
Abstract:  Cryptographic  and  authentication  applications  in  
ASICs and FPGAs, as well as codes for the activation of on-chip  
features, require the use of embedded secret information. The  
emergence and unconstrained growth of the mobile computing 
and communications spaces is placing an increasing demand on  
existing  methods  of  generating  and  safeguarding  this  secret  
data.  The  generation  of  secret  bitstrings  using  physical  
unclonable functions, or PUFs, holds the promise of replacing  
older,  conventional,  e.g.,  EPROM-based  methods,  and  offers  
several  distrinct  advantages,  including the  elimination  of  the  
need  to  store  the  bitstring  in  costly,  specialized  non-volatile  
memory, and a measurable increase in the number of random 
bits that can be generated. This paper presents details of an on-
chip PUF engine called the Hardware-Entangled Delay PUF, or  
HELP, and introduces a new bit generation technique using this  
PUF. HELP leverages the natural variations that occur in the  
path delays of a core macro on a chip to create a unique, stable,  
and  random bitstring.  We  evaluate  several  statistical  quality  
metrics of the bitstrings generated with this method on a set of  
30 FPGA boards across a temperature range of 0 to 70°C and  
an operating voltage range of  ±10% of nominal, and propose 
an  error-avoiding  scheme  that  offers  measurably  improved  
protection against errors in the resulting bitstring.

 1.  Introduction
Physical  unclonable  functions  (PUFs)  are  becoming 

increasingly commonly-used mechanisms for generating random 
numbers for a wide range of security-related applications. PUFs 
are designed to be able to reliably differentiate one chip from 
another  by  leveraging  the  random  variations  in  physical 
properties  of  these  chips,  and  are  intended to  be  difficult  or 
impossible  to  duplicate  or  clone,  even  for  the  manufacturer. 
Process  variations  are  effectively  impossible  to  control  or 
eliminate; however, they can be measured. PUFs can differ in 
the  specific  properties  that  they  seek  to  exploit.  However, 
physical  properties  commonly  targeted  include  propagation 
delay, metal resistance, transistor drive strength, and mismatches 
between complementary transistors. A commonality among most 
PUFs is  that  they generate  bitstrings by comparing measured 
quantities, in which variations occur between chips, and produce 
bitstrings based on the results of those comparisons. 

The  quality  of  the  bitstrings  produced  by  a  PUF  is  an 
important  measure  of  its  usability.  Generally,  however,  three 
criteria are considered to be essential for a PUF to be used for 
such applications as encryption: 1) the bitstrings produced for 
each chip must be sufficiently  unique to distinguish each chip 
from every other, 2) the bitstrings must be random, making them 
difficult  for  an  adversary  to  model  and  predict,  and  3)  the 
bitstring for any one chip must be  stable over time and across 
varying environmental conditions. 

In this paper, we present a detailed examination of a PUF, 
called HELP, that is based upon path delay variations. The novel 
features that  differentiate HELP from other delay-based PUFs 
include:  1)  the  capability  of  comparing  paths  of  different 
lengths, 2) eliminating the need for specially designed, layout-
dependent  delay elements that  impose a high area cost  while 

providing a relatively small amount of entropy, 3) a minimally 
invasive design with low area and performance impact, and 4) a 
hardware-entangled  PUF engine  requiring  no  external  testing 
resources. HELP enjoys the added advantage of the large set of 
paths  typically  found  in  logic  macros  such  as  the  Advanced 
Encryption Standard (AES). This large source of entropy allows 
HELP  to  generate  reasonably  long  bitstrings,  while  being 
extremely conservative in the paths selected for bit generation. 
The large availability of paths also enables unique opportunities 
for achieving bit stability and avoiding errors. 

