
Abstract -- This paper describes an authentication protocol using
a Hardware-embedded Delay PUF called HELP. HELP derives
randomness from within-die path delay variations that occur
along the paths within a hardware implementation of a crypto-
graphic primitive, such as AES or SHA-3. The digitized timing
values which represent the path delays are stored in a database on
a secure server (verifier) as an alternative to storing PUF response
bitstrings. This enables the development of an efficient authenti-
cation protocol that provides both privacy and mutual authentica-
tion. The security properties of the protocol are analyzed using
data collected from a set of Xilinx Zynq FPGAs.

Keywords -- Physical Unclonable Function, Authentication Proto-
col, FPGA Implementation

1.  INTRODUCTION

Authentication is the process between a prover, e.g., a
hardware token or smart card, and a verifier, a secure server or
bank, that confirms the identities, using corroborative evi-
dence, of one or both parties [1]. With the Internet-of-things
(IoT), there are a growing number of applications that require
low cost authentication [2]. Physical unclonable functions
(PUFs) are hardware security and trust primitives that can
address issues related to low cost because they can potentially
eliminate the need for NVM. Moreover, the special class of so-
called ‘strong PUFs’ can also reduce area and energy over-
heads by reducing the number and type of cryptographic prim-
itives and operations [3].

A PUF extracts randomness from variations in the physi-
cal and electrical properties of ICs, that are unique to each IC,
as a means of generating digital secrets (bitstrings). The bit-
strings are generated on-the-fly, thereby eliminating the need to
store digital copies of them in NVM, and are (ideally) repro-
ducible under a range of environmental variations. The ability
to control the precise generation time of the secret bitstring and
the sensitivity of the PUF entropy source to invasive probing
attacks (which act to invalidate it) are additional attributes that
make them attractive for authentication in embedded hardware.

Most proposed PUF architectures require the insertion of a
dedicated array of identically-designed test structures and are
classified as ‘weak PUFs’. Although weak PUFs can be used
for authentication, they require cryptographic functions, e.g.,
secure hash and encryption, to exponentially expand the input/
output space of challenge-response-based authentication proto-
cols. A strong PUF, on the other hand, can generate, ideally, an

exponential number of challenge-response-pairs (CRPs), and
can potentially be configured to allow direct, unprotected
access from outside the chip. This is true because it is infeasi-

ble for an adversary to apply all 2n CRPs in an attempt to read-
out and store all of the response bitstrings. The arbiter PUF is
traditionally regarded as the first strong PUF because it can be

configured to produce 2n responses [4].

Strong PUFs with unprotected interfaces, however, must
be able to withstand model-building attacks which attempt to
machine learn (ML) the relationship among the much smaller

number of random circuit elements, from which the 2n

response bits are generated. The arbiter PUF, for example, is
typically configured with as few as 256 logic gates, making it
susceptible to ML attacks [5].

In this paper, we propose a hardware-embedded Delay
PUF (HELP) [6] as the basis for a novel authentication proto-
col. The entropy source of HELP is based on path delay varia-
tions that occur in the structural paths of an on-chip macro. In
particular, we use data path components from a hardware
implementation of the AES algorithm as the source of delay
variations.

HELP accepts 2-vector sequences as challenges and sup-
ports an exponential input challenge space, i.e., withn inputs,

the number of challenges is upper bounded at 22n, which indi-

cates that any of the 2n input vectors can be followed by any of

the other 2n input vectors. In order to improve the reliability of
HELP, we constrain the 2-vector sequences to generate either
rising transitions or falling transitions along the paths, but not

both. This reduces the challenge space from 22n to 2*(3n-2n),
which is still an exponential as required of a strong PUF. How-
ever, the number of unique paths is typically a smaller expo-

nential 2m, which indicates that the 2-vector sequences re-test

these paths approx. 2*(3n-2n)/2m number of times on average.

If the response space is defined as 2m, thenm needs to be on
order of 64 or larger to meet the conditions of a strong PUF.
Although combinational logic circuits can be constructed to
meet this condition, the resulting size is too large for resource-
constrained devices.

To address this issue, we expand the response space of
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HELP by defining a set of configuration parameters. The com-
bination of the 2-vector sequences and these parameters
increases the CRP space to a large exponential. For example,
one of the configuration parameters is called thePath-Select-
Mask. It allows the verifier to select a specific subset of the
paths, from those tested by the applied 2-vector sequences, to
be used in the bitstring generation process. By itself, thePath-
Select-Maskadds ann-choose-k number of possibilities to the
size of the response space. The values ofn andk are typically
in the range of 5000 and 2048, resp, which corresponds to a

value larger than 3e1467.

HELP possesses a second distinguishing characteristic
beyond those found in conventional PUF definitions. The paths
defined by the functional unit have a complex interconnection
structure requiring long runtimes of automatic test pattern gen-
eration (ATPG) software to determine the 2-vector sequences
required to test them. The difficulty of generating challenges
for HELP adds a new dimension to the difficulty of carrying
out model-building attacks because the adversary must first
expend a great deal of effort to determine the challenges that
enable an effective model-building strategy. It can be argued
that this effort only needs to be expended once for a given
implementation but depending on the test generation strategy
and the netlist characteristics, it may be infeasible to compute
the required tests in a reasonable amount of time. Note that this
characteristic is only a disadvantage for the adversary. The
trusted authority can pick-and-choose which paths to target for
test generation (only a limited number of CRPs are stored in
the secure database), and therefore, test generation time can be
kept small.

