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Abstract—This paper investigates information security issues 

that result from the occurrence of faults within a RISC-V 
microprocessor. Faults are emulated using a specialized fault 
injection circuit which is inserted in series along paths within the 
synthesized netlist of the RISC-V microprocessor. The modified 
netlist is processed through the Xilinx Vivado implementation flow 
to produce a bitstream, which is used to program a Xilinx 
UltraScale+ MPSoC FPGA. Our previous work on using an FPGA 
to accelerate fault analysis is extended here using advanced FPGA 
capabilities including dynamic reconfiguration and high-speed 
GPIO between the processor and programmable logic (PL). These 
enhancements provide additional speedups and a more 
comprehensive investigation of fault types. The advanced 
encryption standard (AES) cryptographic engine is executed on 
this specialized RISC-V architecture as faults are introduced, one-
at-a-time and in combinations. Ciphertext output is analyzed for 
each fault to determine the vulnerabilities inherent in a RISC-V 
ASIC implementation, across 2.7 million fault experiments. 

Keywords—Reliability analysis, RISC-V, FPGA emulation 

I. INTRODUCTION 

Tools and techniques to analyze and design reliable systems 
continues to be an active area of research. Complex, high 
performance microelectronic devices and systems can 
malfunction due to the occurrence of a hardware fault(s). 
Transient faults are particularly problematic because the system 
can, and often does, continue to operate despite the data 
corruption introduced by the fault. Corrupt system states 
represent vulnerabilities for many types of applications running 
on these systems, none more so then security applications. 
Cryptographic algorithms internally preserve and protect 
confidential information such as secret keys that may in fact be 
partially or fully revealed after a fault(s) occurs. An emerging 
area in the analysis of fault effects focuses on the design of test 
platforms and analysis techniques to identify system 
vulnerabilities that potentially lead to the leakage of confidential 
information. Once identified, countermeasures can be built into 
the design that minimize the likelihood that corrupt system states 
expose sensitive information on primary outputs and 
communication interfaces 

The goal of this research is to pseudo-exhaustively 
investigate fault effects within a RISC-V architecture executing 

a cryptographic algorithm, to determine any effects that are 
detrimental to security, including leaked information associated 
with the plaintext or key in the corresponding ciphertext. The 
techniques and results presented extend our previous work using 
the LEON3 microprocessor running the Advanced Encryption 
Standard (AES) 256-bit cryptographic algorithm [1]. The 
following enhancements are made in this work over the previous 
testing architecture: 

 The Berkeley RISC-V (Rocket RV64IMA) micro-
processor [2] replaces the much smaller 32-bit LEON3. 

 The use of advanced FPGA features, including dynamic 
reconfiguration and a high-speed GPIO communication 
interface between the processor (PS) and programmable logic 
(PL) components on the Zynq class SoC used as the emulation 
platform. 

II. FAULT EMULATION USING AN MPSOC FPGA 

 A block diagram of the system level architecture is shown 
in Fig. 1. The Xilinx ZCU102 evaluation kit is used as the RISC-
V emulation platform [3]. The board includes a Zynq 
UltraScale+ MPSoC that is partitioned into a processor side (PS) 
and programmable logic side (PL) side. Petalinux [4] was used 
to configure a custom Linux operating system (OS) that runs on 
one of the 4 ARM Cortex-A53 processors embedded within the 
PS side. The Linux OS provides both serial and ethernet 
communication channels to a desktop server, as well as access 
to a 64 GB SD card for storing data and programming 
bitstreams. C programs that run under Linux can access up to 4 
GB of DDR4.  

The Linux kernel is customized using a PL hardware 
configuration that includes an AXI general purpose I/O (GPIO) 
port. The port is composed of a 32-bit input and a 32-bit output 
register that is memory-mapped into the Linux kernel address 
space. A C program can read and write these registers after 
obtaining virtual address information using the mmap() library 
function (or by opening them using a Linux device driver).  

We developed a custom C program that serves as the 
controller for the fault testing. The C program implements two 
distinct testing strategies; the first called full-reconfiguration is 
described in this section while the second, called partial-
reconfiguration, is described in a subsequent section. Both 
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strategies communicate to state machines running on the PL side 
using the GPIO interface, and both use the processor 
configuration access port or PCAP to perform reconfiguration 
of the PL side components. PCAP enables either the entire PL 
side to be reconfigured or only portions of it. 

