
Abstract
Authentication and encryption within an embedded sys-

tem environment using cameras, sensors, thermostats,
autonomous vehicles, medical implants, RFID, etc. is
becoming increasing important with ubiquitious wireless
connectivity. Hardware-based authentication and encryption
offer several advantages in these types of resource-con-
strained applications, including smaller footprints and
lower energy consumption. Bitstring and key generation
implemented with Physical Unclonable Functions or PUFs
can further reduce resource utilization for authentication
and encryption operations and reduce overall system cost by
eliminating on-chip non-volatile-memory (NVM). In this
paper, we propose a dynamic partial reconfiguration (DPR)
strategy for implementing both authentication and encryp-
tion using a PUF for bitstring and key generation on FPGAs
as a means of optimizing the utilization of the limited area
resources. We show that the time and energy penalties asso-
ciated with DPR are small in modern SoC-based architec-
tures, such as the Xilinx Zynq SoC, and therefore, the overall
approach is very attractive for emerging resource-con-
strained IoT applications.
1 Introduction

The proliferation of embedded systems in the expansion
of Internet-of-things (IoT) to 10’s of billions of connected
devices has vastly widened the attack surface for adversaries
targeting the theft of information and/or the malicious,
sometimes destructive, control of such systems. However,
the area and power consumption overheads associated with
adding security functions such as authentication and encryp-
tion to protect such systems can be large relative to overall
system size. Moreover, the approach taken to secure secret
information in desktops and other supervised systems is not
adequate for embedded systems. Embedded systems are
more vulnerable to invasive attacks because many times they
are deployed to unsupervised, remote environments. Attack-
ers can mount more sophisticated attacks when physical
access is possible, using low-cost, but highly effective,
bench-top test and measurement equipment. The basis of
security in a typical embedded system is a stored ‘secret’,
e.g., a master key that can be used to generate session keys
and other bitstring identifiers for security functions. Most
attacks focus on learning this stored secret, either through
side-channel attacks or other methods designed to invasively
probe the chip.

The most common approach to storing ‘secrets’ used for
authentication and encryption functions on the chip is
through the use of non-volatile memory (NVM). Although

NVM is highly reliable, it adds costs to products because of
the additional masks required during chip fabrication, and it
is vulnerable to invasive attacks [1]. Physical Unclonable
Functions (PUFs) have been proposed as an alternative to
NVM key storage, and for generating unique and untrack-
able authentication information. PUFs leverage small,
immutable variations that occur in the manufacturing pro-
cess of otherwise identical digital chips as a means of deriv-
ing unique and repeatable bitstrings that can serve as
encryption keys or as chip-specific identifiers in the message
exchanges during authentication operations. The automatic,
on-chip generation of keys and bitstrings also simplifies and
strengthens key management by removing human interven-
tion in the key generation process, and eliminates other pro-
duction-floor processes required to transfer and write them
into NVMs. PUFs require no digital storage mechanism, i.e.,
bitstrings and keys are generated on-the-fly as needed, and
are alsotamper-evident, whereby attempts by adversaries to
invasively read-out PUF data can often irreversibly change
and/or destroy that data.

In this paper, we propose an FPGA-based resource-con-
strained architecture that reduces area overhead by repro-
gramming a region in the programmable logic usingdynamic
partial reconfiguration(DPR) first with a PUF-based bit-
string/key generation and authentication module called
HELP [2] and then with a AES encryption module [3]. DPR
is an advanced FPGA feature that allows a portion of the re-
programmable fabric of the FPGA to be reconfigured on-the-
fly while the remainder of the FPGA remains unchanged and
fully operational. One of the benefits of DPR is to reduce
resource requirements within the FPGA, which reduces sys-
tem cost and size. DPR can also potentially reduce energy
consumption because of the smaller leakage power associ-
ated with the smaller FPGA. However, the reduced leakage
is partially offset by the power required to dynamically
reconfigure the device. In the proposed architecture, the DPR
operation is only performed once per authentication-encryp-
tion session, and therefore the energy overhead is amortized
over the number of messages that are encrypted.

