

DISTRIBUTION STATEMENT A. Approved for public release: distribution is unlimited. SAND2020-0503 C. DoD #R2-PP006-20.

Information Leakage Analysis using Accelerated
Fault Injection Emulation of a RISC-V

Microprocessor

Tom J. Mannos
Advanced CMOS Products/Design

Sandia National Labs
Albuquerque, NM 87185

Email: tjmanno@sandia.gov

Jim Plusquelic
Electrical & Computer Engineering

University of New Mexico
Albuquerque, NM 87110

Email: jimp@ece.unm.edu

Brian Dziki
Laboratory for Advanced Cybersecurity

Research, Department of Defense
Fort G. G. Meade, MD

Email: bjdziki@tycho.ncsc.mil

Abstract—This paper investigates information security issues

that result from the occurrence of faults within a RISC-V
microprocessor. Faults are emulated using a specialized fault
injection circuit which is inserted in series along paths within the
synthesized netlist of the RISC-V microprocessor. The modified
netlist is processed through the Xilinx Vivado implementation flow
to produce a bitstream, which is used to program a Xilinx
UltraScale+ MPSoC FPGA. Our previous work on using an FPGA
to accelerate fault analysis is extended here using advanced FPGA
capabilities including dynamic reconfiguration and high-speed
GPIO between the processor and programmable logic (PL). These
enhancements provide additional speedups and a more
comprehensive investigation of fault types. The advanced
encryption standard (AES) cryptographic engine is executed on
this specialized RISC-V architecture as faults are introduced, one-
at-a-time and in combinations. Ciphertext output is analyzed for
each fault to determine the vulnerabilities inherent in a RISC-V
ASIC implementation, across 2.7 million fault experiments.

Keywords—Reliability analysis, RISC-V, FPGA emulation

I. INTRODUCTION

Tools and techniques to analyze and design reliable systems
continues to be an active area of research. Complex, high
performance microelectronic devices and systems can
malfunction due to the occurrence of a hardware fault(s).
Transient faults are particularly problematic because the system
can, and often does, continue to operate despite the data
corruption introduced by the fault. Corrupt system states
represent vulnerabilities for many types of applications running
on these systems, none more so then security applications.
Cryptographic algorithms internally preserve and protect
confidential information such as secret keys that may in fact be
partially or fully revealed after a fault(s) occurs. An emerging
area in the analysis of fault effects focuses on the design of test
platforms and analysis techniques to identify system
vulnerabilities that potentially lead to the leakage of confidential
information. Once identified, countermeasures can be built into
the design that minimize the likelihood that corrupt system states
expose sensitive information on primary outputs and
communication interfaces

The goal of this research is to pseudo-exhaustively
investigate fault effects within a RISC-V architecture executing

a cryptographic algorithm, to determine any effects that are
detrimental to security, including leaked information associated
with the plaintext or key in the corresponding ciphertext. The
techniques and results presented extend our previous work using
the LEON3 microprocessor running the Advanced Encryption
Standard (AES) 256-bit cryptographic algorithm [1]. The
following enhancements are made in this work over the previous
testing architecture:

 The Berkeley RISC-V (Rocket RV64IMA) micro-
processor [2] replaces the much smaller 32-bit LEON3.

 The use of advanced FPGA features, including dynamic
reconfiguration and a high-speed GPIO communication
interface between the processor (PS) and programmable logic
(PL) components on the Zynq class SoC used as the emulation
platform.

II. FAULT EMULATION USING AN MPSOC FPGA

 A block diagram of the system level architecture is shown
in Fig. 1. The Xilinx ZCU102 evaluation kit is used as the RISC-
V emulation platform [3]. The board includes a Zynq
UltraScale+ MPSoC that is partitioned into a processor side (PS)
and programmable logic side (PL) side. Petalinux [4] was used
to configure a custom Linux operating system (OS) that runs on
one of the 4 ARM Cortex-A53 processors embedded within the
PS side. The Linux OS provides both serial and ethernet
communication channels to a desktop server, as well as access
to a 64 GB SD card for storing data and programming
bitstreams. C programs that run under Linux can access up to 4
GB of DDR4.

