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Abstract—The RISC-V instruction set architecture open licens-
ing policy has spawned a hive of development activity, making
a range of implementations publicly available. The environ-
ments in which RISC-V operates have expanded correspondingly,
driving the need for a generalized approach to evaluating the
reliability of RISC-V implementations under adverse operat-
ing conditions or after normal wear-out periods. Fault injection
(FI) refers to the process of changing the state of registers or
wires, either permanently or momentarily, and then observing
execution behavior. The analysis provides insight into the devel-
opment of countermeasures that protect against the leakage or
corruption of sensitive information, which might occur because
of unexpected execution behavior. In this article, we develop a
hardware–software co-design architecture that enables fast, con-
figurable fault emulation and utilize it for information leakage
and data corruption analysis. Modern system-on-chip FPGAs
enable building an evaluation platform, where control elements
run on a processor(s) (PS) simultaneously with the target design
running in the programmable logic (PL). Software components
of the FI system introduce faults and report execution behavior.
A pair of RISC-V FI-instrumented implementations are created
and configured to execute the Advanced Encryption Standard
and Twister algorithms. Key and plaintext information leakage
and degraded pseudorandom sequences are both observed in the
output for a subset of the emulated faults.

Index Terms—Fault analysis, fault emulation (FE), FPGA,
RISC-V.

I. INTRODUCTION

M ICROPROCESSOR system architectures that are
resilient to internal faults are difficult to design because

of timing and area constraints, complexity and the exponential
number of possible faulty execution behaviors that are pos-
sible [1]. An alternative approach addresses reliability from
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a security perspective and focuses only on those faults that
result in the leakage or corruption of sensitive information
through I/O channels. This significantly reduces the number
of faults that the system needs to detect and/or correct using
countermeasures that, e.g., halt execution or take other reactive
measures to protect sensitive information. The primary chal-
lenge to developing security-resilient architectures is deciding
which faults or fault combinations lead to information leak-
age and/or corruption. Although formal and simulation-based
approaches to fault analysis are possible, they are much slower
and are, therefore, difficult to apply to complex systems such
as those found in RISC-V system architectures, which possess
a large number of fault sites [2]–[4].

We develop a hardware/software co-design-based fault
injection (FI) system architecture that focuses on finding faults
that leak or corrupt sensitive information. Hardware/software
co-design refers to systems that partition the computational
tasks associated with an algorithm into hardware and software
components, where software components run on an embed-
ded microprocessor while the hardware components run on
dedicated hardware. Although application-specific integrated
circuits (ASICs) can be designed and fabricated as dedicated
hardware, it is more cost effective to use an FPGA system-
on-chip (SoC) platform as the physical device to carry out the
fault campaign. The arguments that support this use case relate
to the ease at which both the software and hardware can be
configured to, e.g.,

1) emulate any arbitrary architecture-under-test, e.g., a
64-bit version of a RISC-V processor;

2) dynamically reconfigure the architecture-under-test to
change the set of active fault sites and/or implement
specialized operations such as block RAM (BRAM)
memory scrubbing;

3) dynamically tune the data collection process as a means
of optimizing emulation speed;

4) accommodate and accelerate the testing and evaluation
of countermeasures.

We built a system prototype with these capabilities and
apply it to a logic-level netlist implementation of the Berkeley
RISC-V (Rocket RV64IMA) microprocessor. FI is accom-
plished by instrumenting the netlist such that a special FI
circuit is inserted on the inputs of gates and registers within
the netlist. Faults are activated and execution behavior moni-
tored using a combination of scan chain control, PL-side state
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machines, BRAMs, and a high-speed GPIO register interface
to a C program running under the Linux operating system (OS)
on the PS-side of a Xilinx FPGA SoC.

As indicated earlier, our fault emulation (FE) platform is
designed to quickly find faults that result in the leakage or
corruption of sensitive information. Cryptographic algorithms,
such as the Advanced Encryption Standard (AES), maintain
internal secrets that must not be revealed, fully or in part,
after a fault(s) occurs. Therefore, such algorithms represent
ideal candidates for information leakage analysis. Similarly,
secure pseudorandom number generators, e.g., Twister, gen-
erate random sequences that must not be corrupted such that
entropy is lost in the generated sequence. To this end, we cre-
ate two RISC-V instantiations and configure them to execute
compiled binary code that implement the AES and Twister
algorithms. The data collected from these FI experiments are
classified according to the severity of information leakage and
entropy loss, respectively. Future work will investigate coun-
termeasures to prevent the types of information leakage and
corruption reported on in this article.

The techniques and results presented extend our previous
work using the LEON3 microprocessor running the AES 256-
bit cryptographic algorithm [5], [6]. The specific contributions
of this work include.

1) A flexible hardware/software co-design architecture for
accelerating the FI campaign applied to a RISC-V
microprocessor implementation, which offloads complex
decision making to a C program implementation of the
FI manager (FIM) while utilizing simple and config-
urable programmable-logic state machines for providing
real-time analytics to the FIM regarding the current state
of the RISC-V.

2) A system architecture that leverages dynamic reconfig-
uration (DR) to implement BRAM scrubbing, which
restores program memory and eliminates corruption
created from previous FI tests.

3) A hardware/software technique, which monitors RISC-V
output during program execution to enable early termi-
nation of FI experiments for faults that are benign.

4) An analysis of information leakage associated with the
AES algorithm [6] and of the cryptographic strength of
the bitstrings generated by the Twister pseudorandom
number generator [7] under single and multiple fault
conditions.

5) An extensive security analysis framework that classi-
fies the level of information leakage and data corrup-
tion associated with the emulated faults and gives the
frequency of occurrence of leakage and data corruption
events.

The remainder of this article is organized as follows.
Section II discusses related work. Section III presents the
details regarding the FI campaign. Section IV presents our
experimental results. Section V presents our conclusions and
future plans.