The ARM Cortex A-9 microprocessor running a version
of embedded Linux on a Xilinx Zynq 7020 FPGA is used as
the test bed for the DPR experiments. A C program and
VHDL implementation of HELP are used to demonstrate a
fully operational PUF-based, privacy-preserving, mutual
authentication protocol and data encryption application.

The experimental evaluation carried out in this work
uses HELP and a PUF-based authentication protocol [2][4].
HELP provides several benefits within the proposed archi-

Physical Unclonable Functions and Dynamic Partial Reconfiguration for

Security in Resource-Constrained Embedded Systems

tecture. First, the version investigated here uses an imple-
mentation of the AES SBOX as the functional unit from
which it derives random information for bitstring generation.
Second, HELP is able to produce an exponential number of
bitstring responses, which is critically important to the secu-
rity properties of PUFs which use unprotected interfaces for
authentication. This small footprint version of HELP is dem-
onstrated in a Xilinx Zynq 7020 FPGA SoC but can also be
used in smaller resource-constrained systems.

This paper is organized as follows. Related work is
described in Section 2 and Section 3 presents the system
architecture and synthesis flow. Section 4 reports on the
experiments carried out as well as system characteristics and
runtimes. Section 5 gives Conclusions.
2 Related Work

Papers [5-6] describe the application of dynamic partial
reconfiguration for switching between different versions of
the AES engine. They dynamically switch the AES core
between 128-, 192- and 256-bit implementations assuming
the application will need different versions. The authors of
[6] investigate a system that incorporates AES-256 and
SHA-3 as reconfigurable modules for applications related to
wireless sensor nodes but they do not implement authentica-
tion, nor do they incorporate a PUF for key generation and
therefore are more costly and vulnerable to attacks. The
authors of [7] propose the use of partial reconfiguration in
wireless sensor nodes for authentication and encryption, but
do not incorporate a PUF-based key generator.
3 System Architecture

A block diagram of the overall system architecture is
shown in Fig. 1. The Xilinx Zynq 7020 is an SoC with both a
‘processor system’ (PS) component shown on the left and a
‘programmable logic’ (PL) component shown on the right.
The PS component includes two ARM Cortex A-9 proces-
sors plus an AXI interconnection network, instruction and
data caches and other processor support modules. The PL
component includes a programmable fabric and a variety of
embedded IP blocks such as Block RAMs (BRAMs), multi-
pliers, etc.

We built a Linux kernel using source code from thegit
repository [8] for the Zedboard [9] with default options
including TCP/IP network support and General purpose I/O
support (GPIO). Xilinx Vivado [10] is used to create a mixed
IP/VHDL project (discussed below) that is then exported to
SDK as the base hardware platform for software develop-

ment. SDK is used to compile a custom C program and to
configure aboot file for the embedded Linux OS. An SD
card is created with the Linux kernelzImageand boot file
BOOT.binplus support filesRAMDiskanddevicetree.dtbfor
use with the Zedboard. The embedded Linux operating sys-
tem (OS) provides secure-socket-shell (ssh) and session con-
trol protocol (scp) network programs for remote sessions and
file transfer, resp. between the Zedboard and a host com-
puter.

The custom C program referenced above carries out the
following operations:
• Sets up an unencryptedsocketconnection with a host com-

puter for communications and data transfer. Sets up a memory-
mapped register interface through Xilinx AXI GPIO for data
transfer between the PS and PL sides.

• Transfers HELP and AES partial bitstream files used by DPR
from the host and stores them into a portion of the 256 MB
DDR on the Zedboard configured as a RAMDisk under Linux
(note: these files can also be stored and accessed from the SD
card or other bitstream dedicated memory available to the sys-
tem).

• Reads partial bitstreams from DDR and carries out DPR using
the Xilinx XDevCfg interface to a dedicated reconfiguration
region in the PL side.