The Linux kernel is customized using a PL hardware
configuration that includes an AXI general purpose I/O (GPIO)
port. The port is composed of a 32-bit input and a 32-bit output
register that is memory-mapped into the Linux kernel address
space. A C program can read and write these registers after
obtaining virtual address information using the mmap() library
function (or by opening them using a Linux device driver).

We developed a custom C program that serves as the
controller for the fault testing. The C program implements two
distinct testing strategies; the first called full-reconfiguration is
described in this section while the second, called partial-
reconfiguration, is described in a subsequent section. Both

DISTRIBUTION STATEMENT A. Approved for public release: distribution is unlimited. SAND2020-0503 C. DoD #R2-PP006-20.

strategies communicate to state machines running on the PL side
using the GPIO interface, and both use the processor
configuration access port or PCAP to perform reconfiguration
of the PL side components. PCAP enables either the entire PL
side to be reconfigured or only portions of it.

The C program delivers commands to the Ctrl state machine
(SM) in Fig. 1. The first command instructs the Ctrl SM to
perform a reset on the RISC-V microprocessor. This causes the
RISC-V to reboot and then execute the Advanced Encryption
Standard (AES) algorithm. A ROM within the RISC-V is pre-
configured with a RISC-V executable program that embeds a
256-bit key and a 128-bit plaintext. Once the emulated processor
boots, it executes the binary code in the ROM which passes the
key and plaintext to AES and then prints these components and
the computed ciphertext in hexadecimal to its UART serial port.
The RISC-V also compares the generated ciphertext with a pre-
computed stored copy of the ciphertext and prints ‘Match’ or
‘Fail’. Under fault-free conditions, it then enters an idle state.

As the processor executes the binary code, two state
machines, labeled Serial data collection (SDC) and Address
data collection (ADC) in Fig. 1, monitor the state of the RISC-
V on a clock-by-clock cycle basis. The SDC collects and stores
in block RAM (BRAM) 8-bit ASCII characters that appear on
the RISC-V UART (up to 64 KB), while the ADC monitors and
records activity on the RISC-V internal address bus. A separate
2048-word BRAM stores the 32-bit address bus values but only
in cases when the address bus values change. The number of
serial bytes transferred and the total number of memory accesses
performed by the RISC-V are also recorded and stored. The
serial data and address bus data are transferred to the C program
after the test completes. The generated data files are transferred
to the server for post-processing as described below. Example
data from a fault-free test are shown in Fig. 4.

III. RISC-V SYNTHESIS

The goal of our analysis is to investigate fault behavior of a
RISC-V processor core, in particular, the RISC-V Rocket core
[2], implemented as a standard cell design within a CAD tool
flow. Therefore, the RISC-V shown in Fig. 1 is not synthesized

by Xilinx Vivado directly from an RTL description, but rather is
imported into Vivado as a RTL netlist. The CAD tool flow is
shown in Fig. 2 where we first process the RISC-V RTL using
Cadence Genus [5]. The ASAP7 7nm FinFET predictive PDK
[6][7] is used during RTL synthesis as shown on the left in the
figure. During synthesis, we also insert a scan chain and process
the netlist through place and route to a layout using Cadence
Innovus [8].

The netlist from the layout is extracted and post-processed
as shown by the middle column in Fig. 2 to enable fault testing.
In our previous work [1], we designed a scan-configurable
saboteur cell that can introduce one of four fault types, namely
a stuck-at-0, stuck-at-1, delay, or inversion fault. A schematic of
the saboteur cell is shown in Fig. 3. A saboteur cell is configured
using a fault_active scan chain, which either activates the fault
or provides a fault-free by-pass path through the cell, and a 2-bit
fault type scan chain, which selects from one of the four fault
types. The stuck-faults hold the output signal at a constant value,
while the delay and invert faults introduce a clock cycle delay or
invert the input signal, respectively. The processing shown in
the middle column of Fig. 2 inserts an instance of the saboteur
cell on every input of every gate in the RISC-V netlist.