1.1  Characteristics of PUF-based Authentication Protocols

The simplest form of a PUF-based authentication protocol
is carried out in two phases; enrollment and authentication.
During enrollment (which occurs in a secure facility), the veri-
fier randomly selects a small subset of the possible challenges
and applies them to the PUF to generate a corresponding set of
responses. The CRPs for each token are recorded by the veri-
fier in a secure database. The CRPs are later used for authenti-
cating the fielded token. The number of stored CRPs for each
token can be relatively small because the large CRPs space of a
strong PUF along with the secrecy of the selected subset make
it very difficult for adversaries to build a clone to impersonate
the token.

However, this simple model has several drawbacks. First,
it does not provide privacy for the authenticating token, and
therefore, adversaries will be able to track a fielded token
across successive authentications. This is true because the
token must first identify itself to the verifier using some type of
token-ID to enable the verifier to select the proper CRP set.
The token-ID is required because only a small, undisclosed,
subset of the CRPs are recorded on the verifier for each token
during enrollment. The token-ID must also be stored perma-
nently on the token, e.g., ‘burned in’ using fuses, and must be
sent in the clear. CRP chaining and encryption schemes have

been proposed to avoid this, but incur additionally overhead
because they require a read-writable NVM to implement the
chaining component [7].

Second, the scheme is susceptible to denial-of-service
(DOS) attacks, whereby an adversary depletes the verifier’s
CRPs for a token by repeatedly attempting to authenticate.
Third, even when DOS attacks are not attempted, the stored
CRPs can be exhausted in the course of a sequence of valid
authentications because the verifier must delete a CRP once it
is used (to avoid replay attacks), and the verifier stores only a
fixed number of CRPs for each token.

In this paper, we propose a novel PUF-based, privacy-pre-
serving, mutual authentication protocol that overcomes these
limitations. Instead of storing response bitstrings on the veri-
fier, the protocol stores path timing information, e.g., 15-bit
digitized representations of measured path delays. In combina-
tion with a set of configuration parameters, the storage of path
delays provide distinct advantages over response bitstrings by
enabling a very large, exponential set, of response bitstrings to
be generated using a fixed set of stored path delays on the veri-
fier.

This paper builds on the work described in [6] and [8]. The
novel contributions of this paper over previous work are:
• A complete end-to-end privacy-preserving, mutual PUF-

based authentication protocol.
• A novel Dual-Helper-Data reliability-enhancing method.
• A hardware data analysis and demonstration of the authen-

tication protocol on a set of Xilinx Zynq FPGAs.
• Analysis of the proposed protocol’s bitstring and hardware

implementation characteristics.
This paper is organized as follows. Related work is pre-

sented in Section 2. HELP is reviewed in Section 3 and the pro-
posed PUF-based authentication protocol is presented in
Section 4. Experimental results are presented in Section 5, a
Security Analysis is Section 6 and Conclusions in Section 7.

2.  Related Work

The authors of [9] propose the use of delay variations in
functional units for authentication. However, the scheme makes
use of the timing values directly, and does not account for path
length bias effects. Moreover, the proposed authentication
scheme is incomplete.

An improved ownership transfer and mutual authentica-
tion RFID protocol is proposed in [10]. The authors in [11]
introduce a conditional privacy-preserving authentication
scheme for Ad hoc Networks. A mutual authentication scheme
is proposed in [12] for the Fog-Cloud network architectures.

A excellent recent survey has been published which sum-
marizes the state-of-the-art in PUF-based authentication proto-
cols [14-29] for resource-constraint devices [13]. The
authentication protocols covered by the survey are evaluated
according to: (1) resilience to environmental noise, (2) resil-
ience to machine learning attacks, (3) the need to expand the
response space of the strong PUF and (4) resilience to protocol
attacks. The authors of [13] conclude that the main weakness in
existing protocols relates to weaknesses in the PUF’s entropy



source and that future research should focus on developing ‘a
truly strong PUF with great cryptographic properties’.

A prototype of a provably secure protocol is recently pro-
posed in [7] that supports privacy-preserving and mutual
authentication. The protocol makes use of a weak SRAM PUF,
and requires NVM and several cryptographic functions to be
implemented on the token. Their follow-up work in [30] makes
use of an ASIP processor architecture for implementing com-
pact and low-power authentication protocols on FPGAs.
Resource utilization of the ASIP implementation is very small,
approx. 250 LUTs and FFs, but excludes the PUF core, so it is
difficult to carry out a direct comparison with the resources
reported in this paper for HELP. We will investigate the pro-
posed ASIP architecture for implementing the HELP PUF and
protocol operations in a future work.

3.  HELP Overview

The source of entropy for HELP is the manufacturing vari-
ations that occur in the delays of paths that define an on-chip
functional unit, as shown in Fig. 1. In this paper, the functional
unit is a 32-bit column from Advanced Encryption Standard
(AES) which includes 4 copies of the SBOX and 1 copy of the
MIXEDCOL (calledsbox-mixedcol) [31]. This combinational
data path component is implemented in a WDDL logic style
[32], which doubles the number of primary inputs (PIs) and
primary outputs (POs) to 64. The implementation ofsbox-
mixedcolrequires approx. 3000 LUTs on a Xilinx Zynq FPGA
and provides approx. 8 million paths. Although the analysis
carried out in this paper usessbox-mixedcol, we have also
recently demonstrated the protocol using a lighter-weight func-
tional unit consisting of single AES SBOX component that
possesses approx. 600 LUTs, reducing the overall implementa-
tion size (HELP + functional unit) from approx. 6000 LUTs to
less than 3000 LUTs. The details of area and time overheads
associated with HELP are provided in Section 5.2.