II. RELATED WORK

The use of FPGAs for emulation began in [14], where
FPGAs were used to prototype ASIC systems, and extended

by Wieler et al. [15] to FE using an instrumented approach,
where faults could be dynamically introduced using an on-chip
decoder which routed separate fault injector control signals to
each gate. Burgun et al. [16] created partial bitstreams for
each stuck-at (SA) fault and used reconfiguration to statically
inject the faults. In [8], a scan-chain is introduced for FI,
which enabled the insertion of SA-0 (SA0) and SA-1 (SA1)
faults. Cheng et al. [17] extended the instrumented approach
by allowing multiple independent and dependent faults to be
dynamically injected simultaneously as a means of minimizing
FPGA reconfiguration time.

An instrumented design using modern FPGA features is
proposed in [9]. Their FI system is implemented as a soft-
ware/hardware system, with a 6.67-MHz PCI bus interface
between the FIM running on the host and the FE engine run-
ning on the PL side of a Xilinx Virtex FPGA SoC. Their
system handles single and multiple SEUs in a gate-level rep-
resentation of the design-under-test (DUT). The FIM selects
faults, loads the faults into a mask scan chain, and asserts an
inject signal to introduce a SEU into the target FFs at the
time of FI. The mask scan chain can also be used to store
the current state of the target system for scan out and analysis
after the FI experiment is run. Their FI system is extended to
SoC/microprocessors in [2].

Lopez-Ongil et al. [10] and [18] addressed the host-FPGA
communication bottleneck using a fully instrumented design
where the FI control functions, functions for generating the
stimuli and fault list, as well as the fault classification are
all implemented in the PL of the FPGA. The proposed system
allows single fault SEUs to be injected at specific clock cycles.
A time-multiplexed version is proposed in which the FFs are
replaced with a circuit that is able to store the golden and
faulty values, enabling fault detection in every clock cycle. A
third FF enables the DUT’s state to be restored, while a fourth
scan chain FF is used to specify FI points.

Vanhauwaert et al. [11] proposed a hardware/software co-
design method, whereby an embedded PowerPC on a Xilinx
Virtex-II Pro, is used in addition to the host and programmable
logic (PL) to carry out the FI campaign. The proposed system
reduces the number of data transfers across the UART serial
connection between host and embedded processor, address-
ing the bottleneck in many of the previously proposed FI
architectures. In [19], they eliminate the time overhead asso-
ciated with scan for FI by introducing a direct addressing
scheme, where a binary code specifies the fault location
instead of a scan-configured mask register. Kafka et al. [20]
proposed a methodology for preserving the structural netlist
characteristics of an ASIC DUT within the FE engine of the
FPGA.

CrashTest is proposed in [12] where the PowerPC embedded
processor on a Xilinx Virtex-II Pro SoC runs the FIM, which
communicates to the DUT configured in the PL using an on-
chip bus. The authors enable the emulation of SA, bridge, path
delay, and SEU fault types by applying gate-level transforma-
tions. The time and duration of the FI are controlled by the
FIM, which leverages a scan chain insertion technique. The
authors describe the resources and performance of applying
CrashTest to several designs, including the LEON3, using the
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TABLE I
ARCHITECTURAL COMPARISON OF PROPOSED FI SYSTEM WITH SIMILAR TECHNIQUES

results obtained when a set of single and multibit faults are
selected using a Monte Carlo sampling method. CrashTest is
used to validate software anomaly treatment (SWAT) methods
in subsequent FI experiments carried out on the OpenSPARC
T1 core [21].

Nyberg et al. [3] described an FE engine that minimizes
stalls between FI experiments while providing full single-bit
and multibit FI capabilities. They utilized the direct addressing
scheme proposed in [19] but added the capability to specify
multibit faults using a subset mask. They also configured only
the delta between successive FI configurations and allowed
the fault model and fault duration to be specified. Their FIM
allows simultaneous download of the next FI configuration
while the current FI experiment is executing. They proposed
a fault analysis technique that tolerates timing differences that
can occur when FI is carried out on microprocessors.

Fibich et al. [4] argued that implementing FI in HDL
changes the result of the synthesis and advocate instead for
gate-level FI. Their tool, called FI instrumenter or FIJI, inserts
saboteurs at locations specified by the user using a graphical
user interface and implements a set of fault models similar to
Pellegrini [12]. FIJI is designed to reduce the overhead asso-
ciated with the FE engine while enabling precise timing and
duration of fault insertions.

de Oliveira et al. [13] implemented the RISC-V Rocket
processor on an FPGA and evaluate it in the presence of
single event effects, with a focus on radiation-induced errors
that occur in the configuration memory and BRAM. They
introduced coarse grain TMR and memory scrubbing as coun-
termeasures and measure time-out and silent data corruption
(SDC) errors while running matrix multiply, AES, and Qsort
algorithms.

A comparison of important architectural features associ-
ated with the previous work and the architecture proposed
in this article is given in Table I. Note that we use the

prefix “codesign” to refer to platform components that work
together to implement the FI system. For example, “Codesign
Host + FPGA” indicates that the Host is actively partici-
pating in the FI campaign, while “Host + codesign SoC
FPGA” indicates that FI is implemented between the PS and
PL sides of the FPGA, while the host provides only sup-
plemental support. As a general rule, architectures that build
larger fractions of the FI control elements into the FE engine
achieve higher performance at the cost of increased com-
plexity. Although several previously proposed methods are
classified as “Host + codesign SoC FPGA,” none of them
are focused on a security evaluation while enabling runtime
monitoring as proposed here.

III. FAULT INJECTION CAMPAIGN CHARACTERISTICS

The FI campaign refers to all aspects of the FI architec-
ture, and is summarized as follows with each step explained
in further detail in the following. Note that unlike the previous
work, e.g., [3] and [10] among others, our goal is not to build
the fastest FI architecture, but rather to architect a flexible and
efficient engine that enables a thorough and statistically signif-
icant characterization of sensitive information leakage and data
corruption. In other words, our security framework is focused
on identifying nodes that under fault conditions, result in the
leakage of private data, in contrast to a reliability analysis,
which takes a more generalized view of identifying critical
nodes that result in catastrophic failure when a fault occurs.
Once identified, our long-term goal is to introduce coun-
termeasures that prevent these security-sensitive nodes from
revealing private information when they fail. Our framework,
like a reliability analysis, cannot guarantee that we will find all
security-sensitive fault conditions but instead exhaustively tests
all single faults and applies statistical sampling techniques to
obtain as much coverage as possible of multiple faults.
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Fig. 1. Block diagram of the experimental setup with RM for accelerating
data collection.

