
Abstract: Cryptographic and authentication applications in
ASICs and FPGAs, as well as codes for the activation of on-chip
features, require the use of embedded secret information. The
emergence and unconstrained growth of the mobile computing
and communications spaces is placing an increasing demand on
existing methods of generating and safeguarding this secret
data. The generation of secret bitstrings using physical
unclonable functions, or PUFs, holds the promise of replacing
older, conventional, e.g., EPROM-based methods, and offers
several distrinct advantages, including the elimination of the
need to store the bitstring in costly, specialized non-volatile
memory, and a measurable increase in the number of random
bits that can be generated. This paper presents details of an on-
chip PUF engine called the Hardware-Entangled Delay PUF, or
HELP, and introduces a new bit generation technique using this
PUF. HELP leverages the natural variations that occur in the
path delays of a core macro on a chip to create a unique, stable,
and random bitstring. We evaluate several statistical quality
metrics of the bitstrings generated with this method on a set of
30 FPGA boards across a temperature range of 0 to 70°C and
an operating voltage range of ±10% of nominal, and propose
an error-avoiding scheme that offers measurably improved
protection against errors in the resulting bitstring.

 1. Introduction
Physical unclonable functions (PUFs) are becoming

increasingly commonly-used mechanisms for generating random
numbers for a wide range of security-related applications. PUFs
are designed to be able to reliably differentiate one chip from
another by leveraging the random variations in physical
properties of these chips, and are intended to be difficult or
impossible to duplicate or clone, even for the manufacturer.
Process variations are effectively impossible to control or
eliminate; however, they can be measured. PUFs can differ in
the specific properties that they seek to exploit. However,
physical properties commonly targeted include propagation
delay, metal resistance, transistor drive strength, and mismatches
between complementary transistors. A commonality among most
PUFs is that they generate bitstrings by comparing measured
quantities, in which variations occur between chips, and produce
bitstrings based on the results of those comparisons.

The quality of the bitstrings produced by a PUF is an
important measure of its usability. Generally, however, three
criteria are considered to be essential for a PUF to be used for
such applications as encryption: 1) the bitstrings produced for
each chip must be sufficiently unique to distinguish each chip
from every other, 2) the bitstrings must be random, making them
difficult for an adversary to model and predict, and 3) the
bitstring for any one chip must be stable over time and across
varying environmental conditions.

In this paper, we present a detailed examination of a PUF,
called HELP, that is based upon path delay variations. The novel
features that differentiate HELP from other delay-based PUFs
include: 1) the capability of comparing paths of different
lengths, 2) eliminating the need for specially designed, layout-
dependent delay elements that impose a high area cost while

providing a relatively small amount of entropy, 3) a minimally
invasive design with low area and performance impact, and 4) a
hardware-entangled PUF engine requiring no external testing
resources. HELP enjoys the added advantage of the large set of
paths typically found in logic macros such as the Advanced
Encryption Standard (AES). This large source of entropy allows
HELP to generate reasonably long bitstrings, while being
extremely conservative in the paths selected for bit generation.
The large availability of paths also enables unique opportunities
for achieving bit stability and avoiding errors.

Unique Contributions of this Paper: The following are the
unique and novel contributions that are proposed and detailed in
this paper:

• A novel modulus-based technique that permits the
direct comparison of delay measurements from logic
paths of widely varying lengths

• A path delay measurement binning scheme that
improves tolerance of noise, uncertainty, and small
environmental changes

• A fault-tolerant bit generation technique that offers
robustness and resilience to errors caused by
environmental conditions and measurement uncertainty

To prove the bit generation technique put forward in this
paper, and to demonstrate its usefulness and effectiveness, we
make use of a complete, functional FPGA-based implementation
of the underlying PUF on a set of 30 V2Pro FPGA boards. We
present the results of that experimental work, and evaluate the
statistical and performance characteristics of the resulting
bitstrings.