Fig. 3. Basic saboteur design used to inject faults on each gate input.

Fig. 1. System diagram using on-FPGA CPU to control fault injection.

Fig. 2. Preparation of test circuit for fault emulation.

Fig. 4. Fault-free RISC-V serial output data.

DISTRIBUTION STATEMENT A. Approved for public release: distribution is unlimited. SAND2020-0503 C. DoD #R2-PP006-20.

The right-most column of Fig. 2 shows the process flow
using the Xilinx Vivado FPGA CAD tool [9]. The standard
synthesis-implement-generate-bitstream flow is used for the
full-reconfiguration test strategy described in this section (the
flow used for the partial-reconfiguration test strategy requires
additional steps described later). Fig. 5 shows the P&R layout of
the RISC-V with the system clk highlighted on the left and the
implementation view of the RISC-V on the Zynq UltraScale+
FPGA. The resulting block is 336 µm X 334 µm at 60% cell
utilization. There are 34,196 logic gates, including 5,262
scannable flip-flops, and 2,414 hierarchical ports. Fault
candidates include all combinational inputs and flip-flop data
and scan-enable inputs, 85,714 fault insertion points in total.

A. Testing Process

The testing process is carried out by introducing a fault
through the scan chain and then starting the RISC-V. Each of the
85,714 sites are tested individually by making the fault active
and selecting the fault type using the scan chains, which are
controlled by the C program via the GPIO interface. With four
fault types, the serial and address bus data was collected from
342,856 fault injection tests. In addition, we repeated these
experiments by inserting two faults of the same type in
sequence, i.e., in adjacent saboteur cells in the scan chain. Last,
in order to determine whether the observed fault behaviors are
dependent on the selected key and plaintext, we repeated the
single and dual fault experiments using a second key and
plaintext, with and without memory scrubbing. Therefore, in
total, we collected and analyzed data from 2,742,848 fault
experiments.

The C program automates the testing process. It first obtains
the virtual addresses for the GPIO registers and then implements
three loops. The outer loop sequences through the four fault
types, the middle loop first tests single faults and then allows up
to n sequential faults of the same type to be tested (we limited
our analysis to only two), while the inner loop sequences
through each of the 85,714 fault locations. Once the fault(s) is
inserted, a soft reset is applied, which reboots the RISC-V. The
Ctrl SM from Fig. 1 signals the C program when execution is
complete, or in some cases, halts data collection when the fault
causes the RISC-V to loop indefinitely. The data stored in
BRAMs is then transferred and stored on the SD card.

As a validation experiment, we repeated the experiments
using a special “scrubbing” process whereby we reprogrammed
the PL side before running each test. First, the PL-side bitstream

is transferred to Linux and stored in /lib/firmware. The C
program then makes a system call using the following argument
before carrying out the fault insertion:

echo bitstream > /sys/class/fpga_manager/fpga0/firmware
This causes the fpga manager to read the stored bitstream

and reprogram the entire PL side through the PCAP interface.
The data collected from these experiments is referred to as the
reference data. In experiments where this reprogramming is not
performed, we found that the contents of the internal RISC-V
SRAM impacts fault behavior. The reset operation does not
clear the SRAM and the non-zero SRAM values from the
previous encryption operation change the behavior of some
faults. The reference experiments on the other hand are 100%
reproducible and enabled the identification of fault behaviors
that were SRAM dependent, as we discuss in the following
results sections.

B. Results

We first report on the overhead associated with the fault
injection circuitry and run times. The next sub-section provides
details on the fault behavior, identifying cases in which the key
and/or plaintext are ‘leaked’ through the UART.

1) Run-times and Resource Overheads
The time associated with the one-time processing of the RTL

through fault insertion (left-most and middle columns of Fig. 2)
is small relative to the Vivado synthesis and data collection
times, and therefore are not reported here. The runtime
associated with the standard-flow, i.e., synthesis,
implementation and bitstream generation, is approximately 6
hours. Vivado synthesis was attempted at higher frequencies but
we were ultimately forced to reduce the clock frequency to 24
MHz because of timing violations. For comparison, synthesis
time and resource utilization are much smaller, i.e.,
approximately 2 hours and 20% of the LUTs and FFs,
respectively, when faults are inserted directly into the RTL
(Cadence place and route is not used). However, this approach
does not represent a realistic usage scenario of the RISC-V.