• Controls the key generation, authentication and then encryp-
tion protocols running in PL as a demonstration of a typical
IoT session carried out between an embedded system and a
secure server.
As is customary in a fielded FPGA-based embedded

system, we assume that Xilinx security mechanisms are used
to encrypt the static bitstream and DPR bitstreams for HELP
and AES to prevent reverse engineering and tamper.
3.1 HELP PUF and Authentication Protocol

Fig. 2 shows a block level diagram of the HELP engine
and the portion of the authentication protocol that runs on
the hardware tokenin the shaded region on the left. An
abstraction of the AES S-BOX functional unit is shown as a
gate-level netlist on the far left. The VHDL modules that
implement the HELP engine include aChallenge Selection
module, which is responsible for selecting and applying 2-
vector sequences (challenges) delivered to the hardware
token through a network connection or read out from an on-
board or on-chip memory. TheClock Strobe modulecontrols
the fine phase shift feature in the Xilinx on-chip digital clock
manager (MMCM) to enable accurate measurements of path
delays. The path delays are labeled asOutput Responsesin

Zynq 7020 FPGA representing the embedded system

C Program running on ARM Cortex A-9
• Sets up network connection with server and AXI

GPIO register to PL
• Reads HELP/AES partial bitstreams from

RAMDisk and usesXdevCfg driver in DPR
• Carry out authentication, key generation proto-

col followed by encrypted data exchange with
server using PUF and AES implemented in PL

32-bits

32-bits
Dual Port

GPIO

DEVCFG
Driver

RAMDisk

PS SIDE PL SIDE

AES partial bitstream

AES

MMCM

Static Region configured with
other logic functions

Reconfigurable Region

Static Region

Fig. 1. Overall system architecture.

Off-chip
DDR

Programmable Logic (7020)

HELP partial Bitstream

HELP

the figure, and are obtained by timing transitions propagat-
ing through the SBOX to the FFs connected to its outputs. A
Storage modulesaves a digitized representation of the path
delays in an on-chip Block RAM (BRAM). Once a set of
4096 path delays are obtained, theControl moduleprocesses
the timing values into abitstring and/or key and helper
data using a sequence of parameterized modules named
PNDiff, TVCOMP, ModulusandBitstring Gen. The bitstring
and key are used for authentication and encryption opera-
tions, resp. The helper data is transmitted and stored by a
server, and is used by the hardware token to reproduce the
bitstring/key when needed by the application while operat-
ing in the field (regeneration). The helper data is public
information and does not need to be encrypted. Details
regarding the specific operations carried out during bitstring/
key generation can be found in [4].

The authentication protocol shown on the far right of
Fig. 2 is layered on top of the HELP engine. For example,
the first module of authentication collects anonce(a random
number) from the HELP engine. This nonce is XORed with
a server-generated nonce and is used to specify a set of
parameters for the HELP engine modules. The exchange and
XORing of token-server nonces prevents adversaries from
controlling the HELP engine parameters directly in model-
building attacks.

The HELP engine is then run to generate a bitstring and
helper data as described above. The bitstring and helper data
are transmitted to the server. The server authenticates the
token by comparing the received bitstring with a bitstring
that it computes using the same nonce-selected parameters
and path delays it stores from an earlier enrollment opera-
tion. Enrollment refers to a special process performed in a
secure environment (before the hardware token is deployed
into the field) and involves running the HELP engine to
obtain the digitized path delay values for storage in the
server’s database.

The HELP engine also has an encryption mode
designed to generate a secret key. The protocol in this case
transmits only the helper data to the server. The server also
generates helper data using its stored enrollment data that is
transmitted to the token. The token and server bitwise AND
the helper data bitstrings and use them to generate the secret
keys. The AND’ed helper data bitstrings increase the proba-
bility that both the server and token generate the same key

(see [4] for details). The encryption key is stored for later use
by the AES-128 module, which is programmed into the same
region as the HELP engine using dynamic partial reconfigu-
ration (DPR). The experimental results presented in Section
4 use these authentication and key generation protocols to
characterize performance.

3.2 DPR Synthesis Flow

The Xilinx Zynq 7020 SoC used in our experiments is
ideally suited for applications that requires a hardware/soft-
ware co-design approach. A C program running on the PS
side can be designed to implement higher layer components
of the embedded system application, such as components for
managing network connections, while VHDL can be used on
the PL side to implement the application’s speed- and secu-
rity-sensitive operations. We followed this partitioning strat-
egy in the design of the experimental system.