Unique Contributions of this Paper: The following are the 
unique and novel contributions that are proposed and detailed in 
this paper: 

• A novel  modulus-based  technique  that  permits  the 
direct  comparison of  delay measurements  from logic 
paths of widely varying lengths

• A  path  delay  measurement  binning  scheme  that 
improves  tolerance  of  noise,  uncertainty,  and  small 
environmental changes

• A fault-tolerant  bit  generation  technique  that  offers 
robustness  and  resilience  to  errors  caused  by 
environmental conditions and measurement uncertainty

To prove the bit  generation technique  put  forward in this 
paper, and to demonstrate its usefulness and effectiveness, we 
make use of a complete, functional FPGA-based implementation 
of the underlying PUF on a set of 30 V2Pro FPGA boards. We 
present the results of that experimental work, and evaluate the 
statistical  and  performance  characteristics  of  the  resulting 
bitstrings.

 2. Background
The  PUF  first  appeared  as  a  mechanism  for  generating 

secure bitstrings in [1] and [2]. The PUF as a chip identifier, 
however, was introduced earlier in [3]. Proposed PUF designs 
generally fall into one of the following classifications: SRAM 
PUFS [4], ring oscillators [5,6], MOS drive-current PUFs [7], 
delay line and arbiter PUFs [8], and PUFs based upon variations 
in a chip's metal wires [9]. Delay-based PUFs also include such 
designs as the Glitch PUF, which leverages variation in glitch 
behavior  and is  presented in [10].  Each of  these  PUFs  takes 
advantage  of  one  or  more  naturally-varying  properties,  and 
nearly  all  PUFs  share  a  common  set  of  challenges  such  as 
measurement error and uncertainty, and fluctuations in voltage 
or temperature. The degree to which a given PUF can tolerate or 
mitigate these challenges is an important indicator of its utility 
for generating secret data.

The HELP PUF proposed in this paper is, to the best of our 
knowledge,  the  only  delay-based  PUF  that  combines  the 
following features: 

• The HELP PUF is entangled with the hardware in which it 
is embedded, in the sense that the path delays measured in, 
e.g., an AES core logic macro, can be used to generate a 
bitstring that  is  subsequently used as  the key when that 
AES  implementation  is  run  in  functional  mode.  The 
proximity of the bit generation to the hardware that uses 
the  bitstring  improves  robustness  against  invasive  or 
probing attacks designed to learn or compromise the key.
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• The bit  flip  avoidance  scheme proposed  in  this  paper  is 
intended to render the probability of failure in regenerating 
the bitstring negligibly small. 

• The physical  implementation of  HELP uses  the  standard 
hardware resources commonly available in the fabric of an 
FPGA or in a standard cell library, and an on-chip clock 
generation scheme, i.e.,  a digital  clock manager (DCM). 
The use of the DCM for performing path timing tests is 
similar to that proposed in [11] for Trojan detection and IC 
authentication. 

• By using the core  logic  of  AES itself,  a  large source of 
entropy is leveraged.

In this paper, we analyze the production of bitstrings that are 256 
bits in length. The HELP PUF is not limited to bitstrings of this 
length,  however,  and  is  capable  of  generating  bitstrings  of 
virtually any length,  depending upon available resources in a 
given  implementation.  The  specific  bitstring  generation 
technique proposed in this paper does not,  to our knowledge, 
suffer  from  any  known  or  apparent  security  weaknesses,  or 
vulnerabilities to direct or model-building attacks. 

 3. HELP PUF Overview
Similar to other PUFs, the HELP PUF functions by applying 

a set of challenges and measuring the corresponding responses, 
called challenge-response pairs. The challenge component  for 
HELP consists of a randomly selected, two-vector test sequence 
applied  to  the  inputs  of  the  macro-under-test  (MUT),  which 
introduces a set of transitions that propagate through the core 
logic of the MUT and appear on its outputs. The responses are 
the  measured  path  delays  on  each  of  the  outputs,  and  are 
expressed  as  8-bit  numbers  that  correspond to path  delay.  A 
single  MUT output  is  isolated  and  measured  individually,  as 
explained in this section. 