1) The DUT is the RISC-V River SoC (Rocket) with a
32-KB ROM for the application code and a 512-KB
BRAM for scratch memory [22], [23]. An ASIC synthe-
sis and place and route CAD tool flow is used to create
a netlist, which is then processed into an instrumented
design with faults inserted. A second FPGA CAD tool
flow is used to process it into a bitstream.

2) The FIM runs as a C program on an embedded proces-
sor within a MPSoC FPGA, which communicates with
the PL components through memory-mapped registers,
similar to the approach taken in [24].

3) The set of emulated fault types include permanent
SA-0/1, invert, and delay faults.

4) All single-bit faults and up to five randomly placed
multibit faults are emulated in the experiments.

5) The FE engine consists of a set of state machines imple-
mented in the PL along with the instrumented design.
FI is carried out in the instrumented design using a
set of scan chains, similar to the approach taken in [8]
and [18]. The FE engine and scan chains are controlled
by the FIM through the GPIO registers.

6) The bitstream is either programmed once (static) before
the FI campaign or dynamically in between each FI
experiment (dynamic).

7) The FE process implements a hybrid approach in which:
a) a fault-free emulation is detected and terminated early
by comparing a portion of the generated output with
golden data and b) a faulty operation continues until a
stop condition is met.

8) Sensitive data leakage and corruption analysis and clas-
sification are run offline using the faulty data sets.

A. Test Platform Design Characteristics

The proposed FI platform utilizes a Xilinx ZCU102 devel-
opment board as shown in Fig. 1. The ZCU102 includes a

Zynq UltraScale+ MPSoC that is partitioned into a processor
side (PS) and PL side (PL) side. Petalinux is used to configure
a custom Linux OS that runs on one of the 4 ARM Cortex-
A53 processors embedded within the PS side [25]. The Linux
OS provides both serial and Ethernet communication chan-
nels to a desktop server (host computer), as well as access
to a 16-GB SD card for storing data and programming bit-
streams. C programs that run under Linux can access up to
4 GB of DDR4.

The Linux kernel is customized using a PL hardware con-
figuration that includes an AXI general purpose I/O (GPIO)
port. The port is composed of a 32-bit input and a 32-bit output
register that is memory-mapped into the Linux kernel address
space. A C program implementing the FIM can read and write
these registers after obtaining virtual address information using
the mmap() library function.

The FIM implements two distinct testing strategies, called
static configuration and DR. The static configuration experi-
ments program the FPGA exactly once at the beginning of the
FI campaign while the DR experiments fully restore the fault-
free state by reprogramming before each FI experiment. Both
strategies use the processor configuration access port (PCAP)
to perform reconfiguration of the PL side components. PCAP
enables either the entire PL-side to be reconfigured (DR) or
only portions of it (dynamic partial reconfiguration). The FI
experiments described in this work use only DR.

The FIM coordinates operations with the FE master state
machine (Mst) as shown in Fig. 1. The bit field connections
associated with the GPIO control (GPIO Ins) and data (GPIO
Outs) registers are shown along the top of Fig. 2. The scan
chain control and data signals connect directly to the Rocket
instantiation, providing the C program with complete control
over the FI configuration.

The set of control flow operations carried out by the FE
engine are given in the algorithmic state machine diagram
(ASMD) in the bottom half of Fig. 2. At the beginning of
each FI experiment, the cycle counter is reset and the state
machines controlling the serial (UART) and parallel (address
bus) data collection processes are started to clear the BRAMs.
A configuration parameter that limits the number of cycles per
test is then transferred from the FIM to the FE engine via the
get_params and wait_params PS-PL handshake states.

The reset signal to Rocket is asserted in the wait_clear state
and the run states of the serial, parallel, and runtime moni-
tor state machines are consulted via the xxx_done signals to
ensure the BRAM memory clear operations have completed.
The Rocket reset signal is then released in the start_rocket
state. This causes the microprocessor to boot and then execute
a compiled C program from the preconfigured ROM. MstCtrl
busy-waits counting clock cycles and then forces the Address
(parallel) data collection state machine to halt after the des-
ignated number of clock cycles. A transition is then made to
state wait_serial, which sets the flag exit_enabled and then
busy waits for the Serial state machine to complete.

The ASMD of the serial data collection (SDC) state
machine is given on the left side of Fig. 3. The “clear
memory” operation is carried out if Mst starts this state
machine with the clear_mem flag set (states are not shown
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Fig. 2. Details of the PL-side components from Fig. 1 (top) and ASMD for
master control state machine (bottom).

because they are straightforward). Otherwise, a transition is
made to state wait_uart, which is responsible for collecting
UART data as Rocket executes its program. Rocket asserts
the Rocket_uart_intr interrupt signal when an ASCII charac-
ter is available on its UART port. When this occurs, SDC
acknowledges the interrupt while simultaneously transferring
the character to the serial BRAM1. The BRAM1_addr is
checked to determine if it has reached the maximum size of the
available memory, and if so, the state machine returns to idle,
otherwise, the address is incremented and a FIM (C program)
flag, cprog_term, is checked. This flag enables the C program
to terminate SDC at any instant in time. If the Rocket_uart_intr
is not asserted, SDC checks the exit_enabled signal controlled
by Mst, which as indicated earlier is not asserted until Rocket
has run for at least 222 cycles. If exit_enabled is not asserted
or idle_cnter is less than a user-specified wait time (set to 220

cycles in our experiments), then the SDC continues to moni-
tor for additional UART activity, otherwise, it returns to idle.
Note that idle_cnter is reset to 0 every time an interrupt occurs,
allowing SDC to extend the data collection period significantly
in special cases discussed further below.