We designed HELP and a 128-bit pipelined version of
AES [3] as reconfigurable modules (RMs) in VHDL using
the partial reconfiguration(PR) design flow defined within
Xilinx Vivado’s non-project mode of operation [11]. The
details of PR process are shown by a flowchart in Fig. 3
(derived from [11]). The overall flow is bottom-up, i.e., the
static module as well as the RMs used in the DPR operations
are individually synthesized and respectivecheckpointsare
saved to enable the complete system module to be built in
the last phase. The RM configurations are synthesized in
out_of_contextmode to prevent the synthesis tool from map-
ping their I/Os to chip I/O pads. The global clock buffers are
excluded from the RMs, and are instead instantiated in the
static (top) module, because they cannot be a component of
partial reconfiguration.

A blackbox(PR region) is added to the static module as
a placeholder for the RMs. The RMs are then individually
synthesized and loaded into theblackbox. TheHD.Reconfig-
urable is set on theblackboxto inform the synthesis tool that
this region is designated for DPR. Manual floor planning of
the PR region can now be carried out, which involves desig-
nating a region in the PL side and adjusting its position and
size to accommodate the logic in the RM modules. Addi-
tional properties including snapping mode and
reset_after_reconfigurationcan also be enabled on the PR
region. Snapping modeensures that boundaries to the PR
region are legal, whilereset_after_reconfigurationensures

Input Challenge is vector sequence

Output Response are path delays

Fig. 2. HELP Engine (left) and authentication protocol (right).

path
delays

Storage module

7 KB
Block
RAM

TVCOMP module

Modulus module

Bitstring Gen. module

C
on

tr
ol

 m
od

ul
e

Bitstring/key &

Challenge Selection
module

Clock Strobe
module

Xilinx DCM

datapath
component

helper data

Nonce gen. and
exchange w/ serverPNDiff module

Nonce XORing
& param. selection

Bitstring and helper
data generation

HELP Engine

Bitstring and helper
data sent to server
for authentication

Repeat in reverse for
mutual authentication

(BRAM)

A
u

th
en

ti
ca

ti
o
n

AES SBOX

the FFs in the PR region are initialized after each DPR oper-
ation.

After performing adesign-rule-check(DRC), the imple-
mentation step of the Vivado tool flow is run. The process is
repeated for the second RM. A process step calledpr_verify
is then performed which ensures that the static portion of the
design is same in both instantiations. Ifpr_verify is success-
ful, partial and full programming bitstreams can then be gen-
erated and converted into binary files. A optionalblanking
bitstreamcan be configured into the PR region as a means of
reducing power consumption when the PR region is not
being used. Theblanking bitstreamdeletes the configuration
of the PR region and adds buffer ports to its I/Os.

The physical layout of experimental system is shown in
Fig. 4 as a screen snapshot of the view provided by Xilinx
Vivado’s Implementation View (VIV). The PR region is
defined manually using VIV as a purple rectangle and is the
region in which the AES and HELP RMs are instantiated
using the DPR process. The PR region occupies approx. 5%
of the PL region. The static portion of the design is instanti-
ated in a small part of the remaining 95% and includes the
digital clock manager (MMCM) and AXI GPIO register
interfaces to the PS side. The PS side with ARM Cortex A-9
microprocessors, is depicted in the upper left of the image.
3.3 Runtime Operation

The static portion of the PL is programmed upon boot-
up of the hardware token. The C program running is started
manually in our experiments but can be configured to run
automatically once Linux boots, or run immediately in ‘bare
metal’ applications that do not include an operating system.
Our version of the C program performs three basic tasks but
would normally also encapsulate other application-related
functions required of the embedded system. The C program
in our experiments 1) reads and loads the RMs (that have

been stored as files in the RAMDisk component of the off-
chip DDR), 2) sets up a memory mapped interface to the
AXI GPIO registers and 3) configures a network socket con-
nection with a host machine (server). The C program uses
system calls to the Linux driver moduleXdevcfgto load the
RMs. Xdevcfgaccesses the DPR port on the PL side (PCAP
interface) to dynamically load the partial bitstream of the
RM. Data transfer between the C program and the RMs (at
the PS-PL interface) is accomplished using AXI general-pur-
pose I/O (GPIO) registers, configured with two 32-bit chan-
nels for input and output, resp.

