state with the state defined by the opcode
of the currently executing instruction.

3) Cyclic-Redundancy-Check (CRC): The CRC SABC is
used to validate data against faults that corrupt memory-
bound data, despite whether or not the instruction
executed properly.

4) Shadow Register Checker (SRC): The SRC SABC is
designed to detect faults that occur within the register
file, utilizing a light-weight, CRC-based shadow copy of
original register file contents.

The register file is central to µP operations, and therefore
fault effects have a high likelihood of propagating to its
inputs at some point during the execution of the program.
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Fig. 4. Potato block diagram with numbered annotations indicating the signals monitored by the SABC. Each of the four SABC utilize distinct sources
of information from the control and data path elements within Potato. For example, the RFI SABC creates assertions using data obtained from the wires
labeled 2 and 3 in the fetch stage, from 4 and 5 in the decode stage and 6, 7, 8, 10, 11, and 14 in the execute stage. Color coding is used to show the signal
components monitored in each SABC, e.g., blue is used for RFI SABC. Several of the labeled signals are used in more than one SABC, in which case the
color from the first SABC described in Section IV is used.

An alternative XOR-based signature technique, referred to as
the XOR Check (XRC) SABC, is also investigated, and the
tradeoffs of the XRC and SRC SABC discussed.

A. Reconstitute Full Instruction SABC

The RFI SABC rebuilds the instruction using decoded
signals from Potato’s pipeline and compares the decoded
instruction with the instruction fetched from memory. The
instruction fetched from memory is conditionally obtained
from the instruction (2) and instr_ready (3) signals in Fig. 4.
All signals associated with the RFI SABC are color-coded in
blue in the figure. The assertion is constructed by comparing a
locally stored version of the instruction (called the left-hand-
side or LHS of the assertion) with a version that is constructed
from multiple datapath signals (called the right-hand-side or
RHS of the assertion).

For example, the op_code signals (4) represent one of
43 instruction types defined by a decoder added to the
Control Unit of the Decode pipeline stage (only the most
commonly used instructions are checked by the RFI SABC).
The remaining fields of the instruction, as shown within
the Instruction format legend along the bottom right in
Fig. 4, are retrieved from the signals labeled immediate (5),
ex_rs2_addr (6), ex_rs1_addr (7), ex_rd_addr (8), ex_csr_addr
(10), ex_func3 (11) and alu_y (14). Note that the prefix
“ex” refers to the values obtained from the Execute pipeline
register. Assertions constructed using signals from latter
pipeline stages have the potential to detect larger numbers
of faults given that fault effects propagate forward from
earlier pipeline stages. A multiplexer in the reconstitution
module assembles the RHS of the assertion using the op_code
signals.
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Fig. 5. CRC circuit used in the CRC SABC.

B. Derive Intent of Operation SABC

The DIO SABC targets faults that corrupt the operational
state of several control signals that were discovered from
simulation experiments to be sensitive to faults missed by
the RFI SABC. The LHS of the assertion is obtained from
signals labeled IMemAddr (1), alu_op (16), mem_size (18)
and mem_op (19) in Fig. 4, while the RHS of the assertion
is constructed using the op_code and the multiplexer defined
for the RFI SABC in the countermeasure module (most of the
DIO SABC signals are color-coded as red in the figure). The
assignments to the fields in the RHS of the assertion are made
using constants that define the expected operational state.

C. Cyclic-Redundancy-Check SABC

The CRC SABC targets faults that corrupt data and address
bus values by comparing datapath signals that originate from
distinct physical locations. A light-weight version of a CRC
circuit is constructed assuming a single fault model, where the
probability of fault masking is reduced. Experimental trials
determined that the version shown in Fig. 5 is adequate to
detect nearly all datapath faults. Note that a CRC needs to
be computed for both the LHS and RHS of the assertion.
Therefore, a 32-bit bus requires two copies of the CRC circuit
for a total of 16 4-input XOR gates.

1) DataPath-Based CRC SABC: As indicated, datapath
signals within Potato are checked at the source and destina-
tion when possible to maximize the sensitivity of the CRC
SABC. For example, from Fig. 4, CRCs are computed and
compared for databus signal pairs labeled rs2_data (24) and
DMemDataOut (12), where the latter signal routes out to
memory. Similarly, datapath pipeline signals mem_rd_data
(20) and wb_rd_data (21) are also CRC-checked, as are the
address bus signals labeled DMemAddr (17) and alu_result
(9), which detects errors in the addresses computed for load
instructions. These signals are color-coded as magenta in the
figure.