The  delay  measurement  precision  has  an  impact  on  the 
stability  of  HELP. We use  an  embedded test  structure  called 
REBEL to obtain a high-precision,  digitized representation of 
the path delays [12]. REBEL is integrated directly with the scan 
chain logic and uses the on-chip clock tree network for launch-
capture (LC) timing events.

Fig.  1 depicts  a  overview  of  the  REBEL test  structure, 
consisting of  two rows of  flip-flops (FFs)  connected together 
into a scan chain. Small logic blocks on the left of each row, 
labeled RCL for Row Control Logic, allow the scan elements on 
each row to be configured as follows:

• The top row is the launch row, and is configured to operate 
in functional mode.

• The second row is the capture row, and is configured in a 
mixed mode, in which a specific FF, called the  insertion 
point (IP), is chosen. This scan-FF and each scan-FF to the 
right of it  in the row  are placed in a mode called  flush 
delay  (described below), and  form a combinational delay 
chain, effectively extending the path at the IP.

Flush-delay mode (FD) is a special mode in which a scan 
chain can be configured as a combinational delay chain. This is 
depicted in the callout in Fig. 1, which shows two master/slave 
FFs in which the output of the first master feeds into the scan 
input  of  the  second FF.  Any transition that  occurs on the IP 
propagates through the functional input and into the first master 
using logic that selects that path (not shown). In contrast, the 
logic controlling the scan mux for the second FF (and all FFs to 
its  right)  selects  the  scan  input,  effectively  allowing  the 
transition to propagate unimpeded through the masters of these 

FFs.  Details  concerning  the  control  logic  for  the  scan  chain 
muxes can be found in [12]. 

A REBEL path  delay  test  is  carried  out  by  scanning  in 
configuration information, which selects the IP and configures 
the delay chain as shown in Fig. 1. A clock transition is then 
applied to the launch row FFs which generates transitions that 
propagate into the MUT. Any transition that occurs on the MUT 
output at the IP will propagate into the delay chain. By asserting 
the clock input on the capture row FFs, the master latches revert 
to  storage  mode  and  digitize  the  time  behavior  of  the 
transition(s) as a sequence of 1's and 0's. The combined delay of 
the MUT path and the delay chain can be derived by searching, 
from right to left, in the binary sequence for the FF that contains 
the first transition.

 4. Experimental Setup
We've  created  a  complete  HELP  implementation  on  an 

FPGA and carried out experiments on a set of 30 V2Pro FPGA 
boards. Fig. 2 shows a top-level structural diagram of our HELP 
implementation. 

The MUT used in our implementation is the logic defining a 
single  round  of  a  pipelined  AES  implementation  (space 
limitations prevented inclusion of  all  10 rounds of  the logic) 
from OpenCores [13]. The block labeled “Initial Launch Vector 
(256)”  represents  the  pipeline  FFs  in  the  full-blown  AES 
implementation, converted here to MUX-D scan-FFs. A second 
copy of this block labeled “Final Launch Vector (256)”, is added 
to emulate the logic from the omitted previous round. In our 
implementation, two randomly generated vectors that represent 
the challenge are scan-loaded into the two blocks.

The block labeled “REBEL (Capture) Row” in Fig.  2 also 
represents the pipeline FFs between the logic blocks defining the 
rounds in AES. We modified this row to incorporate REBEL, 
and designed it  to implement the “mixed mode” functionality 
described previously in relation to Fig. 1. The number of FFs in 
this row is expanded from 256 to 264 to extend the delay chain 
for the IPs in the rightmost side of the MUT.

The remaining components in Fig.  2 define the HELP PUF 
engine,  and can be  divided into the  Data Collection Engine 
(DCE),  and  the  BitGen Engine (BGE). One  iteration of  the 
whole  process  produces  the  bitstring.  The  engine  behaves 
differently depending on whether a new bitstring is requested (a 
process called enrollment) or whether the bitstring needs to be 
reproduced  (a  process  called  regeneration). We  distinguish 
between  these  scenarios  in  the  following  description  where 

Fig. 1: REBEL embedded test structure.
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needed.
The overhead of HELP is given by the following table. The 

resources  under  the  column  “AES  Macro”  corresponds  to  a 
single round of AES. A full pipelined implementation of AES 
would  therefore  be  10X larger.  Factoring  this  in  reduces  the 
overhead of HELP from 200% as shown in the last column to 
approx. 20%. 