As described in Section 2, a privacy-preserving, mutual
authentication operation is carried out with the server, fol-
lowed by an AES encrypted session as a means of demon-
strating a working system and for collecting runtime
statistics about its performance. Fig. 5 gives a flowchart of
the entire sequence of events, from boot-up through DPR of
HELP, token authentication, mutual authentication, key gen-
eration, encryption, transmission and decryption on the
server. Once the session ends, a final DPR step is performed
(not shown) that configures the PR region with theblanking
bitstreamand the system enters low power mode.

4 Experimental Results

4.1 Area and Runtime Overheads of DPR Version

Table 1 shows the resources used by the HELP engine
and the OpenCores pipelined version of AES-128 [3] when
the RM synthesis described in Section 3.2 is carried out.
Note that the static portion also includes an MMCM which
cannot be included in the DPR region. The DSP component
used by the HELP engine is a 25-bit multiplier.

The number of LUTs determines the smallest sized PR
region that can accommodate the RMs. The AES component
is slightly larger and therefore sets the minimum size of the
reconfigurable region. The best case area saving is achieved
when the number of LUTs for both RMs is the same, yield-
ing an area reduction of 50% for the logic placed in the PR
region. The similarity in size of the actual RMs produces a
value close to the optimal at 2,321/(2,321+2,680) = 46.4%.

Table 2 shows the runtimes associated with the DPR
operation only, which accounts for the time spent reading the
RM bitstreams as files from the RAMDisk and processing
one of them using system calls to theXdevcfgdriver. DPR
runtime is proportional to the size of the RM bitstream,
which are approx 313 KB.

Fig. 4. FPGA editor view of system implementation.

Fig. 3. DPR synthesis flow.

Start
SynthesizeTop (static)
module withblackbox
for PR region

Synthesize AES and HELP
in out_of_context mode

Savecheck points

Open synthesizedTop mod.
Load synthesized HELP
to blackbox in Top

SetHD.Reconfigurable
property on PR region

Manually floorplan the PR
module. Turn onsnapping
mode andreset_after_reconfig

Run DRC and thenimplement
the 1st configuration. Save
thecheck point

Clear out the reconfigurable
logic and lock the design. Save
check point to get static-only
portion withblackbox

Load synthesized AES to
blackbox in locked static-only
design and implement it. Save
thecheck point

Runpr_verify to check static
design in both configurations
to confirm they are identical

Generate the full and partial
bitstreams for both AES and
HELP configurations

Erase any existing config. to
reduce power consumption with
blanking bitstream

Convert partial bitstreams to
.bin format for file storage

DPR Region

PS

Table 1: Resource Utilization of DPR version.

Table 2: DPR runtime.

Table 3 gives the runtimes for components of the
authentication, key generation and encryption protocols,
which includes two instances of the DPR runtime from Table
2. The time overhead associated with DPR is approx. 11 ms
or 0.5% of the total runtime. Note that the time overhead
penalty decreases as the number of encryptions increases,

Component LUTs

of 53,200
FFs

of 106,400
MUX

of 26600
BRAM

of 512KB
DSP

of 220

HELP 2321
(4.3%)

979
(0.9%)

53
(0.2%)

7 KB
(1%)

1
(0.5)

AES 2680
(5.03%)

629
(0.6%)

256
(0.96%)

0
(0%)

0
(0%)

Static Por-
tion

625
(1.2%)

972
(0.9%)

0
(0%)

0
(0%)

0
(0%)

Activity Time (µs)

Loading partial bitstreams from file system 663

Open “IsPartialBitstream” attribute ofXdevcfg 74

Open theXdevcfg driver 19

Writing partial bitstream to PL from PS using
Xdevcfg

4535

Totals 5291

Table 3: Protocol runtimes of DPR version.