 2. Background
The PUF first appeared as a mechanism for generating

secure bitstrings in [1] and [2]. The PUF as a chip identifier,
however, was introduced earlier in [3]. Proposed PUF designs
generally fall into one of the following classifications: SRAM
PUFS [4], ring oscillators [5,6], MOS drive-current PUFs [7],
delay line and arbiter PUFs [8], and PUFs based upon variations
in a chip's metal wires [9]. Delay-based PUFs also include such
designs as the Glitch PUF, which leverages variation in glitch
behavior and is presented in [10]. Each of these PUFs takes
advantage of one or more naturally-varying properties, and
nearly all PUFs share a common set of challenges such as
measurement error and uncertainty, and fluctuations in voltage
or temperature. The degree to which a given PUF can tolerate or
mitigate these challenges is an important indicator of its utility
for generating secret data.

The HELP PUF proposed in this paper is, to the best of our
knowledge, the only delay-based PUF that combines the
following features:

• The HELP PUF is entangled with the hardware in which it
is embedded, in the sense that the path delays measured in,
e.g., an AES core logic macro, can be used to generate a
bitstring that is subsequently used as the key when that
AES implementation is run in functional mode. The
proximity of the bit generation to the hardware that uses
the bitstring improves robustness against invasive or
probing attacks designed to learn or compromise the key.

An Error-Tolerant Bit Generation Technique For Use With A
Hardware-Entangled Path Delay PUF

<authors' names removed per submission guidelines>

• The bit flip avoidance scheme proposed in this paper is
intended to render the probability of failure in regenerating
the bitstring negligibly small.

• The physical implementation of HELP uses the standard
hardware resources commonly available in the fabric of an
FPGA or in a standard cell library, and an on-chip clock
generation scheme, i.e., a digital clock manager (DCM).
The use of the DCM for performing path timing tests is
similar to that proposed in [11] for Trojan detection and IC
authentication.

• By using the core logic of AES itself, a large source of
entropy is leveraged.

In this paper, we analyze the production of bitstrings that are 256
bits in length. The HELP PUF is not limited to bitstrings of this
length, however, and is capable of generating bitstrings of
virtually any length, depending upon available resources in a
given implementation. The specific bitstring generation
technique proposed in this paper does not, to our knowledge,
suffer from any known or apparent security weaknesses, or
vulnerabilities to direct or model-building attacks.

 3. HELP PUF Overview
Similar to other PUFs, the HELP PUF functions by applying

a set of challenges and measuring the corresponding responses,
called challenge-response pairs. The challenge component for
HELP consists of a randomly selected, two-vector test sequence
applied to the inputs of the macro-under-test (MUT), which
introduces a set of transitions that propagate through the core
logic of the MUT and appear on its outputs. The responses are
the measured path delays on each of the outputs, and are
expressed as 8-bit numbers that correspond to path delay. A
single MUT output is isolated and measured individually, as
explained in this section.

The delay measurement precision has an impact on the
stability of HELP. We use an embedded test structure called
REBEL to obtain a high-precision, digitized representation of
the path delays [12]. REBEL is integrated directly with the scan
chain logic and uses the on-chip clock tree network for launch-
capture (LC) timing events.

Fig. 1 depicts a overview of the REBEL test structure,
consisting of two rows of flip-flops (FFs) connected together
into a scan chain. Small logic blocks on the left of each row,
labeled RCL for Row Control Logic, allow the scan elements on
each row to be configured as follows:

• The top row is the launch row, and is configured to operate
in functional mode.

• The second row is the capture row, and is configured in a
mixed mode, in which a specific FF, called the insertion
point (IP), is chosen. This scan-FF and each scan-FF to the
right of it in the row are placed in a mode called flush
delay (described below), and form a combinational delay
chain, effectively extending the path at the IP.

Flush-delay mode (FD) is a special mode in which a scan
chain can be configured as a combinational delay chain. This is
depicted in the callout in Fig. 1, which shows two master/slave
FFs in which the output of the first master feeds into the scan
input of the second FF. Any transition that occurs on the IP
propagates through the functional input and into the first master
using logic that selects that path (not shown). In contrast, the
logic controlling the scan mux for the second FF (and all FFs to
its right) selects the scan input, effectively allowing the
transition to propagate unimpeded through the masters of these

FFs. Details concerning the control logic for the scan chain
muxes can be found in [12].