2) ALU-Based CRC SABC: A set of ten additional CRC
circuit instances are used to validate ALU operations using the
op_code (4) and alu_result (9) signals. In these cases, a redun-
dant, local instance of the functional unit is used to compute
the result for add/sub, shift, jump and boolean instructions.
The operands for the redundant functions are obtained from
the alu_x (14) and alu_y (15), from the immediate (5) and
from the register file (24 and 25) databus signals. Similarly, the

Fig. 6. Potato’s register file (top) and shadow register file (SRC) SABC,
shown in blue along bottom.

branch_taken (13) is CRC-checked against locally computed
branch conditions generated using the rs1_data and rs2_data
databus signals. Three of these signals are color-coded as black
in the figure.

D. Shadow Register Checker SABC

The SRC SABC monitors the register file for faults in the
decoders, MUXs and registers of Potato’s register file by using
a second, shadow register file, as shown in Fig. 6. In order
to keep overhead low, the shadow register file stores only the
CRC values of Potato’s register file values, which reduces its
width from 32-bits to 8-bits. The signals in Fig. 4 labeled (21)
through (27) are used as inputs to the shadow register file.
Four of these signal are color-coded as green in the figure.

E. XOR-Check SABC

The XRC SABC also monitors the register file for faults but
does so without creating a shadow copy. Instead, modifications
are made directly to Potato’s register file as shown in blue in
Fig. 7. The fault detection mechanism requires all the register
file bits within a column to be XOR’ed to create a 1-bit
XOR signature for the column. XOR signatures are created for
each of the 32 columns in this fashion to define the LHS of
the assertion. The 32-bit bus labeled XOR_cols represents the
32-bit XOR signature for the entire register file.

An independent XOR signature (the RHS of the assertion) is
created by the components shown along the bottom of Fig. 7.
Updates to the XOR_reg occur when instructions write to the
register file. The incoming rd_data register file value is XOR’ed
with the existing XOR_reg, which effectively adds in the new
value modulo 2. The old value of the destination register is
simultaneously subtracted out modulo 2 from the signature
stored in the XOR_reg. The comparator continuously monitors
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Fig. 7. Potato’s register file outfitted with XOR-check (XRC) SABC. Elements
added are shown in blue.

agreement between the XOR_cols and XOR_reg values and
flags an error if they ever become different.

The XRC SABC is able to detect both permanent faults
and any type of transient fault that upsets a register file bit,
in contrast to the SRC SABC. Another difference between the
SRC and XRC SABC is that the output MUXs for rs1_data
and rs2_data are not monitored in the XRC SABC, which
results in the latter SABC missing some severe faults. The
fault detection capabilities of all SABC are presented in the
following sections along with analysis of the overhead.

V. OVERHEAD, TEST PROCESS, AND FAULT

CLASSIFICATION

This section provides the performance and area overhead
analysis of the SABC, as well as details regarding the testing,
fault classification and data collection processes associated
with the FE experiments.

A. SABC Area and Performance Overhead

The proposed SABC monitor activity on nodes within the
µP architecture, and therefore, impact performance by only
adding small capacitive loads to internal nodes. To determine
the actual impact, we created two designs in Vivado, one using
the original behavioral description of Potato and a second
which includes the RFI, DIO, CRC and SRC SABC, and one
copy of the counter-based CM. As we show in the following
sections, the XRC SABC is excluded because it represents a
less effective alternative to the SRC, and only one copy of the
counter is required to detect all severe faults. The maximum
operating frequency of the original design is 175 MHz, while
the design with the SABC and counter is 165 MHz. Therefore,

TABLE I
AREA OVERHEAD ASSOCIATED WITH THE SABC

the impact on performance is (175 − 165)/175 = 5.7%. A
similar fractional change in performance is obtained using the
ASIC synthesis tools.

For the area overhead analysis, behavioral descriptions for
each of the SABC are used as input to the Synopsys synthesis
tool to determine the gate count and area overhead associated
with the layouts implemented using the ASAP standard cell
library [22]. The results are given in Table I.