As indicated above, a challenge for HELP consists of a 2-
vector sequence and aPath-Select-Mask. The ‘Launch Row
FFs’ in Fig. 1 are used to apply the 2-vector sequences to the

primary inputs of the functional unit, labeledPI[] , while the
‘Capture Row FFs’ are used to measure the path delays at the
PO[] . The path delays are measured by applying a series of
launch-capture clocking events (calledclock strobing) using
Clk1 and Clk2 as shown on the left side of Fig. 1. The first vec-
tor of the sequence represents the initialization vector. The
application of the second vector generates a set of transitions
which are timed by the clock strobing technique. The clock
strobing technique requires the repeated application of the 2-
vector sequence. For each repeated application, the phase shift
between Clk1 and Clk2 is increased by a small fixed∆t.

The phase shift value between the two clocks is digitally
controlled, and is referred to as thelaunch-capture interval

(LCI)1. The smallest LCI that allows the propagating edge
along a path starting from a Launch FF to be captured in a Cap-
ture FF (occurs when an XOR gate on the output becomes 0) is
used as the digitized timing value for the path. In the following
description, we refer to the LCI path timing value as a
PUFNum or PN.

The authentication protocol described in Section 4
requires HELP to generate nonces in addition to the PNs. The
VHDL module responsible for implementing the PN timing
engine generates nonces in parallel with PN generation by
leveraging the meta-stability characteristics that exist in a sub-
set of the tested paths. Meta-stability is determined for a path
by repeatedly measuring it and then analyzing the variations in
the fractional component of the computed average. Those paths
that produce two consecutive PN values nearly of equal fre-
quencies are used as a source of true random numbers
(TRNG). Although not presented in this paper, the random sta-
tistical properties associated with the nonces generated in this
fashion pass all of the NIST statistical tests [33].

We generate test data in this paper by applying a set of
approx. 1200 challenges to test 2048 paths with rising transi-
tions and 2048 paths with falling transitions. HELP constructs
2048signed differencesfrom the 4096 PNs by pairing each of
the rising PNs with a falling PN using two linear-feedback shift
register (LFSRs). The LFSRs are initialized with a pair of con-
figuration parameters, calledLFSR seeds. The set of 2048
signed differences are referred to asPND in the following.

3.1  TV Compensation (TVCOMP)

The reliability of a PUF refers to the number of bit flip
errors that occur when the bitstring is regenerated. Ideally, the
bitstrings are precisely reproduced during regeneration but this
is rarely possible with PUFs. The largest source of ‘noise’ that
causes bit flip errors for PUFs is a change in temperature and/
or supply voltage (TV noise). Although sample-averaging of
path delays is effective at reducing measurement noise, this
strategy is not effective for TV noise, and instead a TV com-
pensation (TVCOMP) method is required. The TVCOMP pro-

1. The ability to dynamically control the fine phase
shift of a Clk signal is a common feature of on-chip
digital clock managers (DCMs) in FPGAs.

Fig. 1. Configuration of the functional unit and clock
strobing method for measuring path delays.
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cess that we propose is described by Equations (1) and (2).

Here,zvali represents a standardized PND after subtract-
ing a meanµtokenand dividing by a rangeRngtoken, with µto-

kenand Rngtoken derived from the distribution of all PND
obtained during regeneration under potentially adverse envi-
ronmental conditions, referred to as TV corners. The individual
zvali are then transformed to a set ofPNDc (with ‘c’ for com-
pensated) using two additional configuration parameters,µref

andRngref (ref for reference). This linear transformation is very
effective at reducing TV noise. The noise from environmental
variations that remain in the PNDc is calleduncompensated TV
noise or UC-TVNoise.

3.2  BitString Generation Algorithm

The bitstring generation process uses the signed PNDc as
a means of both hardening the algorithm against model build-
ing and increasing the diversity in the PUF responses. Amod-

PNDc is defined by applying aModulus to the PNDc. The
Modulus is a fifth configuration parameter to the HELP algo-
rithm (adding to theµref, Rngref andLFSR seedsparameters).
The modulus is necessary because the paths in the functional
unit vary in length and this path length bias is captured in the
PNDc. The modulus reduces the bias while fully preserving the
within-die delay variations, i.e., the most important source of
randomness.

Fig. 2 shows a sample set of 18 PNDc computed from
pseudo-random pairings of PN measured from chip C1. Each
PNDc is measured 16 times under different TV conditions. The
red curve line-connects the data points obtained underenroll-

ment conditions (25oC, 1.00V) while 15 black curves line-con-
nects data points under a set ofregeneration TV corners,
which in our current experiments is all combinations of tem-

peratures -40oC, 0oC, 25oC, 85oC, 100oC with supply voltages
0.95V, 1.00V and 1.05V. The curves plotted along the top of
Fig. 2 show the modPNDc values after a modulus of 20 is

(1)zvali
PNDi µtoken–( )

Rngtoken
--------------------------------------=

PNDc zvaliRngref µref+= (2) applied. The modPNDc are used in HELP’s bitstring generation
procedure described below.

3.3  A Simple Entropy Enhancing Technique

We recently developed an ‘offset’ technique that can be
used to further reduce bias effects, particularly when the Modu-
lus is greater than the magnitude of the within-die variations.
Fig. 3 provides a plot of a PNDc obtained from a set of 45 chips
to illustrate the concept. The line connected points in each
curve are generated by the same chip and represent the value of
the PNDc measured in the 16 TV corner experiments after they
has been TVCOMP’ed. The UC-TVNoise referred to earlier
that remains after TVCOMP is annotated on the bottom-most
curve. In contrast, within-die variations (WID) are represented
by the vertical extension of the individual curves, which is also
annotated in the figure. The magnitude of WID for this PNDc is
approx. 11 LCIs.