A REBEL path delay test is carried out by scanning in
configuration information, which selects the IP and configures
the delay chain as shown in Fig. 1. A clock transition is then
applied to the launch row FFs which generates transitions that
propagate into the MUT. Any transition that occurs on the MUT
output at the IP will propagate into the delay chain. By asserting
the clock input on the capture row FFs, the master latches revert
to storage mode and digitize the time behavior of the
transition(s) as a sequence of 1's and 0's. The combined delay of
the MUT path and the delay chain can be derived by searching,
from right to left, in the binary sequence for the FF that contains
the first transition.

 4. Experimental Setup
We've created a complete HELP implementation on an

FPGA and carried out experiments on a set of 30 V2Pro FPGA
boards. Fig. 2 shows a top-level structural diagram of our HELP
implementation.

The MUT used in our implementation is the logic defining a
single round of a pipelined AES implementation (space
limitations prevented inclusion of all 10 rounds of the logic)
from OpenCores [13]. The block labeled “Initial Launch Vector
(256)” represents the pipeline FFs in the full-blown AES
implementation, converted here to MUX-D scan-FFs. A second
copy of this block labeled “Final Launch Vector (256)”, is added
to emulate the logic from the omitted previous round. In our
implementation, two randomly generated vectors that represent
the challenge are scan-loaded into the two blocks.

The block labeled “REBEL (Capture) Row” in Fig. 2 also
represents the pipeline FFs between the logic blocks defining the
rounds in AES. We modified this row to incorporate REBEL,
and designed it to implement the “mixed mode” functionality
described previously in relation to Fig. 1. The number of FFs in
this row is expanded from 256 to 264 to extend the delay chain
for the IPs in the rightmost side of the MUT.

The remaining components in Fig. 2 define the HELP PUF
engine, and can be divided into the Data Collection Engine
(DCE), and the BitGen Engine (BGE). One iteration of the
whole process produces the bitstring. The engine behaves
differently depending on whether a new bitstring is requested (a
process called enrollment) or whether the bitstring needs to be
reproduced (a process called regeneration). We distinguish
between these scenarios in the following description where

Fig. 1: REBEL embedded test structure.

RCL

RCL

SI

011

IP

Rst

FD

FD_L
ModeCtrl

Combinational Logic

Master Slave

D
SI

MUXD Scan-FF

Master Slave
D
SI

MUXD Scan-FF

SI
D

Functional
Input

Scan
Input

needed.
The overhead of HELP is given by the following table. The

resources under the column “AES Macro” corresponds to a
single round of AES. A full pipelined implementation of AES
would therefore be 10X larger. Factoring this in reduces the
overhead of HELP from 200% as shown in the last column to
approx. 20%.

TABLE I. FPGA RESOURCE UTILIZATION

AES Macro Full PUF Pct. Used

Flip-flops 1297 1904 60%

LUTs 3122 7174 26%

Slices 2146 4046 29%

RAMB16 0 58 42%

BUFGMUX 1 5 31%

DCMs 0 3 37%

 4.1 HELP Components

The DCE in Fig. 2 carries out a sequence of LC tests,
measures the path delays, and records the digitized
representation of them, called PUF numbers or PNs, in block
RAM on the FPGA. In our current implementation, the DCE
runs to completion before the BGE component is started.

Clock Generator. The clock generator module generates
two clock signals: a Launch clock and a Capture clock, and is
shown on the left in Fig. 2. In our design, this module contains
three digital clock managers, or DCMs. A 'master' DCM is used
to reduce the off-chip oscillator-generated 100 MHz clock to 50
MHz. The output of the master DCM drives the Launch and
Capture DCMs. We utilize the fine phase adjustment (FPA)
feature of the Capture DCM to 'tune' the phase relationship
between the Launch and Capture clocks. At 50 MHz, the FPA
allows 80-ps of resolution in the phase of the Capture clock on
the V2Pro FPGA chips.

When the DCE is configuring the scan chains in preparation
for the LC test, the phase relationship between the Launch and
Capture clocks is set to 0. Just prior to the launch event, the
controlling state machine selects the 180° phase-shifted output

of the Capture DCM, and the FPA feature is used to tune the
phase in an iterative process designed to meet a specific goal (to
be discussed).