The FE engine is modified for the Twister FI experiments
as shown by the red annotations in Fig. 1. As discussed in
detail later, the number of bytes transmitted through the UART
interface between Rocket and the FE engine is no larger than

Fig. 3. (a) ASMD for SDC state machine and (b) ASMD for RM state
machine from Fig. 1.

288 bytes in the AES experiments, but increases to more than
250 000 bytes in the Twister experiments, which dominates the
runtime. However, in fault-free and some faulty test scenarios
(to be discussed), the time overhead associated with the UART
transfer can be reduced by monitoring the UART output as it is
being generated. The runtime monitor (RM) shown in Fig. 1
is responsible for transmitting data back to the FIM in real
time using a second BRAM port (P2). This enables the FIM
to terminate the FI experiment early under certain conditions.

The ASMD for the RM is given on the right side of
Fig. 3. Once started by Mst, it monitors the serial BRAM1 for
additional characters written by the SDC state machine and
transfers them to the FIM immediately. BRAM1 is a buffer
between the SDC and the FIM, which ensures complete data
transfers in cases, where the FIM is stalled by the Linux OS
because of interrupt service processing.

The FI platform is designed to be adaptable for other types
of algorithms and data collection requirements. Currently,
Rocket needs to be resynthesized in order to execute other
binaries, but this can be overcome by adding a port to enable
the ROM to be loaded at runtime. Another feature that sup-
ports the adaptability of the FI platform is the RM, which
can be used to accelerate the FI experiments (as we show
here) by enabling control over execution based on the current
state of Rocket. More importantly, it defers decisions, such as
early termination, to the highly configurable FIM (software)
component. The most difficult element of the FE engine to
make adaptable relates to the type of state information to be
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Fig. 4. ASIC synthesis, instrumentation, and FPGA implementation flow of
Rocket design.

Fig. 5. FI circuit design used to inject faults on each gate input.

collected. The current version collects data from the serial
port and address bus, which are highly sensitive to micropro-
cessor misbehaviors with injected faults, but the runtime state
of other components such as the program counter, ALU con-
trol signals, etc. may also need to be monitored. This can be
accomplished by expanding the FE engine with small footprint
state machines similar to those shown in Fig. 3.

B. RISC-V Synthesis

The objective of our analysis is to investigate the behav-
ior of Rocket under faulty conditions in usage scenarios in
which Rocket is implemented as an ASIC. ASIC synthesis is
typically carried out using a standard cell library CAD tool
flow. We use this approach to create a logic-level netlist that
is then postprocessed into an instrumented design with faults.
The CAD tool flow is shown in Fig. 4, where we first pro-
cess the rocket behavioral description (RTL) using Synopsys
design compiler [26]. The ASAP7 7-nm FinFET predictive
PDK and standard cell library [27] is used during RTL syn-
thesis as shown on the left side of the figure. The generated
netlist is then processed through place and route to a layout
using Cadence Encounter [28]. The netlist from the layout is
extracted and a script inserts instances of a saboteur circuit
in series with downstream gate inputs, along with a set of
controlling scan chains.

The right-most column of Fig. 4 shows the stan-
dard synthesis-implement-generate-bitstream process flow

Fig. 6. (a) RISC-V layout with clock highlighted and (b) Zynq UltraScale+
FPGA version.

implemented within the Xilinx Vivado FPGA CAD tool [29].
Note that the scan chains in the instrumented design prevent
Vivado from collapsing multiple standard-cell gates into a
single LUT, and therefore, the netlist structure is preserved
throughout the Vivado flow. Maintaining the ASIC netlist
structure is an important objective of our CAD tool flow to
ensure the results reported from our experiments are directly
transferable to a structurally equivalent ASIC implementation.

C. Instrumented Design Flow

The instrumentation design flow adds three scan chains for
controlling a set of 85 713 FI circuits, one on every input of
every gate in the Rocket netlist. A schematic of the FI circuit
is shown in Fig. 5. Two scan chains are used to select from
one of four fault types while the third scan chain controls the
fault_active signal. The stuck faults hold the output signal at
a constant value, while the delay and invert faults introduce
a clock cycle delay or invert the input signal, respectively.
The fault_active signal either activates the fault or provides a
fault-free by-pass path through the cell.

Fig. 6(a) shows the ASIC layout of Rocket with the system
clock highlighted while Fig. 6(b) shows the Vivado implemen-
tation view of Rocket on the Zynq UltraScale+ FPGA. The
ASIC layout is 336 mm X 334 mm with 60% cell utilization.
There are 34 196 logic gates, including 5262 scannable flip-
flops and 2414 hierarchical ports. Fault insertions include all
combinational inputs and flip-flop data and scan-enable inputs,
for a total of 85 713 fault insertion points.

The time associated with the one-time processing of the
RTL through fault insertion (from Fig. 4) is small relative to
the Vivado synthesis and data collection times. In contrast,
the runtime associated with the Vivado standard CAD tool
flow is approximately 6 h. We limited the operating frequency
of the FPGA to 24 MHz because anything higher resulted in
timing violations during the Vivado implementation phase. For
comparison, synthesis time and resource utilization are much
smaller, i.e., approximately 2 h with only 20% utilization of
the LUTs and FFs, when faults are inserted directly into the
behavioral RTL. However, as noted, this approach does not
represent a realistic fault model of the ASIC implementation.

D. Testing Process

The FIM C program automates the testing process. It first
obtains the virtual addresses for the GPIO registers and then
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implements three loops. The outer loop sequences through
the four fault types. The middle loop controls the number of
simultaneous faults, while the inner loop carries out the fault
insertion by clocking in configuration data using the three scan
chain inputs. Once the fault(s) is inserted, the FIM starts Mst
to execute the test, collect test data from the BRAMs and, to
receive signals regarding the status of the Rocket execution.
The collected test data are stored onto the SD card and later
transferred to the host computer through Ethernet.