The C program delivers commands to the Ctrl state machine 
(SM) in Fig. 1. The first command instructs the Ctrl SM to 
perform a reset on the RISC-V microprocessor. This causes the 
RISC-V to reboot and then execute the Advanced Encryption 
Standard (AES) algorithm. A ROM within the RISC-V is pre-
configured with a RISC-V executable program that embeds a 
256-bit key and a 128-bit plaintext. Once the emulated processor 
boots, it executes the binary code in the ROM which passes the 
key and plaintext to AES and then prints these components and 
the computed ciphertext in hexadecimal to its UART serial port. 
The RISC-V also compares the generated ciphertext with a pre-
computed stored copy of the ciphertext and prints ‘Match’ or 
‘Fail’. Under fault-free conditions, it then enters an idle state. 

As the processor executes the binary code, two state 
machines, labeled Serial data collection (SDC) and Address 
data collection (ADC) in Fig. 1, monitor the state of the RISC-
V on a clock-by-clock cycle basis. The SDC collects and stores 
in block RAM (BRAM) 8-bit ASCII characters that appear on 
the RISC-V UART (up to 64 KB), while the ADC monitors and 
records activity on the RISC-V internal address bus. A separate 
2048-word BRAM stores the 32-bit address bus values but only 
in cases when the address bus values change. The number of 
serial bytes transferred and the total number of memory accesses 
performed by the RISC-V are also recorded and stored. The 
serial data and address bus data are transferred to the C program 
after the test completes. The generated data files are transferred 
to the server for post-processing as described below. Example 
data from a fault-free test are shown in Fig. 4. 

III. RISC-V SYNTHESIS 

The goal of our analysis is to investigate fault behavior of a 
RISC-V processor core, in particular, the RISC-V Rocket core 
[2], implemented as a standard cell design within a CAD tool 
flow. Therefore, the RISC-V shown in Fig. 1 is not synthesized 

by Xilinx Vivado directly from an RTL description, but rather is 
imported into Vivado as a RTL netlist. The CAD tool flow is 
shown in Fig. 2 where we first process the RISC-V RTL using 
Cadence Genus [5]. The ASAP7 7nm FinFET predictive PDK 
[6][7] is used during RTL synthesis as shown on the left in the 
figure. During synthesis, we also insert a scan chain and process 
the netlist through place and route to a layout using Cadence 
Innovus [8].  

The netlist from the layout is extracted and post-processed 
as shown by the middle column in Fig. 2 to enable fault testing. 
In our previous work [1], we designed a scan-configurable 
saboteur cell that can introduce one of four fault types, namely 
a stuck-at-0, stuck-at-1, delay, or inversion fault. A schematic of 
the saboteur cell is shown in Fig. 3. A saboteur cell is configured 
using a fault_active scan chain, which either activates the fault 
or provides a fault-free by-pass path through the cell, and a 2-bit 
fault type scan chain, which selects from one of the four fault 
types. The stuck-faults hold the output signal at a constant value, 
while the delay and invert faults introduce a clock cycle delay or 
invert the input signal, respectively. The processing shown in 
the middle column of Fig. 2 inserts an instance of the saboteur 
cell on every input of every gate in the RISC-V netlist. 

Fig. 3. Basic saboteur design used to inject faults on each gate input. 

Fig. 1. System diagram using on-FPGA CPU to control fault injection. 

Fig. 2. Preparation of test circuit for fault emulation. 

Fig. 4. Fault-free RISC-V serial output data. 



 

DISTRIBUTION  STATEMENT A. Approved  for  public  release: distribution  is unlimited. SAND2020-0503 C. DoD #R2-PP006-20. 

The right-most column of Fig. 2 shows the process flow 
using the Xilinx Vivado FPGA CAD tool [9]. The standard 
synthesis-implement-generate-bitstream flow is used for the 
full-reconfiguration test strategy described in this section (the 
flow used for the partial-reconfiguration test strategy requires 
additional steps described later). Fig. 5 shows the P&R layout of 
the RISC-V with the system clk highlighted on the left and the 
implementation view of the RISC-V on the Zynq UltraScale+ 
FPGA. The resulting block is 336 µm X 334 µm at 60% cell 
utilization. There are 34,196 logic gates, including 5,262 
scannable flip-flops, and 2,414 hierarchical ports. Fault 
candidates include all combinational inputs and flip-flop data 
and scan-enable inputs, 85,714 fault insertion points in total. 