If a Modulus of 20 is used, then the position of this group
of curves, shown between -131 and -120, represents a worst-
case scenario because the bit generated in the bitstrings (dis-
cussed below) would be the same for nearly all chips. The bias
that creates this problem can be eliminated by adding a con-
stant of 6 to the points in the all curves (see right side of Fig.
3). This ‘centers’ the PNDc distribution over -120 and maxi-
mizes the entropy contained in this PNDc by making the num-
ber of chips which produce a ‘1’ in the generated bitstrings
nearly equal to the number that produce a ‘0’. The appropriate
offset is computed by the verifier using the stored enrollment
data and is encoded in the set ofPath-Select-Masksent to the
token.

3.4 BitString Generation with Margining and Dual Helper

Data

We propose aMargin technique as a method to improve
reliability. The Margin technique identifies modPNDc that
have the highest probability of introducing bit flip errors. The
modPNDc data shown along the top of Fig. 2 is replicated and

Fig. 2. Sample of (a) PNDc (bottom) and corresponding
modPNDc (top).
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enlarged in Fig. 4(a) to serve as an illustration. The region
defined by the Modulus is split into two halves, with the lower
half used as the ‘0’ region (between 0 and 9 in the figure) and
the upper half as the ‘1’ region.

Without Margining, bit flips would occur at modPNDc

indexes 4, 6, 7, 8, 10 and 14 because some of the values in the
groups of PNDc data points from the 16 TV corner experiments
cross over the 0-1 lines at 9-10 and 19-0. The Margin technique
avoids these bit flip errors by creatingweak andstrong classes
for the bits associated with the modPNDc. The bit associated
with a modPNDc is classified asweak if the modPNDc falls
within a margin around the 0-1 boundaries, and is classified as
a strong bit otherwise. The margin is set ideally to the worst
case UC-TVNoise level for the best results, but can be tuned to
attain a specific probability of failure in the authentication pro-
tocol as we will show.

A novelDual Helper Data(DHD) scheme is proposed as a
means of further reducing bit flip errors. The DHD technique is
described in the context of our proposed authentication proto-
col in advance of its full description in Section 4. Fig. 4(b)
shows the helper data (HelpD) and response bitstrings
(RespBS) for the hardware token while Fig. 4(c) shows them
for the verifier. The values are derived using the red (token) and
blue (verifier) highlighted data points from the modPNDc
graph in Fig. 4(a). Authentication in the field makes use of data
stored earlier during enrollment in the Verifier Database. The
following operations are carried out to generate the Token and
Verifier StrongBS:
• The token generates helper data (Token HelpD) using the

Margining technique to produce the Token StrongBS,
which are both transmitted to the verifier.

• For each token stored in the Verifier Database, the verifier
computes helper data (Verifier HelpD), and then bitwise
AND’s it with the received Token HelpD.

• The verifier constructs the Verifier StrongBS using the
AND’ed HelpD while simultaneously eliminating strong
bits from the Token’s StrongBS that correspond to Token
HelpD bits that were changed from ‘1’ to ‘0’ during the

AND operation (3 bits are eliminated in this example as
shown along the bottom of Fig. 4(c)).

• The two StrongBS are compared. A successful authentica-
tion requires either an exact match between the Token and
Verifier StrongSB, or a ‘fuzzy match’ where a match is
successful if most, but not all, of the bits match.
The AND’ing of the token and verifier’s HelpD bitstrings

allows the margin to be reduced to approx. one-half of that
required if the individual HelpD bitstrings were used by them-
selves. This is true because a bit flip error can only occur if
UC-TVNoise causes a modPNDc to move across both margins,
and into the oppositestrong bit region, as shown by the cap-
tion and illustration in Fig. 4(a). If the modPNDc moves but
remains in either the ‘1’ or ‘0’weak bit regions, then the AND
operation will eliminate it. For example, a bit-flip error associ-

ated with the 6th modPNDc in Fig. 4(a) that would have
occurred under the SHD scheme is avoided in the DHD
scheme. As we will show, the smaller margins used with the
DHD scheme allow the Modulus to be reduced, which in turn,
allows better access to within-die variations.

4.  Authentication Protocol

A privacy-preserving, mutual authentication protocol is
presented in this section. As indicated above, we propose to
store path delay information, the PNs, on the verifier instead of
response bitstrings. The PNs can each be represented as a 15-
bit values (which provides a range of +/- 1024 with 4 bits of
fixed-point precision). The protocol employs several parame-
ters, including aModulus, aµref andRngref from Equations (1)
and (2), a pair ofLFSR Seeds, a Margin and aPath-Selection-
Mask, to allow multiple response bitstrings to be generated
from a fixed set of PNs. The verifier specifies a set of paths in
thePath-Select-Maskand encodes offsets in the unused bits to
improve entropy as discussed in Section 3.3.

A challenge is defined as a 2-vector sequence + aPath-
Select-Mask. A one-time interface(implemented on the FPGA
as a special programming bitstring) is used during enrollment

Fig. 4. Margin and Dual Helper Data Algorithm Illustration.
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to allow the token to transfer PNs to the verifier. The protocol
separates token identification (ID phase) from authentication
(Authen phase) to support the privacy preserving component.
The protocol does not require any cryptographic primitives nor
non-volatile memory (NVM) on the token.

The enrollment operation is graphically illustrated in Fig.
5(a). Prior to manufacture, automatic test pattern generation
(ATPG) is used to select a set of test vector sequences, {ck},
that will be used as acommon set of challenges for all tokens
in theID phase. The number of vectors depends on the security
requirements regarding privacy. Thesbox-mixedcolfunctional
unit produces 40 PNs on average per 2-vector sequence. There-
fore, a set of 1000 vectors would produce approx. 40K timing
values.

The common challenges are transmitted to the token in a
secure environment during enrollment and applied to the func-
tional unit’s PIs. The token generated PN are transmitted to the
verifier, annotated as {PNj} in Fig. 5(a). The verifier generates
an internal identifierID i for each token usingVerifierGenID()

and stores the set {PNj} under ID i in the secure database.