The fractional area overhead of the RDC includes the area
of the RFI, DIO and CRC SABC, but excludes the area of
the SRC and XRC SABC. Given the goals of the SRC and
XRC overlap, only one of these SABC would be included in
a RISC-V leakage-fault-protected design. As we show in the
following, the SRC SABC is a more effective countermeasure,
and can be used by itself to provide high levels of fault
coverage.

B. Testing Process

A full execution of the AES algorithm takes 6 717 440 clock
cycles to complete, which includes the clock cycles required
to execute code for reading the key and plaintext before the
encryption operation is started and the clock cycles needed
to transfer the ciphertext through the serial port after the
encryption operation completes.

Two sets of experiments are conducted. The first set, referred
to as fault coverage experiments, is used for classifying faults
as Active (unmasked) or Benign (masked), and for determining
the detection capabilities of the SABC and counter CM. The
analysis of the data from these experiments is also used to
identify a subset of the Active faults that leak AES plaintext
and/or key information on the serial port (hereafter referred
to as Severe faults). The second set, referred to as the latency
experiments, is used to determine the minimum number of
clock cycles required for at least one CM to detect the fault.

The fault coverage experiments involve first carrying out a
fault-free execution run to obtain the baseline count values.
A sequence of FI experiments is then performed, each with
a fault enabled at one of the 34 110 fault locations, and the
counter values retrieved. The FI experiments are repeated for
each of the fault locations and for each of the four fault
types. The entire set of fault-free and FI experiments is then
repeated nine times, once for each of the instrumented designs.
The SABC fault assertion signals are also read out in the
experiments which use the first instrumented bitstream (the
results for the SABC are the same for all bitstreams).

The latency experiments are similar with two exceptions.
First, only a subset of the 34 110 faults are processed, in
particular, only those classified as Active or Severe from the
fault coverage experiments. Second, for each Active or Severe
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fault, the FI experiment is repeated using a binary search
process to determine an upper and lower bound on the number
of clock cycles required to detect the fault. The binary search
process is terminated when a multiple of 1024 clock cycles is
found in which the fault is not detected at the lower bound
and is detected at the upper bound. Given the search is carried
out over the region between 1024 and 6 717 440 clock cycles,
in steps of 1024, the number of iterations required for each
fault is 13.

Unlike the SABC, the binary search process for the counter
CM requires fault-free count information to be available during
the binary search process. This data is collected a priori in a
clk-sweep experiment in which Potato is run under fault-free
conditions through a sequence of experiments in which the
number of clock cycles is set to an incrementally increasing
multiple of 1024 clock cycles. The number of repetitions of the
fault-free experiments per bitstream is given by 6 717 440 ÷
1024 + 1 = 6561, which includes an initial run of one clock
cycle. Once this data is collected for all nine bitstreams, an
appropriate subset of the full array of 223 795 710 fault-free
counter values is utilized in the binary search process for each
of the faults.

Each FI experiment involves the following sequence of
operations, in reference to Fig. 3.

1) The PL is reprogrammed with one of the instrumented
bitstreams.

2) The FIM transfers a parameter to the FE that specifies
the number of clock cycles.

3) The FIM inserts a fault by driving the scan chain input
signals.

4) The FIM asserts the scan en signal and pulses the system
clk for one cycle to clear the counters.

5) The FIM deasserts scan en and starts the FE engine.
6) The FE engine signals the FIM after the test has

completed.
7) The FIM scans out the contents of the scan chains to

obtain the counter values.
The experiments were carried out on three copies of the

ZCU102, and required approximately 1 month of runtime
to collect the SABC and counter CM data for all of the
experiments described herein.

C. Active and Benign Faults

The data collected from the fault coverage experiments is
used to classify each of the faults into one of three fault
classes.

1) BenignFaults (Masked) Class: Faults that corrupt only
one or a small number of nodes within Potato’s core,
and do not affect AES program output.

2) ActiveFaults Class: Faults that introduce significant
levels of internal corruption within Potato’s core, and
which may or may not affect output.

3) SevereFaults Class: Active faults that corrupt output and
leak sensitive information.

In each FI experiment, we collect serial output data, the
sequence of instruction address values associated with the
last 50 changes to the address bus during the execution run,

the counter values and the state of the SABC fault assertion
signals. The faults are first classified according to whether
they corrupt the serial output and/or change the address
bus behavior. The analysis yields the following classification
results.