Each FI experiment consists of optionally reprogramming
the FPGA, introducing one or more faults through the scan
chain and then resetting Rocket, which causes it to boot and
then execute either the AES [6] or Twister [7] programs.
The FIM automatically carries out a set of 342 852 FI tests
(four fault types * 85 713 FI sites) for each of the AES and
Twister instrumented designs. We repeated these experiments
by inserting up to five faults of the same type in sequence,
i.e., in adjacent FI cells in the scan chain. We again repeated
these experiments with two different key-plaintext pairs in the
AES experiments as a means of identifying data dependent
fault behaviors. In total, 3 428 520 and 1 714 260 FI experi-
ments were carried out using the AES and Twister algorithms,
respectively.

The soft reset operation clears the registers and resets the
execution state of the Rocket microprocessor but it does not
reset the internal BRAM memory utilized by Rocket. Faults
that disrupt Rocket’s internal BRAM memory will accumu-
late throughout the FI campaign. To provide a baseline for
determining how uncorrected accumulated faults impact the
leakage and data corruption characteristics of the algorithms,
we carried out a separate set of experiments where we repro-
gram the PL side before running each test. Reprogramming is
easily accomplished using the PCAP interface by: 1) storing
the bitstream in /lib/firmware/ within the Linux filesystem and
2) making the following system call before carrying out the
scan-based fault insertion operation:

echo bitstream > /sys/class/fpga_manager/fpga0/firmware.
In experiments, where DR is not performed, Rocket exhibits

distinctive behavior in some cases as a result of the accumu-
lation of residual errors in Rocket’s internal BRAM resources.
In contrast, the DR experiments reset the BRAMs to its ini-
tial state, eliminating memory corruption from previous faults.
The total number of experiments is, therefore, twice that given
earlier at 6 857 040 and 3 428 520 for each of the AES and
Twister FI campaigns, respectively.

E. Security-Oriented Algorithms

1) AES Test Case Characteristics: The AES algorithm that
was compiled and incorporated in the ROM uses a 256-bit
key and is freely available at [30]. For each FI experiment,
we configured AES to fetch the key and plaintext from the
ROM and then print them along with the computed cipher-
text in hexadecimal to Rocket’s serial port. The program also
compares the generated ciphertext with a precomputed stored
copy of the ciphertext and prints “Correct” or “Error.” Under
fault-free conditions, it then enters an idle state. An example
snippet of the data collected by the FIM for a fault-free test
is shown in Fig. 7.

Fig. 7. Fault-free AES serial and address bus change data snippet.

As the processor executes the binary code, the SDC state
machine collects and stores the sequence of ASCII charac-
ters generated on the Rocket UART as described earlier. A
second address data collection (ADC) state machine runs in
parallel (see Fig. 1) and records activity on Rocket’s internal
address bus. A separate 2048-word BRAM2 stores the 32-bit
address bus values, but only in cases when the address bus
values change. The number of serial bytes transferred and the
total number of address bus changes are also recorded and
stored (see Fig. 7). The serial data and the last 50 address bus
changes are transferred to the FIM after the test completes.
We determined that the last 50 addresses, in combination with
the serial data, were sufficient to differentiate between distinct
failure behaviors.

Several stop conditions are programmed into the SDC to
deal with faults that prevented the AES program from complet-
ing execution. The number of cycles required for the fault-free
AES encryption program execution is upper bounded by 222,
therefore, every FI experiment is allowed to run for this num-
ber of clock cycles unabated. After this initial clock cycle
interval, the SDC module then begins monitoring for addi-
tional byte transfers from the Rocket UART interface. If no
additional characters appear after 220 additional cycles, the
FE engine signals the FIM to terminate the run. This occurs
in the fault-free case and in cases where the fault causes the
processor to hang and generate no output.

If, on the other hand, Rocket continues to transmit charac-
ters through the UART, the SDC module collects them until
the 64-KB BRAM buffer fills up. In this case, the emulated
fault causes the processor to malfunction and extends the run-
times in these rare cases into the minute range. We choose
to collect this data because the additional output occasionally
reveals internal secrets related to the AES encryption key.

From Table I, the best case runtime per FI experiment for
the static configuration is approx. 220 ms, which occurs for
most of the tests. At a frequency of 24 MHz, the (222 + 220)
clock cycle runtime takes approx. 218 ms with the scan and
GPIO data transfer operations taking the remaining 2 ms. The
total scan time is negligible because only one scan clock oper-
ation is required to move the fault to the next position in the
scan chain and each scan clock operation takes 488 ns (we
connected the scan clock from the GPIO register in Fig. 2 to
a clock tree in the PL to make it fast). The GPIO transfer time
is also small because at most 288 serial bytes and 50 address
bus transfers occur (see Fig. 7).
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TABLE II
FE ENGINE RUNTIMES

Fig. 8. Fault-free Twister serial and address bus data snippet.

The best case runtime for the DR experiments is more than
twice that of the static experiments because of the DR and
scan operations. As noted, the PL side is reprogrammed before
each test, which requires an additional 215 ms, and the scan
operation must start over because the fault is cleared by the
reprogramming. The 21 ms for scan represents the average
scan time given the scan chain length is 85 713 elements long
and half of the elements need to be scanned on average. The
total data collection time for each fault type experiment (which
tests all 85 713 faults) is approximately 6 h for the static con-
figuration experiment and 12 h for the DR experiment. In
either case, our FE setup represents a significant speed-up over
simulation, which would take nearly ten years per experiment
at 1 fault per hour.

2) Twister Test Case Characteristics: For each FI exper-
iment, Twister is started with a fixed random seed and is
configured to generate one million bits to satisfy the NIST
statistical test suite requirements discussed later. The bits are
packed four at a time into hexadecimal ASCII characters by
Twister before being transmitted over the UART to the SDC
state machine. Therefore, the number of UART characters in
the fault-free case is 281 264 bytes, which accounts for the
hex-encoded pseudorandom numbers, the boot message, etc.,
as shown by the fault-free data snippet in Fig. 8.