Activity Time (us)

Partial reconfiguration time: HELP 5291

Time to receive challenge vectors from the server 7115

Token authentication time 810768

Server authentication (mutual) time 799852

Dynamic Key Generation time 783506

Partial reconfiguration time: AES 5285

First 128-bit encryption time 10229

Total Time 2.4 seconds

i.e., the 0.5% applies only to the case when only two 128-bit
encryptions are performed as shown.

The time overhead associated with the authentication
and key generation operations is given by the sum of rows
two, three, four and five in Table 3 as approx. 2.3 seconds.
This runtime overhead is a one-time penalty associated with
each authentication-encryption session, and includes all net-
work delays associated with nonce and bitstring exchanges
between the hardware token and server. Both the DPR and
bitstring/key generation overheads are small enough to suit
many common types of IoT applications including those
developed for home automation and sensor networks.
4.2 Energy Overhead of DPR Version

The energy consumption of the protocol is determined
by measuring the voltage drop across a 9 Ohm resistor
placed in series with VDD on the Zedboard’s input power
cable. The input voltage from the wall-plug mounted regula-
tor is 12 volts. A MAXIM on-board voltage regulator chip
down-converts the input 12 volts to a set of lower voltages,
one of which drives the 1.00 volt core power supply pins of
the Zynq 7020 chip. The low energy requirements of the
implementation made it impossible to use the Zedboard
power monitoring pins installed on the 1.00 volt side of the
MAXIM chip.

The voltage transient difference waveform shown in Fig.
6 is collected using a differential measurement with two
active oscilloscope probes placed on either side of the
inserted resistor. The C program is configured to drive a trig-
ger output signal connected to one of the PMOD output pins
on the Zedboard, which is used as the input trigger to the
oscilloscope. The trigger signal is de-asserted immediately
after each of the major steps in the protocols are completed.
A usleepsystem call with a duration of 50 ms is inserted
after the de-assertion trigger event to make it easy to identify
the beginning and end of the voltage transient associated
with the protocol step. The trigger waveform is shown along
the bottom of Fig. 6, and the corresponding voltage transient
difference waveform shown above it is labeled with each of
the major steps of the protocol. Measurement noise is
reduced by computing an average from a sequence of 100
runs of the protocol.

Table 4: Energy consumption of DPR version

The current drawn by the Zedboard when the protocol is
not running is computed from the baseline voltage drop
using Ohms law as 4.32/9.0 Ohms = 480 mA. The energy
used in each protocol step is derived from the area under the
voltage difference waveform. The area for the first DPR step
is calculated as 0.001388 V-s. Dividing through by the resis-

Activity Energy (mJ)

Partial reconfiguration energy: HELP 1.85

Energy to receive challenge vectors from the server 0.20

Token authentication energy 60.10

Server authentication (mutual) energy 44.10

Encryption Key Generation 61.60

Partial reconfiguration energy: AES 1.90

Encryption energy (256 bits using 128-bit version) 0.07

Total Energy 169.82

Hardware token boots Linux &
static portion of PL configured

C program reads RMs files and
stores them in a memory buffer

C program assertsIsPartial
switch ofXdevcfg driver & does
DPR with HELP RM

C program receives request to
authenticate and starts HELP
engine to produce bitstring and
helper data

Bitstring and helper data passed
through GPIO interface to C
program, and are transmitted
to server

token
authen?

Yes

No STOP

C program assertsIsPartial
switch ofXdevcfg driver & does
DPR with AES RM

Encryption keyandText input
passed through GPIO to PL

C program transmitsCipher text
from PL to server for decryption

STOP

mutual
authen?