A similar process is carried out during theAuthen Phaseof
enrollment except that a distinct set of ATPG-generated chal-
lenges are selected (usingSelectATPG(IDi)) for each token.
The number of hazard-free testable paths in typical functional
units can be very large (sbox-mixedcolhas approx. 8 million
paths), making it possible to create minimally overlapping sets
for each token (some overlap is desirable for privacy reasons as
discussed below). Note that the task of generating 2-vector

sequences forall paths is likely to be computationally infeasi-
ble for even moderately sized functional units. However, it is
feasible and practical to use ATPG to target random subsets of
paths for the enrollment requirements. The set of PNs, {PNy},
generated in theAuthen Phaseare also stored, along with the
challenge vectors that are used, in the secure database under
ID i.

The fielded token authenticates using a 3-phase process,
Phase 1 istoken identification(ID), Phase 2 isverifier authenti-
cation(Mutual) and Phase 3 istoken authentication(Authen).
The operations carried out in the ID Phase are shown graphi-
cally in Fig. 5(b). The other two phases are nearly identical,
with only the differences noted below.

The token initiates the process by transmitting a ‘req. to
authen.’ signal to the verifier. The verifier generates noncen2

and transmits it to the token, along with a selected set of chal-
lenges {ck} to the token. Note that the transmitted challenges
are typically a subset of those used during enrollment. The
token generates a noncen1 and transmits it to the verifier. This
strategy, first proposed in [25] for challenge selection, prevents
the adversary from constructingn2 as a means of carrying out a
systematic attack.

The token and verifier computem = (n1 XOR n2) and use
the m as an input parameter to theSelParamfunction. Sel-
Paramconstructs the parametersMod, S, µref, Rngref andMar-

gin using bit-fields fromm. The twoLFSR SeedparametersS
can be derived directly from a bit-field inm. The remaining
parameters are derived using a table lookup operation as a

PNy{ } PUF cx{ }( )=
cx{ }

PNy{ }

PNj{ }

DB ID i[ ] PNj{ }( )←

ck{ } ck{ } Server←PNj{ } PUF ck{ }( )=

ID i ServerGenID()←

SelectATPG IDi( ) cx{ }→

DB ID i[ ] cx PNy,{ }( )←

Enrollment: ID Phase

Enrollment: Authen Phase

n1

For i in DB[ID i]

n1 TRNG()←
m n1 n2⊕←

modPNDc′ j{ } AppParamPUF ck{ }( ) S µref Rngref Mod, , , ,( )←

bss′ h′,( ) BitGenS modPNDc′ j{ } Margin,( )← bss′ h′,

bss″ bss=?

(Search for match)

n2 TRNG()←

ck{ } n2,

Mod S µref Rngref Margin, , , ,( ) SelParamm( )←

IDi

ck{ } Server←

modPNDcj{ }
i

AppParam PNj{ }
i

S µref Rngref Mod, , , ,( )←

If match is found, proceed to Phase 2,verifier authentication bss bss″,( ) BitGenD modPNDcj{ }
i
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Fig. 5. Enrollment Operations (a) and Authentication Protocol for ID Phase (b).
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means of constraining them to specific ranges. For example,
Mod is lower bounded by theMargin and is constrained to be
an even number less than 30. Similarly,µref andRngref parame-
ters are constrained to a range of fixed-point values. Section 5
provides recommendations on the ranges and presents statisti-
cal results using a subset of the possible parameter combina-
tions. SelParam is carried out on the verifier in the same
fashion.

Once the parameters are selected, the bitstring generation
process is carried out as follows:
• The challenges {ck} are applied to generate a set {PN’j},

referenced asPUF({ck}) in Fig. 5(b).
• ThePNDiff, TVCOMPandModulusoperations described

in Sections 3, 3.1 and 3.2 are then applied to the set of PNs
using theAppParamprocedure with parametersS, µref,
Rngref and Mod parameters to generate the set {modP-
NDc’j}.

• Bitstring generation (BitGenS) is then performed on the
token using theMargining process described in Section
3.4, and shown graphically in Fig. 4(b).BitGenSreturns
both a bitstringbss’ that is composed of only strong bits
under the constraints of theMargin and a helper data
stringh’. Bothbss’ andh’ are transmitted to the verifier.

• The verifier carries out a search process by processing
each of its stored tokeni data sets {PNj} i using the same
parameters. However, the DHD scheme, denotedBitGenD
in Fig. 5(b), is used instead.BitGenD bitwise-ANDs the
token’s helper datah’ with the helper data derived for each
data set (not shown), and uses it to modify the token’s bit-
string bss’ to bss” eliminating bits as needed (see bottom
of Fig. 4(c)) and to produce the verifier’s StrongBSbss.
The verifier then comparesbsswith bss”, and completes
theID Phasesuccessfully if a match is found.
Note that this is a compute-intensive operation for large

databases becauseAppParamandBitGenDmust be applied to
each stored {PNj} i in the database. However, the search opera-
tion can be carried out in parallel on multiple CPUs given the
independence of the operations if needed. The runtime of the
search algorithm is reported on in Section 5.

As indicated, the search terminates when a match is found
or the database is exhausted. In the latter case, authentication
terminates with failure at the end of theID Phase. Therefore,
the ID Phasealso serves as a gateway that prevents an adver-
sary from depleting a token’s authentication information on the
verifier in a denial-of-service attack.