The fault-free pseudorandom sequence does not need to be
stored, only the faulty sequences. Therefore, we configure the
FIM and RM to parse the UART output and decide if the
sequence is fault free. We determined from full runs of the FI
experiments that no latent fault effects show up after 35 000
hex digit characters of the pseudorandom sequence are gener-
ated. Therefore, the FIM terminates the run early for fault-free
test scenarios and replaces the pseudorandom sequence in the
data files with the string “CORRECT.”

Fig. 9. Faulty Twister serial and address bus data snippet.

The output snippet in Fig. 8 also displays information about
other characteristics of the UART output stream. For example,
the “Number of “Boot” strings 1” indicates that only one boot
operation occurred. We configure the FIM to terminate the
execution if more than 10 of these boot strings occur to avoid
the long wait times described earlier in the AES experiments.
Similarly, the FIM will terminate Twister execution if the num-
ber of non-ASCII characters is >10. Although this type of
output represents a security issue, it can be easily flagged as
abnormal by countermeasures and the program terminated.

Of greater concern are faults that produce well-formed
but incorrect (WFBI) output sequences, i.e., the fault causes
Twister to deviate from its expected execution behavior to
produce a possibly nonrandom sequence. The sample output
snippet in Fig. 9 shows one such example. The FIM is con-
figured to identify these WFBI sequences and, in cases where
they occur, Rocket is allowed to execute until all 1 million
bits are generated. The focus of our security analysis in the
following sections is on these output sequences.

The runtimes given in the right-most column of Table II
reflect the different termination conditions just discussed. For
example, for faults that cause processor hangs, continuous
reboots, or non-ASCII character output, the FI experiment is
terminated quickly, resulting in runtimes of 211 and 447 ms,
for the static and DR experiments, respectively. Fault-free FI
experiments are also terminated early at 1.64 and 1.88 s. FI
experiments producing WFBI sequences take nearly 17 s. Note
that the RM enables the serial data transfer to be carried out
simultaneously with execution of Twister, effectively elimi-
nating the serial data transfer time component. The 0.61-ms
time interval given in the table represents the transfer time
associated with the 50 address bus values. The total data col-
lection time for each fault type experiment (which tests all
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Fig. 10. Comparison of Leon3 and RISC-V results. Graph shows proportion of fault behaviors collapsed to five major classes.

Fig. 11. Impact of data dependency on fault behavior using worst-case severity classification among all four fault types in the static configuration experiments
with one simultaneous fault inserted.

85 713 faults) varies from 68 to 70 h for both the static and
DR experiments because the WFBI output sequences dominate
the runtime.

IV. EXPERIMENTAL RESULTS

The results from our security analysis are presented in this
section, with an emphasis on faults that cause at least some
portion of the key and/or plaintext to be leaked through the
UART for the AES experiments and, for Twister, on faults
that produce WFBI sequences, a condition referred to as
“insecure failure” in [31]. We are particularly interested in
WFBI sequences that appear to look random but fail the NIST
statistical test suite [32].

A. AES Analysis

The UART output and address bus traces vary widely across
the FI experiments. However, despite this diversity, we were
able to partition the set of fault behaviors into five severity
levels with the last level representing the insecure failure class
of interest. The five severity levels are characterized as follows.

1) Correct Output and Address Trace: Fault is benign,
with UART and address bus output matching fault-free
output.

2) Correct Output But Wrong Address Trace: The UART
output matches perfectly, but the address trace is

incorrect (the number of memory accesses is different
from expected and/or the last 50 addresses accessed do
not match the fault-free case).

3) No Output on the Serial Interface: Processor is hung.
4) Corrupt Output on Serial Interface: UART output is cor-

rupted in some fashion. We observed a lot of diversity
in this severity level, e.g., sometimes the “enc” and “tst”
components in Fig. 7 are correct, other times they are
not, sometimes the output is non-ASCII, other times it
is a combination of ASCII and non-ASCII, or is ASCII
but has missing or extra characters.

5) Memory or Cryptodata Leakage: The UART output dis-
plays the key or plaintext as part of the encrypted
message, or otherwise leaks cryptographic data from
memory.

The block graphs shown in Fig. 10 compare the current
results (top) with those published previously for the LEON3
processor (bottom) [5]. The data from the SA0 static configu-
ration experiment with one simultaneous fault are used here for
both experiments. Each block represents 200 faults from one
of the five color-coded severity levels. Here, we see Rocket has
approximately the same number of leakage susceptible faults
as LEON3 (398 versus 438), but has a lower percentage than
LEON3 (0.46% versus 2.8%). Moreover, approximately half
of Rocket’s gate-input pins are single-fault safe.
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Fig. 12. Fault type analysis, showing breakdown according to severity class.

Fig. 13. Trends in the fault severity levels as additional faults are injected.

The impact of data dependencies on fault behavior is
depicted in the block graphs of Fig. 11, which uses data
from all four fault type experiments with 1 simultaneous fault
inserted. For each fault site, the severity class for each of
the four fault types is parsed and the fault type classified as
worst-case (largest) is used as the final classification for that
fault site. The top block graph shows the fraction of faults
for each severity class when the encryption key/plaintext pair
from Fig. 7 is used (cipher1) while the bottom graph shows
the results when a second, different key/plaintext pair is used
(cipher2). The cipher1 FI experiments detected considerably
more null and corrupt output conditions and slightly more
leakage conditions than the cipher2 experiments. This is not
unexpected given that execution behavior, i.e., whether an if

Fig. 14. Static (without BRAM scrubbing) and dynamic (with BRAM
scrubbing) experimental results showing breakdown according to the severity
class.

or else branch is taken, depends on the data being processed
even under fault-free conditions. The key take-away of this
analysis is that fault countermeasures must be evaluated using
multiple key/plaintext pairs to be inclusive.