Table 1 summarizes the characteristics of the Capture clock,
and Fig. 3 illustrates the timing relationship between the Launch
and Capture clocks for different values of the 'Phase Adj.'
control counter in the DCM. The launch and capture events
occur on the rising edge of the corresponding clocks. From the
timing diagram, this allows path delays from 5 ns to 15 ns in
length to be measured. The 0 to 128 range of values (called PNs)
are used as a digital representation of the path delays.

TABLE II. CAPTURE CLOCK PHASE ADJUSTMENT

Phase Adj. Phase Angle LC Interval

0 90° 5 ns

64 180° 10 ns

128 270° 15 ns

The remaining components of the DCE are as follows:
PN Memory: A block RAM used to store the PNs.
LC LFSR Controller: A 32-bit linear feedback shift register

(LFSR) used to produce the randomized launch vectors.
REBEL Controller: Configures the IP in the REBEL row

attached to the output of the AES logic block.
Sample Analysis Engine (SAE): Analyzes the digitized

T
lc_min

=5 ns

10 ns

Launch Clock

Capture Clock
(fpa=0)

Capture Clock
(fpa=64)

Capture Clock
(fpa=128)

Start Signal
(Asynchronous)

T
lc
=10 ns

T
lc_max

=15 ns

0 64 128

Fine Phase
Adjustment

Fig. 3: Launch/Capture Timing Diagram

Fig. 2: Top-Level HELP System Diagram

LC_LFSR

LFSR Controller

REBEL Controller

L/C
Ctrl

Clock Generator

PN Memory

Sample Analysis

Initial Launch Vector (256)

Final Launch Vector (256)

Existing
Combinational

Logic
(Pipelined AES)

REBEL (Capture) Row

Path Delay Result

...

...
Valid Path Memory

0 0 0 0 01 1 1 1

0 0 0 0 01 1 1 1

÷2

Launch

Capture

FPA

Random Pairing
Generator

BG_LFSR

Addr 2Addr 1

Data Collection Engine

Path Valid?

Addr MUX

BitGen Engine

Serial Interface

“Start”

Run Parameters

Ext.
Clock

Hard
Reset

Rx
Tx

PNs
PUF Bit String

0 0 01 1 ...

Sliding Window

DPNC Logic
(see Sect. 4.5)

E
nr

ol
lm

en
t

R
eg

en
er

at
io

n

Stop Point Memory

results in the delay chain after each LC test for a given path and
determines whether the path is 'valid'. A valid path is defined as
one that has a real transition, is glitch-free, and produces
consistent results across multiple samples.

Valid Path Memory: A block RAM used to record a
pass/fail flag for each tested path that reflects its validity (as
defined under SAE). This memory uses public storage because it
represents the helper data needed in the regeneration process.

Random Pairing Generator: Uses a 28-bit LFSR to
generate randomized pairings of PNs for bit generation.

Stop Point Memory: A block RAM used by the Bit
Generation Engine to record flags, or “stop points”, during
enrollment that are read during regeneration. This memory, like
the Valid Path Memory, uses public storage and represents
helper data needed in the regeneration process.

The Serial Interface component is used to interact with the
HELP engine, and to transfer the results of the path testing and
bit generation processes.

 4.2 Path Delay Measurement

A sequence of paths are tested by the DCE process to
produce the PNs used later in bit generation. The starting point
and order in which the paths are tested is completely determined
by the LC LFSR. The DCE process begins by loading the LC
LFSR with a seed (provided by the user), and instructs the LC
LFSR controller to load a random pair of vectors into the launch
rows. Simultaneously, the REBEL controller configures the
REBEL row with a specific IP and places the REBEL row in FD
mode. The same random vector pair is reloaded to test each of
the 256 IPs, one at a time, before the LC LFSR generates and
loads the next random vector pair.