TABLE I. FPGA RESOURCE UTILIZATION

AES Macro Full PUF Pct. Used

Flip-flops 1297 1904 60%

LUTs 3122 7174 26%

Slices 2146 4046 29%

RAMB16 0 58 42%

BUFGMUX 1 5 31%

DCMs 0 3 37%

 4.1  HELP Components

The  DCE  in  Fig.  2  carries  out  a  sequence  of  LC  tests, 
measures  the  path  delays,  and  records  the  digitized 
representation of them, called PUF numbers or  PNs,  in block 
RAM on the FPGA. In our current implementation,  the DCE 
runs to completion before the BGE component is started. 

Clock  Generator.  The  clock  generator  module  generates 
two clock signals: a Launch clock and a Capture clock, and is 
shown on the left in Fig. 2. In our design, this module contains 
three digital clock managers, or DCMs. A 'master' DCM is used 
to reduce the off-chip oscillator-generated 100 MHz clock to 50 
MHz. The output  of  the master  DCM drives the Launch and 
Capture  DCMs. We  utilize  the  fine  phase  adjustment  (FPA) 
feature  of  the  Capture  DCM to  'tune'  the  phase  relationship 
between the Launch and Capture clocks. At 50 MHz, the FPA 
allows 80-ps of resolution in the phase of the Capture clock on 
the V2Pro FPGA chips. 

When the DCE is configuring the scan chains in preparation 
for the LC test, the phase relationship between the Launch and 
Capture clocks is set  to 0. Just  prior to the launch event,  the 
controlling state machine selects the 180° phase-shifted output 

of the Capture DCM, and the FPA feature is used to tune the 
phase in an iterative process designed to meet a specific goal (to 
be discussed).

Table 1 summarizes the characteristics of the Capture clock, 
and Fig. 3 illustrates the timing relationship between the Launch 
and  Capture  clocks  for  different  values  of  the  'Phase  Adj.' 
control  counter  in  the  DCM. The  launch  and  capture  events 
occur on the rising edge of the corresponding clocks. From the 
timing diagram, this allows path delays from 5 ns to 15 ns in 
length to be measured. The 0 to 128 range of values (called PNs) 
are used as a digital representation of the path delays.

TABLE II. CAPTURE CLOCK PHASE ADJUSTMENT

Phase Adj. Phase Angle LC Interval

0 90° 5 ns

64 180° 10 ns

128 270° 15 ns

The remaining components of the DCE are as follows:
PN Memory: A block RAM used to store the PNs.
LC LFSR Controller: A 32-bit linear feedback shift register 

(LFSR) used to produce the randomized launch vectors.
REBEL Controller:  Configures the IP in the REBEL row 

attached to the output of the AES logic block. 
Sample  Analysis  Engine  (SAE):  Analyzes  the  digitized 
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Fig. 2: Top-Level HELP System Diagram
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results in the delay chain after each LC test for a given path and 
determines whether the path is 'valid'. A valid path is defined as 
one that has a real  transition, is  glitch-free,  and produces 
consistent results across multiple samples.

Valid  Path  Memory:  A block  RAM  used  to  record  a 
pass/fail  flag for  each tested path that  reflects its  validity (as 
defined under SAE). This memory uses public storage because it 
represents the helper data needed in the regeneration process.

Random  Pairing  Generator:  Uses  a  28-bit  LFSR  to 
generate randomized pairings of PNs for bit generation. 

Stop  Point  Memory:  A  block  RAM  used  by  the  Bit 
Generation  Engine  to  record flags,  or  “stop  points”,  during 
enrollment that are read during regeneration. This memory, like 
the  Valid  Path  Memory,  uses  public  storage  and  represents 
helper data needed in the regeneration process.