The severity-level block diagrams shown in Fig. 12 help
determine which of the fault types is best at detecting suscep-
tible pins in the layout. Here, the color-coded blocks count the
number of fault sites associated with each severity class sepa-
rately in each fault type experiment. The regions labeled “Test
escapes” show the percentage of fault sites that are classified
as “correct” in the associated fault type experiment but are
classified by at least one other fault type experiment as “incor-
rect”. Although each fault type identified susceptible pins not
detected by any other fault type, SA1 identified the largest
number of new susceptible pins across levels 1 through 3.
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Fig. 15. Correlation of fault-free and faulty UART output with Address bus behavior.

Fig. 16. (a) Standard cell placement, (b) hierarchical cell grouping, and (c) locations of nets and pins resulting in sensitive information leakage.

Moreover, the delay fault type found twice as many new sus-
ceptible pins in level 4 (leakage) than any other fault type.
This observation is reinforced by the table shown along the
bottom of Fig. 12. Here, the percentages reflect the number of
unique faults in each severity class > 1 that each fault type
experiment detected normalized to 100% across the fault type
experiments. Clearly, SA1 and delay dominate the fractions
across the severity classes.

The graphs in Fig. 13 portray the trends in fault behavior as
the number of simultaneous faults is increased. As expected,
fault-free behavior decreases and faulty behavior increases as
more simultaneous faults are added with the notable excep-
tion of severity class 4. Here, leakage trends unexpectedly
downward but then upticks with five simultaneous faults.

The static and DR experiments are differentiated only by
BRAM scrubbing. The block graphs in Fig. 14 show the
severity-level distributions without BRAM scrubbing (top) and
with BRAM scrubbing (bottom). The larger fault-free opera-
tion region associated with scrubbing indicates that scrubbing
as a countermeasure is somewhat effective in reducing null
output, corrupt output, and leakage severity levels. However,
additional mitigations are necessary to ensure a secure, robust
system.

1) Correlating Address Traces With Program Behavior:
As discussed earlier, we additionally monitored activity on
Rocket’s address bus in order to better understand its execu-
tion behavior under faulty conditions. Here, we analyze the

address bus behavior and correlate it with the behavior of the
UART output. We expect faulty UART output would always
be accompanied with abnormal address bus behavior, but this
is not always the case. In addition, we found the opposite con-
dition does not hold as well, i.e., correct UART output was
not always accompanied by correct execution behavior.

The legend in Fig. 15 identifies six address bus change
classes, with EOP indicating end-of-program. Classes EOP
early and EOP late identify cases, where the number of address
bus changes is less than or greater than the expected, respec-
tively (see snippet in Fig. 7). Looping address identifies cases
where Rocket loops indefinitely. The nonsequential address
class indicates address changes are random with no repeats
while the sequential address class identifies cases, where the
address simply increments. The five horizontal bars partition
the results into the five UART severity levels discussed earlier,
with the fractional number of cases for each of the address bus
change classes color-coded according to the legend.

The bar labeled “Correct output, but wrong address trace”
refers to anomalies where the address bus behavior is wrong
but the UART output is correct. In fact, we observed approx-
imately 2500 of the tests that terminated early still produced
the correct output. From the color-coding of the bottom-most
bar, it is clear that most of the crypto-leakage behavior is asso-
ciated with the Looping address class. Another notable feature
depicted in the bar labeled “No output on the serial interface”
is that most of the null output behavior is associated with a
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Fig. 17. Percentage breakdown of the 85 713 faults partitioned into five classes for 20 FI experiments given along the x-axis. The stacked bargraph in
(a) gives the results without BRAM scubbing while (b) gives the results with BRAM scrubbing.

runaway sequential address. More importantly, this analysis
reveals that the address classes are generally not predictive of
program behavior.

2) Faulty Pin Locations: Using the UART output data and
fault insertion location information, it is possible to back-trace
to the layout those pins that result in cryptographic information
leakage. The layout of Rocket is shown in Fig. 16(a) and (b),
a specialized layout view showing the regions occupied by
the components in the hierarchical design. The small circular
region in the bottom center corresponds to the ALU compo-
nent of Rocket. Fig. 16(c) uses red lines to identify the net
connections between leaky pins. It is clear that the ALU com-
ponent possess a large number of nets and pins that result
in leakage when faults occur on them. The larger region to
the left corresponds to the CSR, which also depicts a large
number of leaky nets and pins, albeit more widely dispersed.
Note that the ALU is composed solely of combinational logic
gates while the CSR additionally includes registers, which are
physically larger and, therefore, reduce the density of the faulty
nets and pins. We are currently leveraging this back-annotation
information for determining the best regions for inserting mon-
itoring technology that is capable of detecting these leakage
sensitive faults.

B. Twister Analysis

As indicated earlier, the FIM is configured to identify and
fully collect Twister WFBI sequences that are produced in
the correct format but do not match the fault-free sequence.
Twister is programmed to produce 1 million bits under these
conditions, which satisfies the input size requirements to run
nearly all of the NIST statistical tool suite tests [32].

Note that the emphasis here is not on whether the ciphertext
output is either correct or incorrect, or whether certain faults
cause leakage of cryptographic key information as is true for
the AES experiments, but rather on whether the strong cryp-
tographic properties of Twister’s pseudorandom sequence are
weakened or eliminated. Unlike the key and ciphertext within
AES, the random seed used in Twister can change frequently
and therefore, it is difficult to design countermeasures here to
determine on-the-fly whether the output sequence matches the
expected sequence. The most straightforward countermeasure
is to run simultaneous synchronized copies of Twister on two

separate microprocessors and compare the outputs, but this
may not be feasible and/or practical in some applications.

Similar to the AES experiments, the UART output observed
in the Twister experiments varied widely. We classify the
observed UART output into five categories, namely, Correct,
None, Partial, non-ASCII, and WFBI. Correct indicates that
the fault had no effect on Rocket’s execution and the fault-
free bitstring was produced. None indicates that no bitstring
was produced, likely caused by Rocket entering some type
of hung state. Partial refers to an ASCII bitstring with length
less than the requested 1 million bits. The non-ASCII class
refers to ROM dumps of the program code or other internal
binary state information, and WFBI refers to well formed but
incorrect full length ASCII bitstrings.