A key contribution of our technique is the discovery that
path stability can be used as the basis for random number
generation. Path stability is defined as those paths which have a
rising or falling transition, do not have temporary transitions or
glitches, and that produce a small range of PNs (ideally only
one) over multiple repeated sampling. As shown below, the
paths that pass the stability test are different for each chip in the
population. For the bit generation method described in this
paper, this unpredictability in path stability results in a random
variation in the number of paths that must be measured before
another bit is generated. A detailed explanation of this process
appears in the next section of this paper.

A state machine within the DCE is responsible for measuring
path delays and for determining the stability of the paths. Our
algorithm begins testing a path by setting the FPA to 128, which
configures the Capture clock phase to 270°. It then iteratively
reduces the phase shift in a series of LC tests, called a sweep.
For paths that have transitions, the process of 'tuning' the FPA
toward smaller values over the sweep effectively 'pushes' the
transition backwards in the delay chain, since each successive
iteration reduces the amount of time available for the transition
to propagate. When the edge is 'pushed back' to a point just
before a target FF in the delay chain, the process stops (the goal
has been achieved). The target FF is an element in the delay
chain that is a specific distance (in scan-FFs) from the IP. The
value of the FPA at the stop point is saved as the PN for this
path, i.e., the PN represents the 'response' to the 'challenge'
defined by the launch vector and IP.

Evaluating path stability is accomplished by counting the
number of transitions that occurred in the REBEL row by
'XOR'ing' neighboring FFs in the delay chain. The path is

immediately classified as unstable (and the sweep is halted) if
the number of transitions exceeds 1 at any point during the
sweep. Once the sweep is complete, the whole process is
repeated multiple times. If the range of PNs measured across
multiple samples varies by more than a user-specified threshold,
the path is classified as unstable and is discarded.

Note that path stability evaluation occurs ONLY during
enrollment. In order to make it possible for regeneration to
replay the valid path sequence discovered during enrollment, the
'valid path' bitstring is updated after testing each path. For paths
considered valid, a '1' is stored and for those classified as
unstable, a '0' is stored. During regeneration, the exact same
sequence of tests can be carried out by loading the LC LFSR
with the same seed and using the 'valid path' bitstring to
determine which paths are to be tested (a '1' forces the path to be
tested, and a '0' forces the path to be skipped).

 4.3 Temperature Compensation and Jumps

Environmental conditions (i.e., temperature and voltage) that
are markedly different during regenerations than they were
during the enrollment process can cause the path delay
measurements to shift. The modulus technique that we discuss in
the next section requires the PNs to remain as constant as
possible during regeneration at different TV corners, and
therefore it would be beneficial to calibrate out these types of
shifts, if possible. We developed a technique called Temperature
Compensation that is designed to accomplish this goal. The
general idea is to derive a constant during regeneration that,
when added to all PNs, shifts the distribution back to that
obtained during enrollment. This can be accomplished by
computing a 'mean PN' from a small subset of tests (we found 64
to be sufficient) during enrollment which is then recorded in
public storage. Later, during regeneration, the mean is again
computed using the same set of tests and the difference between
the enrollment and regeneration means is added to the PNs
during the subsequent bit generation phase. In the experimental
results that follow, we applied Temperature Compensation to the
PNs and found that the worst-case shifts on order of -8 to +14
were typical. We are currently investigating a more sophisticated
technique that also 'scales' (multiplies) the PNs as a means of
dealing with the expansion and contraction of the distribution
that also occurs.

In our experiments, we found that a small portion of the PNs
also tend to "jump" to new values well beyond that calibrated for
by temperature compensation. The underlying mechanism for
the jump behavior, although caused by TV variations, is different

5

9

12

14

15

7

10

13

8

11

6

P
at

h
D

el
ay

 (
ns

)

112

0

16

32

48

64

80

96

128

P
U

F
 N

um
be

r
(P

N
)

M-1
Enrollment Regeneration

0

Low PN Group

High PN Group

0

M-1

0

M-1

0

M-1

0

M-1

0

M-1

Actual
Path Delay

Result of
Measurement

Application
Of Modulus

Fig. 4: Dual-PN Path Delay Binning Technique

and deals with the appearance and disappearance of 'hazards' on
off-path inputs to gates along the path-under-test. In rare cases, it
is possible that an off-path input (which is supposed to remain at
its non-dominate value, e.g., a '1' on an input to a AND gate)
changes momentarily to a dominate value at a particular TV
corner but not at enrollment. Depending on the relative timing of
the appearance of the hazard and the signal transition along the
tested path, it is further possible that the signal transition along
the path-under-test is momentarily delayed by the hazard. When
this occurs, a fundamental change occurs in the path timing.
Unfortunately, there is no way to predict or compensate for these
situations short of running fault simulations and enforcing
constraints during test vector generation. This jump behavior is
the principle reason for the bit flips that occur in the reported
results of the following sections.