A. Testing Process 

The testing process is carried out by introducing a fault 
through the scan chain and then starting the RISC-V. Each of the 
85,714 sites are tested individually by making the fault active 
and selecting the fault type using the scan chains, which are 
controlled by the C program via the GPIO interface. With four 
fault types, the serial and address bus data was collected from 
342,856 fault injection tests. In addition, we repeated these 
experiments by inserting two faults of the same type in 
sequence, i.e., in adjacent saboteur cells in the scan chain. Last, 
in order to determine whether the observed fault behaviors are 
dependent on the selected key and plaintext, we repeated the 
single and dual fault experiments using a second key and 
plaintext, with and without memory scrubbing. Therefore, in 
total, we collected and analyzed data from 2,742,848 fault 
experiments. 

The C program automates the testing process. It first obtains 
the virtual addresses for the GPIO registers and then implements 
three loops. The outer loop sequences through the four fault 
types, the middle loop first tests single faults and then allows up 
to n sequential faults of the same type to be tested (we limited 
our analysis to only two), while the inner loop sequences 
through each of the 85,714 fault locations. Once the fault(s) is 
inserted, a soft reset is applied, which reboots the RISC-V. The 
Ctrl SM from Fig. 1 signals the C program when execution is 
complete, or in some cases, halts data collection when the fault 
causes the RISC-V to loop indefinitely. The data stored in 
BRAMs is then transferred and stored on the SD card. 

As a validation experiment, we repeated the experiments 
using a special “scrubbing” process whereby we reprogrammed 
the PL side before running each test. First, the PL-side bitstream 

is transferred to Linux and stored in /lib/firmware. The C 
program then makes a system call using the following argument 
before carrying out the fault insertion: 

echo bitstream > /sys/class/fpga_manager/fpga0/firmware 
This causes the fpga manager to read the stored bitstream 

and reprogram the entire PL side through the PCAP interface. 
The data collected from these experiments is referred to as the 
reference data. In experiments where this reprogramming is not 
performed, we found that the contents of the internal RISC-V 
SRAM impacts fault behavior. The reset operation does not 
clear the SRAM and the non-zero SRAM values from the 
previous encryption operation change the behavior of some 
faults. The reference experiments on the other hand are 100% 
reproducible and enabled the identification of fault behaviors 
that were SRAM dependent, as we discuss in the following 
results sections. 

B. Results 

We first report on the overhead associated with the fault 
injection circuitry and run times. The next sub-section provides 
details on the fault behavior, identifying cases in which the key 
and/or plaintext are ‘leaked’ through the UART. 

1) Run-times and Resource Overheads 
The time associated with the one-time processing of the RTL 

through fault insertion (left-most and middle columns of Fig. 2) 
is small relative to the Vivado synthesis and data collection 
times, and therefore are not reported here. The runtime 
associated with the standard-flow, i.e., synthesis, 
implementation and bitstream generation, is approximately 6 
hours. Vivado synthesis was attempted at higher frequencies but 
we were ultimately forced to reduce the clock frequency to 24 
MHz because of timing violations. For comparison, synthesis 
time and resource utilization are much smaller, i.e., 
approximately 2 hours and 20% of the LUTs and FFs, 
respectively, when faults are inserted directly into the RTL 
(Cadence place and route is not used). However, this approach 
does not represent a realistic usage scenario of the RISC-V. 

Data collection run time is approximately 250 milliseconds 
(ms) per test in the fault-free case. The Ctrl SM allowed the 
RISC-V to run for 222 clock cycles at a frequency of 24 MHz, 
which accounts for 174 ms. A portion of the remaining 75 ms is 
required for the scan and GPIO data transfer operations. Faults 
that caused the processor to reboot over-and-over again ran for 
several minutes and were eventually halted by the Ctrl SM once 
the 64 KB serial buffer filled up or no additional serial bytes 
were received after 220 cycles. For the reference experiments, the 
PL side was reprogrammed before each test, which required an 
additional 250 milliseconds. On average, four tests could be 
completed per second without reprogramming, otherwise only 
two tests could be completed. Data collection time for one 
experiment which tests all 85,714 faults is approximately 6 
hours and 12 hours, respectively. This represents a significant 
speed-up over simulation, which would take an equivalent of 10 
years to simulate each of the four fault types at 1 fault per hour. 