The Serial Interface component is used to interact with the 
HELP engine, and to transfer the results of the path testing and 
bit generation processes.

 4.2 Path Delay Measurement

A sequence  of  paths  are  tested  by  the  DCE  process  to 
produce the PNs used later in bit generation. The starting point 
and order in which the paths are tested is completely determined 
by the LC LFSR. The DCE process begins by loading the LC 
LFSR with a seed (provided by the user), and instructs the LC 
LFSR controller to load a random pair of vectors into the launch 
rows. Simultaneously,  the  REBEL  controller  configures  the 
REBEL row with a specific IP and places the REBEL row in FD 
mode. The same random vector pair is reloaded to test each of 
the 256 IPs, one at a time, before the LC LFSR generates and 
loads the next random vector pair.

A key contribution of  our  technique  is  the  discovery that 
path  stability can  be  used  as  the  basis  for  random number 
generation. Path stability is defined as those paths which have a 
rising or falling transition, do not have temporary transitions or 
glitches,  and that  produce a small range of PNs (ideally only 
one)  over  multiple  repeated  sampling.  As  shown  below,  the 
paths that pass the stability test are different for each chip in the 
population.  For  the  bit  generation  method  described  in  this 
paper, this unpredictability in path stability results in a random 
variation in the number of paths that must be measured before 
another bit is generated.  A detailed explanation of this process 
appears in the next section of this paper.

A state machine within the DCE is responsible for measuring 
path delays and for determining the stability of the paths. Our 
algorithm begins testing a path by setting the FPA to 128, which 
configures the Capture clock phase to 270°. It then iteratively 
reduces the phase shift in a series of LC tests, called a  sweep. 
For paths that have transitions, the process of 'tuning' the FPA 
toward smaller  values  over  the sweep effectively 'pushes'  the 
transition backwards in the delay chain, since each successive 
iteration reduces the amount of time available for the transition 
to propagate. When the edge is  'pushed back'  to a  point  just 
before a target FF in the delay chain, the process stops (the goal 
has been achieved). The target FF is an element in the delay 
chain that is a specific distance (in scan-FFs) from the IP. The 
value of the FPA at the stop point is saved as the PN for this 
path,  i.e.,  the  PN  represents  the  'response'  to  the  'challenge' 
defined by the launch vector and IP. 

Evaluating  path stability  is  accomplished  by  counting  the 
number  of  transitions  that  occurred  in  the  REBEL row  by 
'XOR'ing'  neighboring  FFs  in  the  delay  chain.  The  path  is 

immediately classified as unstable (and the sweep is halted) if 
the  number  of  transitions  exceeds  1  at  any  point  during  the 
sweep. Once  the  sweep  is  complete,  the  whole  process  is 
repeated multiple times. If the range of  PNs measured across 
multiple samples varies by more than a user-specified threshold, 
the path is classified as unstable and is discarded.

Note  that  path  stability  evaluation  occurs  ONLY during 
enrollment.  In  order  to  make  it  possible  for  regeneration  to 
replay the valid path sequence discovered during enrollment, the 
'valid path' bitstring is updated after testing each path. For paths 
considered  valid,  a  '1'  is  stored  and  for  those  classified  as 
unstable,  a  '0'  is  stored.  During  regeneration,  the  exact  same 
sequence of tests can be carried out by loading the LC LFSR 
with  the  same  seed  and  using  the  'valid  path'  bitstring  to 
determine which paths are to be tested (a '1' forces the path to be 
tested, and a '0' forces the path to be skipped).