In the former case, theID i of the matching verifier data set
is passed to Phase 2,verifier authenticationand Phase 3,token
authentication. In Phase 2, the same process is carried out
except the token and verifier roles are reversed and the search
process is omitted. Also, the challenges used in theID Phase
can be re-used and onlySelParamrun using two new nonces
(n3 XOR n4). Phase 3 is similar to Phase 1 in that the token is
again authenticating to the verifier, but uses a ‘token specific’
set of challenges{cx}. Similar to Phase 2, the search process is
omitted (note, Phase 3 can be omitted in applications that have

lower security requirements, e.g., RFID and home automation
applications).

Note that token privacy is preserved in theID Phase
because, with high probability, the transmitted informationbss’
andh’ will be different from one run of the protocol to the next,
given the diversity of the parameter space provided by theMod,
S, µref, Rngref, Margin. This diversity is exponentially increased
as discussed in the Introduction through the use of thePath-
Select-Mask. Moreover, by creating overlap in the challenges
used by different tokens in thetoken authenticationphase,
tracking is prevented in this phase as well.

We note that the process of generating helper data on the
token was proposed previously in [3], but for the purpose of
addressingerror correction issues. HELP uses anerror avoid-
ancescheme and therefore, the motivating factor for previously
proposedreverse fuzzy extractionschemes, i.e., for reducing
the computing burden associated with error correction on the
token, does not exist for HELP. As a consequence, it is possible
in HELP to implement an efficient helper data scheme in either
direction, as proposed in the multiple phases of our authentica-
tion scheme.

5.  Statistical Evaluation of Hardware Data

TheMod, S, µref, Rngref andMargin collectively represent
parameters that can be varied within limits to create distinct bit-
strings from a set of measured PNs. This feature of the pro-
posed authentication scheme offsets the increased overhead
associated with storing multi-bit PNs on the verifier as an alter-
native to response bitstrings. However, this scheme depends
heavily on high statistical quality among the generated
StrongBS. This section investigates StrongBS statistical quality
using the standard metrics, including Intra-chip hamming dis-
tance (HDintra), Inter-chip hamming distance (HDinter) and the
NIST statistical test tools, as measures of bitstring reproduc-
ibility, uniqueness and randomness, resp.

5.1  Bitstring Statistical Analysis

The analysis in this section is carried out using data col-
lected from Xilinx Zynq 7020 SoC FPGAs [34]. A set of 4096
PNs are collected from 45 chips at each of 16 TV corners. The
enrollment data stored in the verifier database is collected at

25oC, 1.00V (nominal conditions), while regeneration data is
collected at all combinations of the extended industrial-grade

temperature-voltage specification limits for the parts, -40oC,

0oC, 25o, 85oC and 100oC and voltages 0.95V, 1.00V and
1.05V. A set of low-noise, high within-die variations paths are
selected usingPath-Selection-Masksfrom approx. 600 rising
and 600 falling 2-vector test sequences.

PNDs are created using LFSR-selected pairings of the
2048 rising and 2048 falling edge PNs. Although not analyzed
here, this rise-fall pairing strategy reduces TV noise while
increasing the randomness among the PNDs. Each of the 2048
rising edge PNs can be paired with any of the 2048 falling edge
PNs, yielding 4,194,304 possible combinations. We report



results on a subset of 256 of these pairing combinations.
A 2-bit offset scheme is applied to the PNDc to improve

entropy, as discussed in 3.3. The verifier computes the offsets
using stored enrollment data and uses it to shift the individual
PNDc upwards by 0, 1/8, 1/4, or 3/8s the range given by the
appliedModulusto better center the distribution over the 0-1
lines.

A set ofModuli between 10 and 30, in steps of size 2, and
Marginsof size 2 and 3, are also investigated, as shown along
the x- and y-axes in Figs. 6 and 8 (to be discussed). Note that
the bars of size 0 in the figures indicate that the analysis is not
valid for these combinations ofMargin andModuli. The mini-
mum value of theModulusis given by 4*Margin + 2 because
four weak regions are required as shown by the example in Fig.
4(a) and the two strong bit regions must be at least of size 1.
For example, the smallestModulusfor aMargin of size 3 is 14,
so elements in the histogram forModuli of 10 and 12 are 0.

Our analysis reveals that of the 20 combinations of these
parameters, 17 are useful. The only combinations that cannot
be used areModulusof 10 for Margin 2 andModuli of 14 and
16 for Margin 3. As we show, the bitstring sizes are too small
for these combinations ofMargin andModuli.

Our analysis also investigates two of the scaling factor
combinations given by theµref andRngref parameters (see Eqs.
(1) and (2)), in particular, the Mean and Maximum recom-
mended values, which are derived from the individual distribu-
tions of the 45 chips. We conservatively estimate thatµref and
Rngref can be independently set to 10 different values between
these Mean and Maximum values.

Given these bounds on the configuration parameters, it is
possible to generate a total of 4,194,304 * 17* 10 * 10 ~= 7 bil-
lion different bitstrings using the same set of paths (PNs). As
discussed earlier, the verifier also applies aPath-Selection-
Mask to each of the 2-vector sequences, which increases the
number of possible bitstrings exponentially.

5.1.1   Actual Inter-chip Hamming Distance (HDinterA)
Inter-chip hamming distance is reported in two ways,

Actual and True. In this section, we compute HDinter using the
StrongBS produced after the application of the DHD method
described in Section 3.4.

A set of StrongBS are created by AND’ing pairs of Helper
Data bitstrings as follows. First, the enrollment modPNDc is

used to create a set of 45 Helper Data bitstrings for each of the
45 chips. Second, Helper Data is computed using the modP-
NDc collected under each regeneration corner for these 45
chips. For each chip, the enrollment Helper Data bitstring is
AND’ed with the corresponding regeneration Helper Data bit-
strings. The 45*15 AND’ed Dual Helper Data bitstrings are
used to create a corresponding set of StrongBS using the
method shown in Fig. 4(b) and (c). Note that the DHD method
creates variable-sized bitstrings. We use the smallest bitstring
that is produced by one of the chips in the HDinterA analysis.
The smallest bitstring sizes are analyzed and reported on in
Section 5.1.3.