Data collection run time is approximately 250 milliseconds
(ms) per test in the fault-free case. The Ctrl SM allowed the
RISC-V to run for 222 clock cycles at a frequency of 24 MHz,
which accounts for 174 ms. A portion of the remaining 75 ms is
required for the scan and GPIO data transfer operations. Faults
that caused the processor to reboot over-and-over again ran for
several minutes and were eventually halted by the Ctrl SM once
the 64 KB serial buffer filled up or no additional serial bytes
were received after 220 cycles. For the reference experiments, the
PL side was reprogrammed before each test, which required an
additional 250 milliseconds. On average, four tests could be
completed per second without reprogramming, otherwise only
two tests could be completed. Data collection time for one
experiment which tests all 85,714 faults is approximately 6
hours and 12 hours, respectively. This represents a significant
speed-up over simulation, which would take an equivalent of 10
years to simulate each of the four fault types at 1 fault per hour.

2) Faulty Output Results: Reference Experiment
In previous work [1], we classified fault behavior into 22

categories based on the UART output, four of which represent
some form of crypto or memory leakage through the UART port,

Fig. 5. RISC-V layout (left) and Zynq UltraScale+ FPGA version.

DISTRIBUTION STATEMENT A. Approved for public release: distribution is unlimited. SAND2020-0503 C. DoD #R2-PP006-20.

a condition typically referred to as “fail unsafe” [10-14]. A
severity score is assigned from 0 to 7, with 7 representing the
most severe from an information leakage perspective.

We extend the classification scheme here to 26
Severity/Behavior classes as shown by the left-most column in
Table 1. The table gives the results obtained from the reference
experiments where we reprogrammed the FPGA prior to
running each test. We refer to this operation as scrubbing
because the memory is cleared upon reprogramming, enabling
the RISC-V to execute its code without being influenced by
memory artifacts left behind from the previous execution. As
discussed earlier, we repeated the reference experiments under
four conditions, e.g., with 1 fault inserted at-a-time, and with 2
logically adjacent faults inserted simultaneously, and for two
different key/plaintext pairs, identified here as C1 and C2. The
results from these 4 experiments are given in separate columns
in the table. The number of test instances shown on the rows for
each class represent the sum across all 4 fault types, i.e., stuck-
0, stuck-1, delay and invert. With 85,714 faults and 4 fault types,
the sum of the values in any given column is 342,856.

TABLE I. REFERENCE EXPERIMENT COMPARATIVE ANALYSIS WITH
ALL 4 FAULT TYPES COMBINED.

Severity/
Behavior

1 Fault
C1

1 Fault
C2

2 Faults
C1

2 Faults
C2

0: perfect match

perfect/match 267317 267220 243289 243198

1: correct match, with some extra output

correct/match 113 119 120 126

repeat/match 21 21 19 19

2: incorrect output reported as error

agree/error 2 2 1 1

corrupt/error 144 137 156 152

disagree/error 7559 7626 7230 7263

3: benign corrupt output

agree/none 5 5 10 9

correct/error 143 130 101 86

correct/none 314 321 309 320

corrupt 3706 3700 4057 4056

disagree/none 300 305 246 251

empty 17814 17814 31091 31091

repeat/boot 234 234 302 302

repeat/error 2 2 1 1

repeat/pattern 845 841 1106 1090

repeat/txt 46 38 52 41

short 43504 43575 53971 54064

4: incorrect output reported as match

agree/match 154 157 209 210

corrupt/match 28 25 20 18

disagree/match 53 52 54 52

match/error 13 13 9 9

5: corrupt long output indicating possible but unconfirmed
memory leakage

long 195 140 230 185

6: corrupt output with confirmed memory leakage w/ key and/or
plaintext

leak/other 0 0 0 0

leak/crypto 0 16 3 15

7: key and/or plaintext presented as part of the encrypted
message

leak/key 312 331 245 273

leak/txt 28 28 21 20

Similar to our previous results, the largest number of test
instances is associated with class 0. Approximately 78% of the
test executions were not affected by the inserted fault for the 1
Fault case. This drops to approximately 71% for the 2 Fault
testing scenario. Although not shown, this trend continues for
increasingly larger numbers of simultaneously inserted faults.
This is not surprising as intuitively, the probability of incorrect
execution should increase as more and more nodes become
faulty.