 4.3  Temperature Compensation and Jumps

Environmental conditions (i.e., temperature and voltage) that 
are  markedly  different  during  regenerations  than  they  were 
during  the  enrollment  process  can  cause  the  path  delay 
measurements to shift. The modulus technique that we discuss in 
the  next  section  requires  the  PNs  to  remain  as  constant  as 
possible  during  regeneration  at  different  TV  corners,  and 
therefore it  would be beneficial to calibrate out these types of 
shifts, if possible. We developed a technique called Temperature 
Compensation  that  is  designed  to  accomplish  this  goal.  The 
general  idea  is  to  derive  a  constant  during  regeneration that, 
when  added  to  all  PNs,  shifts  the  distribution  back  to  that 
obtained  during  enrollment.  This  can  be  accomplished  by 
computing a 'mean PN' from a small subset of tests (we found 64 
to be sufficient)  during enrollment  which is  then recorded in 
public  storage.  Later,  during  regeneration,  the  mean is  again 
computed using the same set of tests and the difference between 
the  enrollment  and  regeneration  means  is  added  to  the  PNs 
during the subsequent bit generation phase. In the experimental 
results that follow, we applied Temperature Compensation to the 
PNs and found that the worst-case shifts on order of -8 to +14 
were typical. We are currently investigating a more sophisticated 
technique that also 'scales' (multiplies) the PNs as a means of 
dealing with the expansion and contraction of the distribution 
that also occurs.

In our experiments, we found that a small portion of the PNs 
also tend to "jump" to new values well beyond that calibrated for 
by temperature  compensation.  The underlying  mechanism for 
the jump behavior, although caused by TV variations, is different 
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and deals with the appearance and disappearance of 'hazards' on 
off-path inputs to gates along the path-under-test. In rare cases, it 
is possible that an off-path input (which is supposed to remain at 
its non-dominate value, e.g., a '1' on an input to a AND gate) 
changes momentarily  to  a  dominate  value  at  a  particular  TV 
corner but not at enrollment. Depending on the relative timing of 
the appearance of the hazard and the signal transition along the 
tested path, it is further possible that the signal transition along 
the path-under-test is momentarily delayed by the hazard. When 
this  occurs,  a  fundamental  change occurs  in  the path timing. 
Unfortunately, there is no way to predict or compensate for these 
situations  short  of  running  fault  simulations  and  enforcing 
constraints during test vector generation. This jump behavior is 
the principle reason for the bit flips that occur in the reported 
results of the following sections.

 4.4  The “Dual-PN” Path Delay Binning Technique

Most PUF primitives are identically designed to avoid bias 
issues. This is not the case for HELP, because the paths-under-
test  vary  widely  in  length.  We developed a  technique  called 
“Dual-PN” which post-processes the PNs to eliminate this bias. 
The  technique  first  applies  a  modulus  operation  to  the  PNs 
which trims off the higher order bits which capture the length 
component and therefore represent the bias. The trimmed PNs, 
called Mod-PNs,  are  then partitioned into two groups for  bit 
generation purposes.

The diagram in Fig. 4 provides a graphical depiction of this 
two-step process. The process begins on the left, as a path with a 
propagation delay of between 5 ns and 15 ns is measured using 
REBEL (Section 4.2). This delay is represented by a PN in the 
range of 0 to 128. The modulus operation reduces this PN to a 
number in the range of  0 to M-1 (where  M is a user-specified 
modulus).

The right-most portion of the diagram in Fig.  4 shows the 
partitioning of the mod-PNs into two groups, where values in the 
range of 0 to M/2-1 are placed in the low PN group, while PNs 
in the range of  M/2 to M-1 comprise the high PN group. As 
indicated  above,  temperature  shifts  are  not  completely 
compensated  for  by  TCOMP.  This  issue  is  dealt  with  by 
implementing  a  second  filtering  operation  (beyond  that 
described in Section 4.2 in relation to path stability) that further 
restricts which mod-PNs are considered valid during enrollment. 
The regions delineated in the center portions of the two groups 
of  Fig.  4 identify  the  smaller  ranges  of  mod-PNs  that  are 
considered valid, i.e., mod-PNs produced during enrollment that 
fall  outside  these  regions  are  discarded.  During  regeneration, 
small shifts in the mod-PNs of these paths of up to M/4 values in 
either  direction  can  occur  without  introducing  a  bit  flip. 
Therefore, this scheme adds bit flip resilience to HELP. 