Stuck-at-0: Active: 11487 Benign: 22623
Stuck-at-1: Active: 11678 Benign: 22432
Delay: Active: 9045 Benign: 25065
Invert: Active: 14443 Benign: 19667.

The faults from the ActiveFaults class are then inspected
to determine if leakage of the plaintext or key occurs in the
serial port output, and are added to the SevereFaults class if
this occurs. The cardinalities of faults in the SevereFaults class
are given as follows.

Severe Stuck-at-0: 65
Severe Stuck-at-1: 30
Severe Delay: 61
Severe Invert: 79.

The last component of our analysis further refines the
ActiveFaults and BenignFaults class using the counter values.
The counters enable a higher level of internal visibility of fault
effects over what is available when analyzing the serial output
and address bus behavior alone. The following conditions are
checked to determine if a fault classified as Benign is to be
reclassified as Active. Both conditions must be true for the
fault to be reclassified.

1) A counter value in an FI experiment differs from the
fault-free value by more than 1.

2) The number of such counters in the FI experiment
exceeds a user-defined threshold of 100.

We consider faults that meet or exceed these conditions
as introducing significant internal corruption to the state of
Potato’s core despite the absence of serial output corruption or
changes to the instruction execution sequence. Using larger or
smaller thresholds has only a minor impact on the number of
faults that are reclassified except in cases where the threshold
is set to a small value, e.g., less than 5. The final cardinality
of each fault class is given as follows.

Stuck-at-0: Active: 13415 Benign: 20695
Stuck-at-1: Active: 14883 Benign: 19227
Delay: Active: 10105 Benign: 24005
Invert: Active: 17579 Benign: 16531.

VI. EXPERIMENTAL RESULTS

The goal of our analysis is to select the minimum number
of SABC needed to detect all faults in the SevereFaults class
while maximizing the collateral coverage of faults in the
ActiveFaults class, and to accomplish both of these goals at
the smallest possible latencies. The SABC are analyzed in
isolation and in groups as needed in the following sections in
support of these objectives.

An analysis of fault coverage and latency is also carried out
using a small set of counters, in particular, those that provide
the highest-fault coverage. In previous work, we investigated
the effectiveness of the counter CM and found that only a small
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Fig. 8. SABC detection results expressed as a percentage of all faults in the
ActiveFaults class.

Fig. 9. SABC detection results expressed as a percentage of all faults in the
SevereFaults class.

subset of 5 or fewer counters are needed to meet the goals
stated above [20]. A similar result is attained here for Potato
using only a single counter, referred to as the Top Cnter. For
completeness, we also show the results attained using a set of
the top three most effective counters but the improvement is
marginal. The fault coverage results for the counter CM are
presented concurrently with the latency results.

A. SABC Fault Coverage Analysis

The primary goal of the SABC fault coverage experiments
is to determine the fault detection capabilities of the SABC
and whether each SABC detects a unique subset of the faults
not detected by other SABC. The analysis is carried out on
the faults in the ActiveFaults class and SevereFaults class
separately.

Figs. 8 and 9 plot the detection results for the SABC on
faults in the ActiveFaults and SevereFaults classes, respec-
tively, as percentages of the total number of faults for each

fault type. The results for each SABC are given along
the x-axis, labeled with the three-letter acronym defined in
Section IV. The black points represent the fraction of the
ActiveFaults and SevereFaults detected by each SABC while
the blue points represent the fraction uniquely detected by each
SABC. The points for each of the fault types are similar in
value, indicating that the detection capability of the SABC is
relatively insensitive to the fault type.

The SRC SABC provides the highest-fault coverage and
highest-unique fault coverage for faults in the ActiveFaults
class, with values of 55.4% and 25.1%, respectively. The fault
coverages for the RFI, DIO, CRC and XRC SABC vary from
5% to more than 30%. The overall coverages for all faults of
each fault type vary from 82% and 89% for the ActiveFaults
class.

The results for the SevereFaults class show larger differ-
ences in coverage than those shown for the ActiveFaults class,
with the SRC and XRC SABC providing the highest-overall
coverages. The overall coverage using only the DIO, CRC and
SRC SABC for each fault type is 100% for the SevereFaults
class. The SRC SABC by itself detects all but two of the severe
faults and represents the best SABC for detecting information
leakage faults, as well as faults from the ActiveFaults class.