The stacked bar graphs in Fig. 17 give the fractional break-
down of the 85 713 faults within each of these five classes for
each of the fault classes listed along the x-axis. The results
are very similar for the experiments without BRAM scrubbing
[Fig. 17(a)] and those with BRAM scrubbing [Fig. 17(b)]. For
example, the WFBI class shown by the top bar segment varies
between 6.72% for Delay1 (only one delay fault) and 9.11%
for Stuck15 (five simultaneous SA1 faults) without BRAM
scrubbing and between 6.71% and 9.09% for the same FI
experiments with BRAM scrubbing. Within each of the four
fault classes, the fraction of WFBI cases increases by approx-
imately 2% as the number of simultaneous faults increases
from 1 to 3 but remains nearly constant for three, four, and five
simultaneous faults. This trend contradicts the results shown
earlier for AES where leakage decreased as the number of
simultaneous faults increased except for the case of five simul-
taneous faults. Therefore, countermeasures must consider that
as the number of simultaneous faults increases, the trend in
the amount of leakage or data corruption will be application
dependent.

Another notable trend in the graphs is the nonlinear decrease
in the number of Correct bitstrings produced as the number
of simultaneous faults increases from 1 to 5, and a corre-
sponding fractional increase in the None class. Moreover, the
number of Correct bitstrings is slightly larger, by less than
0.1% or approximately 100 bitstrings from a total of 85 713,
in the DR experiments which indicates that scrubbing repaired
corruption that carried forward from the previous fault in only
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Fig. 18. (a) NIST test (y-axis) pass percentage for 20 static FI experiments (x-axis) using the WFBI bitstrings. (b) Percentage breakdown of the WFBI
bitstrings that fail all NIST tests, pass more than one test and pass all NIST tests in static FI experiments.

a small number of cases. The Partial and non-ASCII classes
vary between 0.6% and 1.8%, and 1.2% and 3.5%, respec-
tively, in both bar graph plots, with a slightly larger fraction
of Partial bitstrings for the delay fault experiments.

A third notable trend is reflected in the nearly identi-
cal sequence of bars corresponding to the SA0 and SA1 FI
experiments, while the Correct class for the delay fault exper-
iments increases by nearly 10% over the SA fault percentages.
Moreover, the Correct class for the invert experiments exhibit
more than an 8% decrease in the fraction of Correct bitstrings.
From these results, it is clear that permanent invert faults have
the most significant negative impact on execution behavior,
followed by SA and delay.

The bar graphs in Fig. 18 present the NIST statistical test
results for the WFBI bitstrings. The goal of our analysis is to
determine the cryptographic strength of the WFBI bitstrings
that appear to be random. Therefore, in this analysis, we
exclude WFBI bitstrings that are full length but are easily rec-
ognized as being invalid, e.g., those that posses a large fraction
of zeros or have short repeated patterns. The number of these
invalid WFBI bitstrings is small, i.e., between 2% and 3% of
the total number of WFBI bitstrings.

The results shown in Fig. 18(a) give the fraction of the
WFBI bitstrings from the static experiments that pass each of
the fourteen NIST statistical tests identified along the y-axis
(the NIST test RandomExcursions required more than 1 mil-
lion bits and is excluded). The total number of WFBI bitstrings
varies from approximately 5700 to 7800 across the 20 FI
experiments. The pass percentages vary from approximately
77% to 100%. The NIST test that failed most often is the Rank
test, which tests for linear dependence among fixed length
substrings in the bitstrings. This may suggest that portions of
the Twister algorithm are not executing, leaving artifacts that
would normally be removed by Twister’s full blown algorithm.
On the other hand, the RandomExcusionsVariant test, which
tests for deviations in the number of expected visits to various
states in a cumulative sum random walk, passed more than
99% of the time. The number of WFBI bitstrings that passed
all NIST tests is surprisingly high.

The bar graphs in Fig. 18(b) provide a different perspective.
The stacked bars show the percentage of WFBI bitstrings that

fail all NIST tests (always less than 0.8%), pass at least 1
NIST test but not all NIST tests (varies between 50% and
58%) and pass all NIST tests (varies between 40% and 48%).
Given these bitstrings are completely different from the fault-
free bitstring, 3% to 4% of the 85 713 fault experiments, or
between 2700 to 3,300 of the full length bitstrings generated,
are deemed to be of high cryptographic strength by the NIST
statistical tests. In contrast, the remaining full length bitstrings,
between 3500 to 4000, fail at least one NIST statistical test.

V. CONCLUSION

This article investigated the impact of static faults on the
execution behavior of a RISC-V microprocessor, using an
FPGA emulation platform. A standard cell implementation of
the microprocessor was created using an ASIC CAD tool flow
and an instrumented design is created in which a fault-injection
circuit is inserted in series with all gate inputs in the netlist.

A scan chain is used to enable emulation of four fault types
at one or more fault locations. A set of FI experiments are
carried out that systematically measure and characterize the
RISC-V execution behavior as faults are enabled. Advanced
FPGA features, including tightly coupled, on-chip, memory-
mapped registers between the processor and PL, DR, and a
runtime monitor, are used to accelerate the FI experiments.

The fault tests were classified according to the amount of
information they leak in the AES experiments, and the cryp-
tographic strength of the generated pseudo-random number
sequence (PRNS) in the Twister experiments. The results indi-
cated that the occurrence of key leakage and cryptographically
weak PRNS, although rare, represent security holes and, there-
fore, need to be addressed. Follow-on research will leverage
the flexibility and efficiency of the proposed FI platform to
investigate other important security algorithms including those
used in asymmetric and post-quantum cryptography, as well
as cost-effective circuit-level alternatives to costly standard
fault-tolerant techniques, such as triple modular redundancy.
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