 4.4 The “Dual-PN” Path Delay Binning Technique

Most PUF primitives are identically designed to avoid bias
issues. This is not the case for HELP, because the paths-under-
test vary widely in length. We developed a technique called
“Dual-PN” which post-processes the PNs to eliminate this bias.
The technique first applies a modulus operation to the PNs
which trims off the higher order bits which capture the length
component and therefore represent the bias. The trimmed PNs,
called Mod-PNs, are then partitioned into two groups for bit
generation purposes.

The diagram in Fig. 4 provides a graphical depiction of this
two-step process. The process begins on the left, as a path with a
propagation delay of between 5 ns and 15 ns is measured using
REBEL (Section 4.2). This delay is represented by a PN in the
range of 0 to 128. The modulus operation reduces this PN to a
number in the range of 0 to M-1 (where M is a user-specified
modulus).

The right-most portion of the diagram in Fig. 4 shows the
partitioning of the mod-PNs into two groups, where values in the
range of 0 to M/2-1 are placed in the low PN group, while PNs
in the range of M/2 to M-1 comprise the high PN group. As
indicated above, temperature shifts are not completely
compensated for by TCOMP. This issue is dealt with by
implementing a second filtering operation (beyond that
described in Section 4.2 in relation to path stability) that further
restricts which mod-PNs are considered valid during enrollment.
The regions delineated in the center portions of the two groups
of Fig. 4 identify the smaller ranges of mod-PNs that are
considered valid, i.e., mod-PNs produced during enrollment that
fall outside these regions are discarded. During regeneration,
small shifts in the mod-PNs of these paths of up to M/4 values in
either direction can occur without introducing a bit flip.
Therefore, this scheme adds bit flip resilience to HELP.

 4.5 The "Dual-PN Count" (DPNC) Bit Generation Method

The filtering operations described above are sufficient for
dealing with shifts introduced by TV variations. However, the
larger changes in the mod-PNs introduced by “jumps” (see
Section 4.3) require a stronger technique. The rare nature of
“jumps” makes it possible to develop a detection and correction
method that imposes a low area and time overhead. We propose
a technique called “Dual-PN Count” that is based on a popular
fault tolerance technique called triple modular redundancy
(TMR). Fig. 5 provides an illustration of how it works. During
enrollment, the algorithm conducts a forward search through the
PUF number memory until it encounters a sequence of k

consecutive values from the same group, where k is an odd-
numbered, user-specified threshold. Two counters track the
length of a sequence of PNs from the same group. As each PN is
read, the counter for the corresponding group is incremented,
while the other group's counter is reset to 0. When either of the
counters reaches k (indicating that the k most recent PNs belong
to the same group), a new bit is generated and added to the
bitstring, and a “stop point” flag is set in the Stop Point Memory
to indicate that a bit is to be generated at this point during
subsequent regenerations. The value of the generated bit is a '1'
if the PNs are from the high PN group, and a '0' if the PNs are
from the low PN group. During regeneration, the stop points
indicate where each bit is to be generated, and therefore add to
the public storage requirements.

Example: In the example shown in Fig. 5, we use a modulus
M=22, so that the accepted values (during enrollment) for the
low PN group are {4,5,6}, while the accepted values for the high
PN group are {15,16,17}. The value of k is set to 5.

This example first depicts the enrollment process, in which
PNs are read from memory, left to right, as shown. Also shown
are the states of the counters after each PN is read. When the
high PN counter reaches 5 (as shown in the blue circle), a '1' bit
is generated and added to the bitstring (not shown), and a '1' is
written to the current location in the Stop Point Memory. At this
point, both counters are cleared and the process continues, until
a second bit (a '0' in this case) is generated. Again, a '1' is written
to the Stop Point Memory. This process continues until a user-
specified number of bits has been generated and added to the
bitstring.