B. Latency Analysis

The objective of the latency analysis is to determine whether
the SABC and a set of “top” counters are able to detect
the presence of a fault before leakage occurs on the serial
port. This goal is addressed for the SABC by evaluating
latency using all SABC simultaneously, and then using the
best-individual SABC. The term RDCS is used to represent
the “all” group which includes the RFI, DIO, CRC and SRC
SABC. The latency of the XRC SABC is also presented for
completeness, although it is likely that only one of the SRC
or XRC SABC would be used in an actual application.

For the counter CM, an analysis is carried out using a
small set of top counters and then separately using the top
counter. The counters are selected based on their fault coverage
of Active and Severe faults. In particular, three counters are
identified from the group of 34 110 counters that are able
to detect all Severe faults while providing the highest-fault
coverage of the Active faults. We refer to the counter analyses
as Top Cnter and Top 3 Cnters in the following.

The latency results are presented as cumulative fault detec-
tion graphs, where the number of clock cycles that Potato
is run for is plotted along the x-axis and the cumulative
number of faults detected is plotted along the y-axis. It follows
that curves which remain above and to the left of other
curves in these plots represents a better result, implying the
countermeasure detects a larger number of faults and does so
in fewer clock cycles.

The latency results are presented for delay faults only and
for all four fault types combined. As discussed further below,
the results show that the countermeasures are insensitive to the
fault type, and therefore, these subsets sufficiently represent
our findings while minimizing redundancy. Figs. 10 and 11
show the latency results for delay faults from the ActiveFaults
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Fig. 10. Delay fault latency analysis of Active faults for the SABC and
counter CM. The RDCS curve includes all SABC except for XRC.

Fig. 11. Delay fault latency analysis of severe faults for the SABC and
counter CM.

and SevereFaults classes, with cardinalities of 10 105 and 61,
respectively. Curves that extend out to the maximum number
of clock cycles (6 717 440) indicate that some fraction of the
faults from that class are not detected.

The latency curves for the SABC and counter CM are
superimposed to illustrate which countermeasures provides
the best results. As indicated earlier, the curves labeled
RDCS include the RFI, DOI, CRC, and SRC SABC. For the
ActiveFaults class shown in Fig. 10, the Top 3 Cnters CM, the
Top Cnter CM and the RDCS curves dominate the “SRC only”
and “XRC only” curves. Although the counter CM curves
provide slightly better results both in terms of larger numbers
of fault detections and smaller latencies, the RDCS curve is
a close second. Moreover, the RDCS SABC is a continuous
symptom monitor designed to be independent of the executed
program. The curves for the SRC only and XRC only CMs
are clearly less effective, failing to detect large fractions of the
faults.

The results shown in Fig. 11 for the SevereFaults class
portray a different result with regard to the SRC and XRC

Fig. 12. SABC and counter CM latency analysis of all fault types in the
ActiveFaults class.

Fig. 13. Companion graph to Fig. 12 for the SevereFaults class.

SABC. Here, the SRC SABC shows only a slight degradation
with regard to the number of faults detected (all but two as
indicated earlier) and provides nearly identical latencies when
compared to the RDCS and counter CM curves. The latter
result is expected given the results for fault coverage presented
earlier, but the near-equivalence to the counter CM curves
suggests that the SRC SABC is detecting errors on wires also
monitored by the top counters.

Figs. 12 and 13 show the latency results for the ActiveFaults
and SevereFault classes, respectively, when all four fault types
are combined. Notwithstanding the larger number of faults
considered, the shapes of the curves in both graphs are nearly
identical to those shown for the delay faults only, suggesting
that both countermeasures are insensitive to the fault type.

1) Serial Port Latency Analysis: The RDCS and Top Cnter
CM are able to detect all of the Severe faults before leakage
occurs on the serial port. As an illustration, the curves in
Fig. 14 plot the serial port latencies in black and the RDCS
latencies in blue for each of the faults in the SevereFaults
classes plotted along the x-axis. The curves in Fig. 15 show
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Fig. 14. SABC and actual serial port latencies for the severe faults.