 4.5  The "Dual-PN Count" (DPNC) Bit Generation Method

The filtering operations described above are sufficient  for 
dealing with shifts introduced by TV variations. However, the 
larger  changes  in  the  mod-PNs  introduced  by  “jumps”  (see 
Section 4.3) require  a  stronger  technique.  The  rare  nature  of 
“jumps” makes it possible to develop a detection and correction 
method that imposes a low area and time overhead. We propose 
a technique called “Dual-PN Count” that is based on a popular 
fault  tolerance  technique  called  triple  modular  redundancy 
(TMR). Fig.  5 provides an illustration of how it works. During 
enrollment, the algorithm conducts a forward search through the 
PUF  number  memory  until  it  encounters  a  sequence  of  k 

consecutive values from the same group,  where  k is  an odd-
numbered,  user-specified  threshold.  Two  counters  track  the 
length of a sequence of PNs from the same group. As each PN is 
read, the counter  for  the corresponding group is incremented, 
while the other group's counter is reset to 0. When either of the 
counters reaches k (indicating that the k most recent PNs belong 
to the same group),  a new bit  is  generated and added to the 
bitstring, and a “stop point” flag is set in the Stop Point Memory 
to  indicate  that  a  bit  is  to  be  generated  at  this  point  during 
subsequent regenerations. The value of the generated bit is a '1' 
if the PNs are from the high PN group, and a '0' if the PNs are 
from the low PN group. During regeneration,  the stop points 
indicate where each bit is to be generated, and therefore add to 
the public storage requirements.

Example: In the example shown in Fig. 5, we use a modulus 
M=22, so that the accepted values (during enrollment) for the 
low PN group are {4,5,6}, while the accepted values for the high 
PN group are {15,16,17}. The value of k is set to 5. 

This example first depicts the enrollment process, in which 
PNs are read from memory, left to right, as shown.  Also shown 
are the states of the counters after each PN is read.  When the 
high PN counter reaches 5 (as shown in the blue circle), a '1' bit 
is generated and added to the bitstring (not shown), and a '1' is 
written to the current location in the Stop Point Memory.  At this 
point, both counters are cleared and the process continues, until 
a second bit (a '0' in this case) is generated. Again, a '1' is written 
to the Stop Point Memory. This process continues until a user-
specified number of bits has been generated and added to the 
bitstring.

The bottom portion of Fig.  5 illustrates the process carried 
out  during  regeneration.  Here,  the  '1'  bits  in  the  Valid  Path 
Memory determine which paths are to be measured, so that the 
PN  in  a  given  memory  location  during  regeneration  always 
corresponds  to  the  same  physical  path  as  it  did  during 
enrollment.  Similarly, during regeneration, the locations in Stop 
Point Memory that contain a '1' are used to signal that a bit is to 
be  generated at  that  point.  The value  of  the  generated  bit  is 
determined by the group to which the majority of the  k most 
recent PNs belong.  In the regeneration example in Fig. 5, two of 
the  five  values  that  were  high  PNs  during  enrollment  have 
changed and now appear as low PNs (note the two '9's in the 
heavy borders). However, because the majority (3 out of 5) of 
the values are high PNs, the algorithm correctly generates a '1' 
bit despite the presence of the two errant measurements. Also 
note that the first erroneous measurement (the '8' in the heavy 
border) poses no hazard, since it is not used for bit generation. 
The five PNs which determine the second bit are free of errors, 
so that the '0' is also regenerated correctly.

 5. Experimental Results And Analysis
We  collected  data  on  a  set  of  30 V2Pro  boards  using  a 

Fig. 5: Dual-PN Count Method - Example



thermoelectric  cooler  (TEC)  apparatus  and  a  programmable 
power supply. Experiments were carried out at  three different 
temperatures (0C, 25C, 70C) and three different voltages (1.35V, 
1.50V, 1.65V). Enrollment data was collected at 25°C and 1.5V 
(nominal internal operating voltage, VccINT, for the V2Pro). The 
experiments carried out at the remaining 8 temperature/voltage 
(TV) corners represent subsequent regenerations.