Yes

No STOP

Secret Key Generation &
storage in PL side

Fig. 5. Sequence of steps executed in experiments.

tance yields 0.0001542 A-s and multiplying by 12 volts
gives the energy consumption, i.e.,1.85 mJ. Table 4 lists the
energy consumption for each of the major protocol steps
using the same method carried out over the other regions of
the voltage transient difference waveform. The DPR opera-
tions are only performed once for each session and therefore,
assuming each session carries out 100’s of encryption opera-
tions, the overhead of DPR will be much smaller in the over-
all energy consumption profile in an actual usage scenario.
4.3 Wireless Interface

Wireless interfaces are commonly used in IoT applica-
tions. We tested the proposed authentication/encryption sys-
tem using a Belkin N-300 USB WiFi adaptor [12] connected
to the Zedboard using USB-OTG (On-the-Go) connector. A
custom Linux kernel (zImage) is cross-compiled for the
ARM µprocessor as a means of incorporating the Realtek
RTL8712u driver which supports the adaptor. A loadable
module r8712u.ko is also compiled and configured with
firmware r8712u.bin[13]. A bootable system is created by
copying the module and firmware to /lib/modules and /lib/
firmware/rtlwifi respectively to the Linux root file system
stored inRamDisk.We also needed to download the Linux
wireless configuration utilityiwconfig from the Hewlett
Packard (PH) github [14]. Performance tests run using the
wireless interface produced nearly identical results to those
presented using the wired interface described in the previous
sections. Therefore, the speed, power and area results pre-
sented are relevant for wireless IoT applications.
5 Conclusions

An FPGA-based experimental evaluation using dynamic
partial reconfiguration (DPR) is carried out using a PUF
based authentication and AES encryption algorithm, both
implemented in VHDL and designed as reconfigurable mod-
ules (RMs). A hardware-embedded delay PUF called HELP
is used to generate authentication bitstrings and encryption
keys using the AES SBOX data path component as its source
of random information. An area reduction of nearly 50% is
possible using a DPR strategy on these hardware modules
with only a small runtime and energy penalties, illustrating
the practical value of using DPR for security related func-
tions in resource-constrained embedded systems.
6 References
[1] S. Kannan, N. Karimi, O. Sinanoglu and R. Karri, "Security Vulnerabil-

ities of Emerging Nonvolatile Main Memories and Countermea-
sures,"IEEE Transcations on Computer Aided Design of Integrated

circuits and Systems, Vol. 34, No. 1, January, 2015.
[2] J. Aarestad, P. Ortiz, D. Acharyya and J. Plusquellic, “HELP: A Hard-

ware-Embedded Delay-Based PUF”,Design and Test of Computers,
Mar., 2013, pp. 17-25.

[3] http://opencores.org/project,aes_pipe
[4] W. Che, F. Saqib and J. Plusquellic, “A Privacy-Preserving, Mutual

PUF-Based Authentication Protocol”, accepted with minor revisions,
http://www.mdpi.com/journal/cryptography/special_issues/
physical_security, 2016.

[5] Z. E. Abidine A. Ismaili and A. Moussa, "Self-Partial and Dynamic Re-
configuration Implementation for AES using FPGA",IJCSI Interna-
tional Journal of Computer Science Issues, Vol. 2, 2009.

[6] S. Wankhade and R. Mahajan, "Performance Enhancement of AES Al-
gorithm Using Dynamic Partial Reconfiguration",International
Journal of Advanced Research in Electrical, Electronics and Instru-
mentation Engineering, Vol. 3, Issue 4, April 2014.

[7] L.A. Cardona, B. Lorente and C. Ferrer, "Partial Crypto-Reconfiguration
of nodes based on FPGA for WSN",International Carnahan Confer-
ence on Security Technology (ICCST), 2014.

[8] https://github.com/Digilent/linux-digilent.git
[9] https://zedboard.org/
[10] http://www.xilinx.com/products/design-tools/vivado.html
[11] www.xilinx.com/support/documentation/sw_manuals/xilinx14_1

ug702.pdf
[12] www.belkin.com/us/support-product?pid=01t80000002vzbVAAQ
[13] https://git.kernel.org/cgit/linux/kernel/git/firmware/linux-firmware.git
[14] https://hewlettpackard.github.io/wireless-tools/Tools.html

5.02

4.32

V

0.0
(ms)

50
ms

50
ms

50
ms

50
ms

50
ms

50
ms

HELP DPR

Receive
Challenges

Token
Authentication

Server
Authentication

 Encryption Key
Generation

AES DPR

Encryption

Voltage
Transient
Difference
Waveform

Trigger
Waveform

0 500 1000 1500 2000

3.30

Fig. 6. Power Consumption Waveform