2) Faulty Output Results: Reference Experiment 
In previous work [1], we classified fault behavior into 22 

categories based on the UART output, four of which represent 
some form of crypto or memory leakage through the UART port, 

Fig. 5. RISC-V layout (left) and Zynq UltraScale+ FPGA version. 
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a condition typically referred to as “fail unsafe” [10-14]. A 
severity score is assigned from 0 to 7, with 7 representing the 
most severe from an information leakage perspective.  

We extend the classification scheme here to 26 
Severity/Behavior classes as shown by the left-most column in 
Table 1. The table gives the results obtained from the reference 
experiments where we reprogrammed the FPGA prior to 
running each test. We refer to this operation as scrubbing 
because the memory is cleared upon reprogramming, enabling 
the RISC-V to execute its code without being influenced by 
memory artifacts left behind from the previous execution. As 
discussed earlier, we repeated the reference experiments under 
four conditions, e.g., with 1 fault inserted at-a-time, and with 2 
logically adjacent faults inserted simultaneously, and for two 
different key/plaintext pairs, identified here as C1 and C2. The 
results from these 4 experiments are given in separate columns 
in the table. The number of test instances shown on the rows for 
each class represent the sum across all 4 fault types, i.e., stuck-
0, stuck-1, delay and invert. With 85,714 faults and 4 fault types, 
the sum of the values in any given column is 342,856. 

TABLE I.  REFERENCE EXPERIMENT COMPARATIVE ANALYSIS WITH 
ALL 4 FAULT TYPES COMBINED. 

Severity/ 
Behavior 

1 Fault 
C1 

1 Fault 
C2 

2 Faults 
C1 

2 Faults 
C2 

0: perfect match 

perfect/match 267317 267220 243289 243198 

1: correct match, with some extra output 

correct/match 113 119 120 126 

repeat/match 21 21 19 19 

2: incorrect output reported as error 

agree/error 2 2 1 1 

corrupt/error 144 137 156 152 

disagree/error 7559 7626 7230 7263 

3: benign corrupt output 

agree/none 5 5 10 9 

correct/error 143 130 101 86 

correct/none 314 321 309 320 

corrupt 3706 3700 4057 4056 

disagree/none 300 305 246 251 

empty 17814 17814 31091 31091 

repeat/boot 234 234 302 302 

repeat/error 2 2 1 1 

repeat/pattern 845 841 1106 1090 

repeat/txt 46 38 52 41 

short 43504 43575 53971 54064 

4: incorrect output reported as match 

agree/match 154 157 209 210 

corrupt/match 28 25 20 18 

disagree/match 53 52 54 52 

match/error 13 13 9 9 

5: corrupt long output indicating possible but unconfirmed 
memory leakage 

long 195 140 230 185 

6: corrupt output with confirmed memory leakage w/ key and/or 
plaintext 

leak/other 0 0 0 0 

leak/crypto 0 16 3 15 

7: key and/or plaintext presented as part of the encrypted 
message 

leak/key 312 331 245 273 

leak/txt 28 28 21 20 

Similar to our previous results, the largest number of test 
instances is associated with class 0. Approximately 78% of the 
test executions were not affected by the inserted fault for the 1 
Fault case. This drops to approximately 71% for the 2 Fault 
testing scenario. Although not shown, this trend continues for 
increasingly larger numbers of simultaneously inserted faults. 
This is not surprising as intuitively, the probability of incorrect 
execution should increase as more and more nodes become 
faulty. 

In contrast to our previous results [1], the second largest 
class is short, which indicates that the output was corrupt and 
had length shorter than the correct output. The empty class 
comes in 3rd in these results. Both of these faults are considered 
benign because no sensitive information is leaked. The number 
of instances of false negatives (incorrect output reported as a 
match) from severity class 4 are relatively small, as are the false 
positives associated with class 3, correct/error. 

The most significant distinction between these results and 
those reported in [1] is the increase in the number of severity 
level 7 test cases. These cases represent real information leakage 
where the key and/or plaintext, in whole or in part, are 
transmitted through the UART. Interestingly, the number of test 
results in this class drops from approximately 0.1% in the single 
fault case to 0.07% when 2 faults exist simultaneously. 