The bottom portion of Fig. 5 illustrates the process carried
out during regeneration. Here, the '1' bits in the Valid Path
Memory determine which paths are to be measured, so that the
PN in a given memory location during regeneration always
corresponds to the same physical path as it did during
enrollment. Similarly, during regeneration, the locations in Stop
Point Memory that contain a '1' are used to signal that a bit is to
be generated at that point. The value of the generated bit is
determined by the group to which the majority of the k most
recent PNs belong. In the regeneration example in Fig. 5, two of
the five values that were high PNs during enrollment have
changed and now appear as low PNs (note the two '9's in the
heavy borders). However, because the majority (3 out of 5) of
the values are high PNs, the algorithm correctly generates a '1'
bit despite the presence of the two errant measurements. Also
note that the first erroneous measurement (the '8' in the heavy
border) poses no hazard, since it is not used for bit generation.
The five PNs which determine the second bit are free of errors,
so that the '0' is also regenerated correctly.

 5. Experimental Results And Analysis
We collected data on a set of 30 V2Pro boards using a

Fig. 5: Dual-PN Count Method - Example

thermoelectric cooler (TEC) apparatus and a programmable
power supply. Experiments were carried out at three different
temperatures (0C, 25C, 70C) and three different voltages (1.35V,
1.50V, 1.65V). Enrollment data was collected at 25°C and 1.5V
(nominal internal operating voltage, VccINT, for the V2Pro). The
experiments carried out at the remaining 8 temperature/voltage
(TV) corners represent subsequent regenerations.

 5.1 Hamming Distance (HD)

Hamming Distance (HD) is computed by counting the
number of bits that are different between any arbitrary pairing of
bitstrings from different chips. The ideal result occurs when the
number of bits that are different is 50% of the bitstring length.
With 30 FPGA boards, the number of computed HDs is 30*29/2
= 435. Fig. 6 plots HD along the x-axis against the number of
instances. The average inter-chip HD is given in the figure as
49.923%, a value very close to the ideal. The histogram is also
shown fitted with a Guassian
curve to illustrate how well it
conforms to the expected normal
distribution. The standard
deviation of the normal curve is
8.192 of 256, consistent with the
expected standard deviation of a
normally distributed set of
random values.

The intra-chip HD is the
number of bits that differ
between two bitstrings from the
same chip, and a non-zero value indicates the presence of one or
more bit flips. Intra-chip HD is not zero, in spite of the bit flip
avoidance techniques discussed in the previous sections. The
proposed techniques correct for most of the "jumps" that occur,
but a few escape. Interestingly, all of the escapes can be caught
by carrying out enrollment multiple times, each time at a
different power supply voltage. The public data is updated
incrementally in the repeated enrollments by marking those PNs
associated with paths that "jump" as invalid. In other words, all
"jumps" in our experiments are independent of temperature.
Given that many modern architectures provide voltage scaling as
a feature to deal with power consumption, it may be possible to
leverage this feature here to provide error-free bitstrings. The
average intra-chip HD is 0.038%, or an average of 0.097 bits per
256-bit string.

 5.2 NIST Statistical Analysis of Randomness

To test the randomness of the bitstrings produced by DPNC,
we used a statistical test suite provided by the National Institute
of Science and Technology [14]. NIST mainly focuses on
evaluating randomness, while inter-chip HD measures
uniqueness. These tests were applied to the bitstrings from each
of the 30 boards. All of the bitstrings from passed all of the tests
that are applicable to 256-bit strings, indicating that the HELP
PUF is capable of generating high-quality bitstrings.

 5.3 Analysis of Running Time and Key Ratios

We report bitstring generation times for HELP in this section
as the average number of bits generated per minute. During
enrollment, the time required to generate a single bit depends on
several factors, including 1) the number of PNs that are read
from memory before encountering the required number of
consecutive similar values, 2) the value of k, and 3) the ratio

between valid and invalid PNs. The average number of paths
tested per bit during enrollment is 1,261 and the average rate of
bit generation is 36.4 bits per minute. During regeneration, only
those paths that were marked valid during enrollment are
actually measured, so the average bit generation rate increases to
167 bits per minute.