HDInterA is computed using Equation 3. The symbolsC, T,

B andNC represent ‘number of chips’ (45), ‘number of regen-
eration TV corners’ ‘number of bits’ (smallest bitstring size)
and ‘number of chip combinations’ (45*44/2 = 990), resp. This
equation simply sums all the bitwise differences between each
of the possible pairing of chip StrongBS, and then converts the
sum into a percentage by dividing by the total number of bits
that were examined. HDinterA is computed in this fashion for
each of the 256 seeds and averaged.

The HDinterA are shown in Fig. 6(a) and (b) for each of the
Moduli andMargin combinations using Mean and Max. scal-
ing factors forµref and Rngref. The height of the bars are all
very close to the ideal of 50%. Although an excellent result,
this approach to computing Interchip-HD differs from the tra-
ditional approach because corresponding positions in the bit-
strings are generated from different modPNDc. The results
using the traditional approach, i.e., where the positions of the
modPNDc are preserved in the bitstrings, are reported on in
Section 5.1.3.

5.1.2   NIST Statistical Test Results

The StrongBS referenced in Section 5.1.1 are used as input
to the NIST statistical test suite [33]. The results using Mean
Scaling and only 1 of the 256LFSR seedpairs are presented in
Fig. 7(a) and (b), forMarginsof 2 and 3, resp. (the results for
other configuration parameters are very similar). NIST test cri-
teria classifies a test category aspassedif at least 42 of the 45
chips pass the test. The figure shows all bars are above the red

HDinterA
1

CC B T××
---------------------------- SBSi t k, , SBSj t k, ,⊕( )

k 1=

B

∑
j i=

C

∑
i 1=

C

∑
t 1=

T

∑ 100×=

Eq. 3.

Fig. 7. NIST statistical test results [33].

Margin = 2 Margin = 3

Fig. 6. Actual HDinter using the StrongBS from 45 copies of
the chips under Enrollment conditions using Mean and

Maximum scaling factors for µref and Rngref.
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threshold line at 42, and therefore all test categories are passed.
Bars of height 0 for NIST Tests 1, 2 and 3 identifyModuli that
produced bitstrings with sizes less than the NIST requirement
for those tests. The pass percentage when the NIST tests are
applied to the bitstrings produced fromall combinations of the
investigated parameters is approx. 98.8%.

5.1.3 True Inter-chip HD (HDinterT), Entropy, Probability

of Failure and Smallest Bitstring Size

Fig. 8 shows the results fortrue Inter-chip HD (HDinterT),
Entropy, Probability of Failure and Smallest Bitstring Size
(columns) using Mean and Max. scaling factors forµref and
Rngref (rows). Similar to HDinterA, HDinterT is computed as the
average percentage across 990 pairings of bitstrings and 256
different pairs ofLFSR seeds. However, the full length bit-
strings of length 2048 are used and for each pairing of bit-
strings, the hamming distance is computed using only bits
classified as strong in both bitstrings. Under the Mean scaling
factor, the HDinterT vary from 30% to 50% with the smallest
value of 30.2% forMargin 3 andModulus30. For the Max
scaling, most of the HDinterT values are between 40% and 50%
with the smallest value of 38.7%. These results are also very
good and indicate that a 2-bit offset can be used effectively
with this range ofModuli.

Similarly, entropy is computed using the strong bits from
each enrollment-generated bitstring of length 2048 and Eq. 4.
The frequencypi of ‘1’s is computed as the fraction of ‘1’s at
each bit position using only those chips of the 45 which iden-
tify the bit as strong. The entropy values vary over a range from

approx. 1240 to over 1900. The ideal value is 2048 in this anal-
ysis so these results indicate that each bit contributes between
0.60 and 0.93 bits of entropy.

Eq. 4.H X( ) pi log2 pi( ) 1 pi–( )log2 1 pi–( )+

i 1=

n

∑–=

The Probability of Failure is reported as an exponentx

from 10-x with a value of -6 indicating 1 chance in 1 million.
The HDintra is computed by pairing the enrollment StrongBS
for each chip against each of the 15 regeneration StrongBS
under the DHD scheme and then counting the differences (bit
flips) across all combinations of the 15 DHD-generated bit-
strings. The number of bit flips for all chips are summed and
divided by the total number of bits inspected. An average HDin-

tra is then computed using this process across a set of 256LFSR

seedpairs, which is then converted into an exponent represent-
ing the Probability of Failure. The results show that the Proba-

bility of Failure varies between 10-2 and 10-4, with the largest

(worst case) value at 10-2.4. Therefore, fewer than 1% of the
bits for any authentication differ between the token and verifier
under worst case environmental conditions.

The smallest StrongBS sizes are shown in the last column
of Fig. 8. Using the condition that at least 80 bits are needed to
meet the de facto lightweight security standard [30], the only
parameter combinations that fail to meet this criteria are those
noted earlier, i.e,Modulusof 10 for aMargin of 2 andModuli
of 14 and 16 for aMargin of 3.