Also unique to this analysis is the characterization of data 
dependent fault behavior. Data dependencies are reflected in the 
differences between the C1 and C2 column pairings. The 
closeness of the corresponding pairs of values suggests that data 
dependencies play only a small role on the RISC-V faulty 
execution behavior. However, significant differences occur for 
several higher severity classes, namely, class 5, long and class 
7, leak/key, indicating the level of leakage can be controlled by 
key and/or plaintext selection. 

3) Faulty Control Results 
As discussed earlier, we additionally monitored activity on 

the address bus of the RISC-V in order to better understand its 
execution behavior under faulty conditions. Here, we analyze 
the address bus behavior and correlate them with the behavior 
of the UART output. We expect faulty UART output would 
always be accompanied with abnormal address bus behavior, 
but this is not always the case. In addition, we found the opposite 
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condition does not hold as well, i.e., correct UART output was 
not always accompanied by correct execution behavior. 

TABLE II.  CONTROL FLOW BEHAVIOR 

Severity EOP EOP 
early 

EOP 
late 

Loop Nonseq Seq 

0 264006 771 81 2405 54 0 

 1 2 45 3 57 27 0 

 2 0 3569 471 3662 3 0 

 3 2 149 1042 34778 19450 11492 

 4 127 30 18 73 0 0 

 5 0 0 0 100 95 0 

 6 0 0 0 0 0 0 

 7 0 2 3 335 0 0 

The address bus is monitored in two ways. First, the total 
number of address bus changes is recorded during each test, 
which is nominally equal to 52,147. Second, we also record the 
last 50 address bus changes and compare them with the expected 
fault-free sequence. Table 2 shows the results obtained from the 
reference experiment called 1 Fault, C1 in Table 1 (results for 
the other experiments are similar). The left-most column gives 
the severity level of the test as determined by the behavior on 
the UART output. The EOP column gives the number of tests 
which produce address sequences that match the expected 
sequence in number and value. The non-zero values associated 
with severity levels other than 0 indicate that UART output was 
corrupt despite the nominal behavior observed from the address 
bus. The columns labeled EOP early and EOP late identify test 
cases where the number of accesses was less than and greater 
than, respectively, the expected number. Again, the non-zero 
values in the row with severity 0 indicate that UART output was 
correct but execution behavior was abnormal. The column 
labeled Loop are tests that produced an address value that 
appeared more than once in the last 50. Columns Seq and 
Nonseq count test cases where the address values increment by 
4 and are in sequence, and cases where this does not occur. 

4) Scrubbed Vs. Not Scrubbed 
The execution behavior of the RISC-V is dependent in some 

cases on the initial state of the SRAM memory. We confirmed 
this by repeating the reference experiments but without 
reprogramming the FPGA after each test. The results in Table 3 
compare the UART output behavior observed for the 1 Fault, 
C1 and C2 experiments with the corresponding reference 
experiment results from Table 1. 

TABLE III.  REFERENCE EXPERIMENT (SCRUBBED) VS. NOT 
SCRUBBED COMPARATIVE ANALYSIS WITH ALL 4 FAULT TYPES COMBINED. 