In contrast to our previous results [1], the second largest
class is short, which indicates that the output was corrupt and
had length shorter than the correct output. The empty class
comes in 3rd in these results. Both of these faults are considered
benign because no sensitive information is leaked. The number
of instances of false negatives (incorrect output reported as a
match) from severity class 4 are relatively small, as are the false
positives associated with class 3, correct/error.

The most significant distinction between these results and
those reported in [1] is the increase in the number of severity
level 7 test cases. These cases represent real information leakage
where the key and/or plaintext, in whole or in part, are
transmitted through the UART. Interestingly, the number of test
results in this class drops from approximately 0.1% in the single
fault case to 0.07% when 2 faults exist simultaneously.

Also unique to this analysis is the characterization of data
dependent fault behavior. Data dependencies are reflected in the
differences between the C1 and C2 column pairings. The
closeness of the corresponding pairs of values suggests that data
dependencies play only a small role on the RISC-V faulty
execution behavior. However, significant differences occur for
several higher severity classes, namely, class 5, long and class
7, leak/key, indicating the level of leakage can be controlled by
key and/or plaintext selection.

3) Faulty Control Results
As discussed earlier, we additionally monitored activity on

the address bus of the RISC-V in order to better understand its
execution behavior under faulty conditions. Here, we analyze
the address bus behavior and correlate them with the behavior
of the UART output. We expect faulty UART output would
always be accompanied with abnormal address bus behavior,
but this is not always the case. In addition, we found the opposite

DISTRIBUTION STATEMENT A. Approved for public release: distribution is unlimited. SAND2020-0503 C. DoD #R2-PP006-20.

condition does not hold as well, i.e., correct UART output was
not always accompanied by correct execution behavior.

TABLE II. CONTROL FLOW BEHAVIOR

Severity EOP EOP
early

EOP
late

Loop Nonseq Seq

0 264006 771 81 2405 54 0

 1 2 45 3 57 27 0

 2 0 3569 471 3662 3 0

 3 2 149 1042 34778 19450 11492

 4 127 30 18 73 0 0

 5 0 0 0 100 95 0

 6 0 0 0 0 0 0

 7 0 2 3 335 0 0

The address bus is monitored in two ways. First, the total
number of address bus changes is recorded during each test,
which is nominally equal to 52,147. Second, we also record the
last 50 address bus changes and compare them with the expected
fault-free sequence. Table 2 shows the results obtained from the
reference experiment called 1 Fault, C1 in Table 1 (results for
the other experiments are similar). The left-most column gives
the severity level of the test as determined by the behavior on
the UART output. The EOP column gives the number of tests
which produce address sequences that match the expected
sequence in number and value. The non-zero values associated
with severity levels other than 0 indicate that UART output was
corrupt despite the nominal behavior observed from the address
bus. The columns labeled EOP early and EOP late identify test
cases where the number of accesses was less than and greater
than, respectively, the expected number. Again, the non-zero
values in the row with severity 0 indicate that UART output was
correct but execution behavior was abnormal. The column
labeled Loop are tests that produced an address value that
appeared more than once in the last 50. Columns Seq and
Nonseq count test cases where the address values increment by
4 and are in sequence, and cases where this does not occur.

4) Scrubbed Vs. Not Scrubbed
The execution behavior of the RISC-V is dependent in some

cases on the initial state of the SRAM memory. We confirmed
this by repeating the reference experiments but without
reprogramming the FPGA after each test. The results in Table 3
compare the UART output behavior observed for the 1 Fault,
C1 and C2 experiments with the corresponding reference
experiment results from Table 1.