 5.4 Probability of Failure

There were a total of 9 unique errors that resulted in 19 bit
flips during the 240 regenerations that were performed during
our experimentation. The overall probability of a single bit being
generated incorrectly is 3.09x10-4 (19 errors per (30 boards * 8
regenerations per board * 256 bits per regeneration)).

 6. Conclusions
In this paper, we have presented details of a practical,

realizable PUF, called HELP, and have proposed and
demonstrated a novel bit generation technique called DPNC. The
HELP PUF is based on measuring variations in path delays in
the core logic macro(s) of the host chip. The results of Hamming
Distance and NIST statistical test analyses show the bitstrings
are genuinely random, unique, and highly reproducible.

 7. REFERENCES
[1] R.S.Pappu, et. al; "Physical One Way Functions", Science,
297(6), 2002, pp. 2026-2030.
[2] B. Gassend, et.al.; "Controlled Physical Random Functions",
Conf. on Computer Security Applications, 2002, pp. 149-160.
[3] K. Lofstrom, et. al.; "IC Identification Circuits using Device
Mismatch", SSCC, 2000, pp. 372-373.
[4] P. Simons, et. al.; “Buskeeper PUFs, a Promising Alternative
to D Flip-Flop PUFs”, HOST, 2012, pp. 7-12.
[5] G.E. Suh, S. Devadas; "Physical Unclonable Functions for
Device Authentication and Secret Key Generation", DAC, 2007,
pp. 9-14.
[6] A. Maiti, P. Schaumont; "Improving the Quality of a Physical
Unclonable Function using Configurable Ring Oscillators",
Conf. on Field-Programmable Logic and Applications, 2009, pp.
703-707.
[7] Y. Su, et. al.; "A 1.6pj/bit 96% Stable Chip ID Generating
Circuit Using Process Variations", SSCC, 2007, pp. 406-407.
[8] M. Majzoobi, et. al.; "Lightweight Secure PUFs", ICCAD,
2008, pp. 670-673.
[9] J. Ju, et. al.; “bitstring Analysis of Physical Unclonable
Functions based on Resistance Variations in Metals and
Transistors”, HOST, 2012, pp. 13-20.
[10] D. Suzuki, K. Shimizu; “The Glitch PUF: A New Delay-PUF
Architecture Exploiting Glitch Shapes”, CHES, 2010, pp. 366-382.
[11] J. Li, J. Lach; “At-Speed Delay Characterization for IC
Authentication and Trojan Horse Detection”, HOST, 2008, pp. 8-
14.
[12] C. Lamech, et. al.; "REBEL and TDC: Two Embedded Test
Structures for On-Chip Measurements of Within-Die Path Delay
Variations", ICCAD, 2011, pp. 170-177.
[13] OpenCores (website): http:/www.opencores.org
[14] NIST (website): http://csrc.nist.gov/

Fig. 6: HD Analysis

60

10

0

70

0.3 0.4 0.5 0.6 0.7

HD (PCH)
Mean: 49.923%
StDev: 0.320%

HD (Actual)
Mean: 127.8

StDev: 8.2

Length:
256 Bits

of

 in
st

an
ce

s

Intra-chip HD
Mean: 0.038%
(0.097 bits)

	 1. Introduction
	 2. Background
	 3. HELP PUF Overview
	 4. Experimental Setup
	 4.1 HELP Components
	 4.2 Path Delay Measurement
	 4.3 Temperature Compensation and Jumps
	 4.4 The “Dual-PN” Path Delay Binning Technique
	 4.5 The "Dual-PN Count" (DPNC) Bit Generation Method

	 5. Experimental Results And Analysis
	 5.1 Hamming Distance (HD)
	 5.2 NIST Statistical Analysis of Randomness
	 5.3 Analysis of Running Time and Key Ratios
	 5.4 Probability of Failure

	 6. Conclusions
	 7. REFERENCES