5.2  Resource Utilization and Runtime Performances of

FPGA Implementation

We implemented the proposed authentication protocol on
the Xilinx Zynq 7020 SoC using thesbox-mixedcoldata path
component. Table 1 gives the resource utilization and runtime
overhead associated with theID Phaseand Mutual Phaseof
the protocol. The table lists the resources in the order in which
they are used by the authentication protocol, with ‘-’ indicating
repeated use of resources previously listed. The totals at the
bottom indicate that area overhead is 6038 LUTs and 1724 FFs
while the runtime is approx. 1.25 seconds. An alternative,
lighter-weight implementation which uses only a single AES
sboxcomponent yields an area overhead of 2909 LUTs and

Fig. 8. Bitstring statistics using 4096 PNs collected from 45 copies of the FPGAs under 16 temperature/voltage corners
using Mean and Maximum scaling factors for µref and Rngref.

M
ea

n
 s

ca
li

n
g

(10-x)

M
a
x
. 
sc

a
li

n
g

(10-x)

True HDinter Probability of Failure Smallest Bitstring SizeEntropy



952 FFs and a runtime of approx. 2.2 seconds.
The implementation of HELP also requires an 18-bit mul-

tiplier and an on-chip BRAM memory of size 7.5 KBytes. The
Xilinx IP blocks used in the implementation include a MMCM
and a dual-channel (64-bits) AXI-GPIO for implementing
communication between the processor and programmable
logic components of the Zynq 7020 FPGA. The AXI-GPIO
uses an additional 128 LUTs and 397 FFs.

The runtime is measured using an 8-core 3.4 GHz Intel i7
desktop computer as the verifier. The authentication time of
1.25 seconds includes network transmissions between the
token and verifier. The exhaustive search carried out on the ver-
ifier takes approx. 300 microseconds per entry in the database.
The runtime reported uses a database with only a single entry.
Therefore, applications that incorporate a relatively small num-
ber of tokens (10K or less) require a search time of approx. 1.5
seconds on average, and a total authentication time of approx.
2.75 seconds.

6.  Security Analysis

In this section, we investigate several important security
properties of HELP that relate to its resistance to model build-
ing and to the size of its CRP space. The response space refers
to the number of bitstrings that each token can generate using
the six user-defined parameters described earlier. Our security
analysis assumes the verifier securely stores the token’s timing
information that is collected during enrollment, encrypting it if
necessary.

Earlier, we reported the size of the challenge space to be

2*(3n-2n) 2-vector sequences, and the number of response bit-
strings to be approx. 7 billion excluding the diversity intro-
duced by thePath-Select-Mask. The (n1 XOR n2) operation
used in the protocol does not allow direct control over these
configuration parameters. ThePath-Selection-Maskincreases
the number of possible response bitstrings exponentially by

Table 1: HELP authentication protocol area and runtime

overhead.

Activity/Component LUTs FFs Time (us)

ID Phase

Network delay - - 44347

PN generation using sbox-mixedcol 3170 128 577834

Token timing engine 721 828

Token bitstring gen. engine 1104 385 2359

Token controller and I/O 705 297 -

Verifier authentication - - 80

Mutual Phase

Network + verifier delays - - 50830

Verifier bitstring gen. - - 54

Token timing engine + bitgen engine - - 577037

Token authentication 338 86 571

TOTALS 6038 1724 1.25 sec

changing the set of PNs used in the bitstring generation pro-
cess. These characteristics of HELP and the protocol collec-
tively add significant resilience to model-building attacks.

Two additional factors further increase HELP’s model-
building resistance. The first is referred to as the ‘distribution
effect’. The PNs selected by thePath-Selection-Maskchange
the characteristics of the PND distribution, which in turn
impacts how each PND is transformed through the TVCOMP
process. The TVCOMP process was described earlier in refer-
ence to Eqs. 1 and 2. In particular, Eq. 1 uses theµtoken and
Rngtoken of the measured PND distribution to standardize the
PNDs before applying the reverse transformation given by Eq.
2. The first transformation makes the final PNDc values depen-
dent on the other components of the PND distribution. There-
fore, machine learning techniques designed to learn the relative
path delays as a mechanism to ‘break the PUF’ need to account
for this ‘distribution effect’.

We have also determined that the physical model for
HELP is more complex than the models developed for the arbi-
ter PUF. Therefore, it is likely that machine learning (ML)
algorithms will require much larger training sets to achieve
good prediction capability, if it is possible at all. This is true for
several reasons. First, the adversary is required to run auto-
matic test pattern generation (ATPG) to generate the vector
pairs used in the training phase of the ML attack. Although this
is a one-time cost, ATPG requires long runtimes and com-
monly fails to find vector pairs that test paths in a hazard-free
robust manner, which is required to eliminate uncertainly about
which path is actually being tested during the training phase.
Second, a level of uncertainty will always remain because not
all paths are hazard-free robust testable. In particular, the path
that dominates the timing for cases where paths reconverge and
have nearly equal nominal delays will be different from chip-
to-chip. Third, ML algorithms such asProbably Approximately
Correct (PAC) that have been effective against arbiter PUFs,
guarantee success only when the model is polynomial in size
[5][35-36]. Our preliminary work on the physical model indi-
cate that the model has components that appear to be exponen-
tial in size, eliminating the possibility of a ‘guaranteed’
success. A full analysis of ML resistance will be provided in a
future work.

7.  Conclusions

A PUF-based, mutual, privacy preserving authentication
protocol is described using a hardware-embedded delay PUF
called HELP. The protocol uses an AES data path component
referred to assbox-mixedcolas the source of entropy. The pro-
posed protocol does not require non-volatile memory or cryp-
tographic primitives on the token. Path delay information is
stored on the verifier during enrollment instead of response bit-
strings. A set of configuration parameters are defined that cre-
ate an exponentially large CRP space using a small set of
measured path delays. A dual helper data scheme is proposed
as a means of improving reliability. Data collected from the
sbox-mixedcolfunctional unit on 45 copies of the Zynq 7020



FPGA shows HELP is capable of generating bitstrings of high
statistical quality for use in PUF-based authentication proto-
cols.
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