TABLE III. REFERENCE EXPERIMENT (SCRUBBED) VS. NOT
SCRUBBED COMPARATIVE ANALYSIS WITH ALL 4 FAULT TYPES COMBINED.

Severity/
Behavior

Scrubbed
1 Fault,

C1

Scrubbed
1 Fault, C2

Not
Scrubbed

1 Fault, C1

Not
Scrubbed
1 Fault,

C2

0: perfect match

perfect/match 267317 267220 267568 267479

1: correct match, with some extra output

correct/match 113 119 165 167

repeat/match 21 21 59 51

2: incorrect output reported as error

agree/error 2 2 2 2

corrupt/error 144 137 86 85

disagree/error 7559 7626 7556 7596

agree/none 5 5 4 4

correct/error 143 130 144 131

correct/none 314 321 238 250

corrupt 3706 3700 2811 2844

disagree/none 300 305 235 270

empty 17814 17814 16697 16698

repeat/boot 234 234 227 224

repeat/error 2 2 4 4

repeat/pattern 845 841 1181 1161

repeat/txt 46 38 90 90

short 43504 43575 40671 40639

4: incorrect output reported as match

agree/match 154 157 183 183

corrupt/match 28 25 9 8

disagree/match 53 52 59 55

match/error 13 13 1591 1594

5: corrupt long output indicating possible but unconfirmed
memory leakage

long 195 140 2082 2066

6: corrupt output with confirmed memory leakage w/ key and/or
plaintext

leak/other 0 0 42 59

leak/crypto 0 16 792 819

7: key and/or plaintext presented as part of the encrypted message

leak/key 312 331 348 365

leak/txt 28 28 28 28

The differences between columns 2 and 4 and columns 3 and
5 confirm that the starting state of the SRAM impacts the RISC-
V execution. In some cases the differences are relatively small,
e.g., the perfect match row pairs differ by less than 0.1%, while
other show much larger differences, e.g., the bolded rows in
severity levels 4, 5 and 6. The large differences in these higher
severity classes exacerbate the concerns discussed earlier with
respect to data dependencies, i.e., the amount of leakage is
dependent on the operational state.

DISTRIBUTION STATEMENT A. Approved for public release: distribution is unlimited. SAND2020-0503 C. DoD #R2-PP006-20.

IV. ON-GOING WORK: PARTIAL DYNAMIC RECONFIGURATION

As discussed earlier, the reference design data collection
process reconfigured the PL-side before each fault test using
PCAP. Although PCAP provides fast reconfiguration, on order
of 250 milliseconds, full reconfiguration does not address the
size limits imposed by the fault circuitry when embedded within
large designs. The 85,714 copies of the Saboteur circuit shown
in Fig. 3 consume significant FPGA resources, reducing those
available for the RISC-V implementation itself. An alternative
strategy is to build a reconfigurable design where only one fault
type at each fault site is included in the implementation, with the
option of swapping different fault types in and out at run-time.
The resource savings is substantial because the Saboteur cell is
now much smaller because the other fault types, the 4-to-1 MUX
and the fault type scan chain from Fig. 3 are eliminated.

Xilinx calls this methodology dynamic partial
reconfiguration (DPR) and provides supports for it in their
Vivado CAD tool using a bottom-up design flow methodology
depicted in Fig. 6. The single project design flow is replaced
with a set of projects labeled ‘1’ along the bottom of the figure.
The static design on the left includes all design components that
are not reprogrammable. The modules shown on the bottom
right include components that can be reprogrammed with other
modules in the set. In our design, we create 181 DPR regions
and create four modules for each of these regions, one for each
fault type. The bottom-up synthesis flow allows the static design
and all of the modules to be synthesized in parallel, and then
saved as design checkpoints (DCP).