 5.1  Hamming Distance (HD)

Hamming  Distance  (HD)  is  computed  by  counting  the 
number of bits that are different between any arbitrary pairing of 
bitstrings from different chips. The ideal result occurs when the 
number of bits that are different is 50% of the bitstring length. 
With 30 FPGA boards, the number of computed HDs is 30*29/2 
= 435. Fig. 6 plots HD along the x-axis against the number of 
instances. The average inter-chip HD is given in the figure as 
49.923%, a value very close to the ideal. The histogram is also 
shown  fitted  with  a  Guassian 
curve  to  illustrate  how  well  it 
conforms to the expected normal 
distribution.  The  standard 
deviation of the normal curve is 
8.192 of 256, consistent with the 
expected standard deviation of a 
normally  distributed  set  of 
random values. 

The  intra-chip  HD  is  the 
number  of  bits  that  differ 
between two bitstrings from the 
same chip, and a non-zero value indicates the presence of one or 
more bit flips. Intra-chip HD is not zero, in spite of the bit flip 
avoidance  techniques  discussed  in  the  previous  sections.  The 
proposed techniques correct for most of the "jumps" that occur, 
but a few escape. Interestingly, all of the escapes can be caught 
by  carrying  out  enrollment  multiple  times,  each  time  at  a 
different  power  supply  voltage.  The  public  data  is  updated 
incrementally in the repeated enrollments by marking those PNs 
associated with paths that "jump" as invalid. In other words, all 
"jumps"  in  our  experiments  are  independent  of  temperature. 
Given that many modern architectures provide voltage scaling as 
a feature to deal with power consumption, it may be possible to 
leverage this feature here to provide error-free bitstrings.  The 
average intra-chip HD is 0.038%, or an average of 0.097 bits per 
256-bit string. 

 5.2  NIST Statistical Analysis of Randomness

To test the randomness of the bitstrings produced by DPNC, 
we used a statistical test suite provided by the National Institute 
of  Science  and  Technology  [14].  NIST  mainly  focuses  on 
evaluating  randomness,  while  inter-chip  HD  measures 
uniqueness. These tests were applied to the bitstrings from each 
of the 30 boards. All of the bitstrings from passed all of the tests 
that are applicable to 256-bit strings, indicating that the HELP 
PUF is capable of generating high-quality bitstrings.

 5.3  Analysis of Running Time and Key Ratios

We report bitstring generation times for HELP in this section 
as  the  average  number  of  bits  generated  per  minute.  During 
enrollment, the time required to generate a single bit depends on 
several  factors,  including 1) the number of PNs that  are read 
from  memory  before  encountering  the  required  number  of 
consecutive similar values, 2) the value of k, and 3) the ratio 

between valid and invalid PNs. The average number of paths 
tested per bit during enrollment is 1,261 and the average rate of 
bit generation is 36.4 bits per minute. During regeneration, only 
those  paths  that  were  marked  valid  during  enrollment  are 
actually measured, so the average bit generation rate increases to 
167 bits per minute.

 5.4  Probability of Failure

There were a total of 9 unique errors that resulted in 19 bit 
flips during the 240 regenerations that were performed during 
our experimentation. The overall probability of a single bit being 
generated incorrectly is  3.09x10-4 (19 errors per (30 boards * 8 
regenerations per board * 256 bits per regeneration)).

 6. Conclusions
In  this  paper,  we  have  presented  details  of  a  practical, 

realizable  PUF,  called  HELP,  and  have  proposed  and 
demonstrated a novel bit generation technique called DPNC. The 
HELP PUF is based on measuring variations in path delays in 
the core logic macro(s) of the host chip. The results of Hamming 
Distance and NIST statistical test analyses show the bitstrings 
are genuinely random, unique, and highly reproducible.
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Fig. 6: HD Analysis
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