Fig. 15. Top Cnter and actual serial port latencies for the severe faults.

the results in the same format for the Top Cnter. In nearly all
cases in both graphs, the black points are significantly larger
than the corresponding countermeasure points, indicating the
fault is detected well in advance of any leakage. Only in one
case is the fault detection latency greater than 1.8 million clock
cycles (highlighted in both graphs). This worst-case detection
latency occurs at nearly 6 million clock cycles for both the
RDCS and the Top Cnter CM.

C. Architectural Analysis

In this last section, we investigate the architectural sig-
nificance regarding the locations of the counters identified
earlier as the Top 3 Cnters. Although these locations were
identified in previous work as significant [26], in this work,
we analyze this region further to determine the mapping
of the nodes from the netlist to specific behavioral VHDL
statements in the Potato design. The nodes monitored by
these counters are located within the Branch comparator
submodule of the Execute pipeline stage shown in Fig. 4.
The Branch comparator module takes three inputs; a 3-bit

funct3 field from the instruction and two 32-bit databus
signals labeled rs1_forward and rs2_forward, and produces
a 1-bit result called branch_condition internally (not shown).
The branch_condition signal is then used to define the
branch_taken output of the Execute stage (labeled 13 in the
figure) but is used only if the instruction decoded is a branch
instruction.

The internal branch_condition signal is driven upstream by
a node connected to the Top Cnter CM. In particular, the
Top Cnter CM monitors a node within the reduction logic
network constructed by the synthesis tool to implement the
comparison operators within the Branch comparator module.
The first couple lines of the behavioral VHDL code for the
Branch comparator module are given as follows.

case funct3 is
when b"000" => -- EQ

result <= to_std_logic(rs1 = rs2);
when b"001" => -- NE

result <= to_std_logic(rs1 /= rs2);
when b"100" => -- LT

result <= to_std_logic(signed(rs1) <
signed(rs2));

...

The reduction logic operations that implement equality,
inequality, etc, using the rs1_forward and rs2_forward databus
signals as input, are always performed, independent of the
instruction’s opcode. Therefore any fault that propagates along
any bit of these databus signals will, with high probability,
manifest as a change within the reduction logic networks of
this module. The second and third of the Top 3 Cnters CM
also monitor nodes within the reduction logic network of
the branch_condition signal. Moreover, several of the CRC-
based SABC described earlier utilize signals derived from the
rs1_forward and rs2_forward databus signals as input, which
explains the close correspondence between the counter CM
and the SABC results. Future work will investigate whether it
is possible to design alternative SABC that perform assertions
within this functional unit of the RISC-V architecture.

The proposed SABC can be applied to other more complex
microprocessor architectures, including super-scalar architec-
tures. However, their integration will require modifications and
additional resources to deal with the more complex behavior
of the pipeline, in particular, as a means of synchronizing the
assertions with instructions executed out-of-order, and with
handling complex branch prediction and execution.

VII. CONCLUSION

This article investigates a continuous symptom monitor CM
called SABC and a periodic, built-in self-test counter-based
CM for the detection of permanent faults in the Potato micro-
processor. The SABC and counter CM are evaluated using an
accelerated FPGA-based emulation platform, which emulates
the execution of the AES algorithm on Potato. A behavioral
HDL description of the microprocessor is instrumented with
FI circuits, SABC and counter CM, and is synthesized using
a standard cell ASIC CAD tool flow. A C program running on
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a hardwired Cortex A53 µP within the FPGA inserts faults,
controls execution runtimes and reads-out SABC and counter
CM results. Four fault types are emulated, one-at-a-time, on
each of Potato’s 34 110 core circuit nodes. Fault coverage and
latency experiments are carried out, and the effectiveness of
the SABC and counter CM are reported and compared with
the counter CM.

The SABC and counter CM are evaluated with respect to
the number of Severe faults they can detect, the latency of the
detections and the level of collateral coverage of the Active
faults. The results show that the SABC are nearly as effective
as the counter CM for Active faults and produce nearly
identical results for the Severe faults. Moreover, all Severe
faults are detected by the SABC indicating that the proposed
countermeasures achieve the goal of preventing information
leakage during program execution. An architectural inspection
of the nodes monitored by the top counters reveals that
nodes within the Branch comparator are highly sensitive to
fault effects and therefore represent the best locations for the
insertion of continuous monitors or periodic, built-in self-test
countermeasures.
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