Once the DCPs are available, the implementation and
bitstreams for the unified, full design can be created (labeled ‘2’
in the figure). The static design components are ‘locked down’
as shown by the labels in Fig. 7, and a set of regions are created
called pblocks. Vivado is used to place and route each of the
modules, and their variants, within these regions. A static
bitstream as well as a set of partial bitstreams are automatically
generated in the final step of this process. The bitstreams are
transferred to the Linux OS on the ZCU102, and PCAP is used
to configure the regions with modules that implement each of
the fault types.

We implemented the tool flow shown in Fig. 6 but have not
yet been successful at creating a fully routed design. The big
challenge associated with the RISC-V design is not the number
of logic gates but rather the large fan-out networks that exist in
the structural netlist. We hope to complete this design in the near
future and demonstrate its capabilities. For example, any one of
the individual regions can be reprogrammed in approximately 1
ms. Therefore, DPR time overhead is expected to be negligible.

V. CONCLUSION

This paper investigates the impact of static faults on the
execution behavior of a RISC-V microprocessor, using an
FPGA emulation platform. A standard cell implementation of
the RISC-V is created using an ASIC CAD tool flow to obtain a
realistic netlist of the RISC-V. A Saboteur circuit is inserted in
series with all gate inputs in the netlist. A scan chain is used to
activate one of four fault types at one or more fault locations. A
set of experiments are carried out that systematically measure
the RISC-V execution behavior. The fault tests are classified

according to the amount of information they leak. Advanced
FPGA features are used to accelerate the fault testing process.

REFERENCES
[1] T. J. Mannos, B. Dziki, M. Sharif, "Fault Testing a Synthesizable

Embedded Processor at Gate Level using UltraScale FPGA Emulation"
International Symposium on Field-Programmable Gate Arrays, 2019.

[2] https://github.com/sergeykhbr/riscv_vhdl/blob/v2.0/rocket_soc/rocketlib

[3] https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html

[4] https://www.xilinx.com/products/design-tools/embedded-
software/petalinux-sdk.html

[5] https://www.cadence.com/en_US/home/tools/digital-design-and-
signoff/synthesis/genus-synthesis-solution.html

[6] L. T. Clark, V. Vashishtha, L. Shifren, A. Gujja, S. Sinha, B. Cline, C.
Ramamurthya, G. Yeric, "ASAP7: A 7-nm FinFET Predictive Process
Design Kit," Microelectronics Journal, vol. 53, pp. 105-115, July 2016.

[7] http://asap.asu.edu/asap/

[8] https://www.cadence.com/en_US/home/tools/digital-design-and-
signoff/soc-implementation-and-floorplanning/innovus-implementation-
system.html

[9] https://www.xilinx.com/products/design-tools/vivado.html

[10] D. Shaw, D. Al-Khalili and C. Rozon, "Fault Security Analysis of CMOS
VLSI Circuits using Defect-Injectable VHDL Models," Integration, the
VLSI journal, vol. 32, no. 1-2, pp. 77-97, 2002.

[11] F. Ghaffari, F. Sahraoi, M. Benkhelifa and B. Granado, "Fast SRAM -
FPGA fault injection platform based on dynamic partial reconfiguration,"
in Microelectronics (ICM), IEEE, 2014.

[12] J. Gracia, J. C. Baraza, D. Gil and P. J. Gil, "Comparison and application
of different VHDL-based fault injection techniques," Proc. IEEE Int’l
Symposium on Defect and Fault Tolerance in VLSI Systems, pp. 233-241,
2001.

[13] E. Mojtaba, "A fast, flexible, and easy-to-develop FPGA-based fault
injection technique," Microelectronics Reliability, vol. 54, no. 5, 2014.

[14] M. R. S. Reddy and R. S. Babu, "High speed fault injection tool (FITO)
implemented with VHDL on FPGA for testing fault tolerant designs,"
Int’l Journal of Modern Engineering Research, vol. 3, no. 5, pp. 2894-
2900, 2013.

Fig. 7. Implementation view of locked full design.

Fig. 6. Xilinx Vivado bottom-up dynamic partial reconfiguration tool
flow.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. This paper
describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the

U.S. Department of Energy or the United States Government. SAND2020-0503 C. DoD #R2-PP006-20.