Severity/ 
Behavior 

Scrubbed  
1 Fault, 

C1 

Scrubbed 
1 Fault, C2 

Not 
Scrubbed 

1 Fault, C1 

Not 
Scrubbed 
1 Fault, 

C2 

0: perfect match 

perfect/match 267317 267220 267568 267479 

1: correct match, with some extra output 

correct/match 113 119 165 167 

repeat/match 21 21 59 51 

2: incorrect output reported as error 

agree/error 2 2 2 2 

corrupt/error 144 137 86 85 

disagree/error 7559 7626 7556 7596 

agree/none 5 5 4 4 

correct/error 143 130 144 131 

correct/none 314 321 238 250 

corrupt 3706 3700 2811 2844 

disagree/none 300 305 235 270 

empty 17814 17814 16697 16698 

repeat/boot 234 234 227 224 

repeat/error 2 2 4 4 

repeat/pattern 845 841 1181 1161 

repeat/txt 46 38 90 90 

short 43504 43575 40671 40639 

4: incorrect output reported as match 

agree/match 154 157 183 183 

corrupt/match 28 25 9 8 

disagree/match 53 52 59 55 

match/error 13 13 1591 1594 

5: corrupt long output indicating possible but unconfirmed 
memory leakage 

long 195 140 2082 2066 

6: corrupt output with confirmed memory leakage w/ key and/or 
plaintext 

leak/other 0 0 42 59 

leak/crypto 0 16 792 819 

7: key and/or plaintext presented as part of the encrypted message 

leak/key 312 331 348 365 

leak/txt 28 28 28 28 

The differences between columns 2 and 4 and columns 3 and 
5 confirm that the starting state of the SRAM impacts the RISC-
V execution. In some cases the differences are relatively small, 
e.g., the perfect match row pairs differ by less than 0.1%, while 
other show much larger differences, e.g., the bolded rows in 
severity levels 4, 5 and 6. The large differences in these higher 
severity classes exacerbate the concerns discussed earlier with 
respect to data dependencies, i.e., the amount of leakage is 
dependent on the operational state. 
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IV. ON-GOING WORK: PARTIAL DYNAMIC RECONFIGURATION 

As discussed earlier, the reference design data collection 
process reconfigured the PL-side before each fault test using 
PCAP. Although PCAP provides fast reconfiguration, on order 
of 250 milliseconds, full reconfiguration does not address the 
size limits imposed by the fault circuitry when embedded within 
large designs. The 85,714 copies of the Saboteur circuit shown 
in Fig. 3 consume significant FPGA resources, reducing those 
available for the RISC-V implementation itself. An alternative 
strategy is to build a reconfigurable design where only one fault 
type at each fault site is included in the implementation, with the 
option of swapping different fault types in and out at run-time. 
The resource savings is substantial because the Saboteur cell is 
now much smaller because the other fault types, the 4-to-1 MUX 
and the fault type scan chain from Fig. 3 are eliminated.  

Xilinx calls this methodology dynamic partial 
reconfiguration (DPR) and provides supports for it in their 
Vivado CAD tool using a bottom-up design flow methodology 
depicted in Fig. 6. The single project design flow is replaced 
with a set of projects labeled ‘1’ along the bottom of the figure. 
The static design on the left includes all design components that 
are not reprogrammable. The modules shown on the bottom 
right include components that can be reprogrammed with other 
modules in the set. In our design, we create 181 DPR regions 
and create four modules for each of these regions, one for each 
fault type. The bottom-up synthesis flow allows the static design 
and all of the modules to be synthesized in parallel, and then 
saved as design checkpoints (DCP).  

Once the DCPs are available, the implementation and 
bitstreams for the unified, full design can be created (labeled ‘2’ 
in the figure). The static design components are ‘locked down’ 
as shown by the labels in Fig. 7, and a set of regions are created 
called pblocks. Vivado is used to place and route each of the 
modules, and their variants, within these regions. A static 
bitstream as well as a set of partial bitstreams are automatically 
generated in the final step of this process. The bitstreams are 
transferred to the Linux OS on the ZCU102, and PCAP is used 
to configure the regions with modules that implement each of 
the fault types. 

We implemented the tool flow shown in Fig. 6 but have not 
yet been successful at creating a fully routed design. The big 
challenge associated with the RISC-V design is not the number 
of logic gates but rather the large fan-out networks that exist in 
the structural netlist. We hope to complete this design in the near 
future and demonstrate its capabilities. For example, any one of 
the individual regions can be reprogrammed in approximately 1 
ms. Therefore, DPR time overhead is expected to be negligible. 

V. CONCLUSION 

This paper investigates the impact of static faults on the 
execution behavior of a RISC-V microprocessor, using an 
FPGA emulation platform. A standard cell implementation of 
the RISC-V is created using an ASIC CAD tool flow to obtain a 
realistic netlist of the RISC-V. A Saboteur circuit is inserted in 
series with all gate inputs in the netlist. A scan chain is used to 
activate one of four fault types at one or more fault locations. A 
set of experiments are carried out that systematically measure 
the RISC-V execution behavior. The fault tests are classified 

according to the amount of information they leak. Advanced 
FPGA features are used to accelerate the fault testing process. 
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Fig. 7. Implementation view of locked full design. 

Fig. 6. Xilinx Vivado bottom-up dynamic partial reconfiguration tool
flow. 
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