
Abstract -- In the context of hardware systems, authentication
refers to the process of confirming the identity and authenticity of
chip, board and system components such as RFID tags, smart cards
and remote sensors. The ability of physical unclonable functions
(PUF) to provide bitstrings unique to each component can be lever-
aged as an authentication mechanism to detect tamper, imperson-
ation and substitution of such components. However,
authentication requires a strong PUF, i.e., one capable of produc-
ing a large, unique set of bits per device, and, unlike secret key gen-
eration for encryption, has additional challenges that relate to
machine learning attacks, protocol attacks and constraints on
device resources. In this paper, we describe the requirements for
PUF-based authentication, and present a PUF primitive and proto-
col designed for authentication in resource constrained devices.
Our experimental results are derived from a 28 nm Xilinx FPGA.1

1. Introduction
Authentication is traditionally characterized as a process that

verifies “something you know”, e.g., a password, “something you

have”, e.g., hardware one-time-password tokens, and “something

you are”, e.g., your fingerprints. Multi-factor authentication

requires two or more of these components from different catego-

ries. PUF-based authentication provides individual devices with a

set of passwords (bitstring responses to challenges) that uniquely

identify it (a fingerprint), so in this sense, it can be characterized as

a multi-factor authentication mechanism. PUFs derive their finger-

print from random variations that occur in the manufacturing pro-

cess of a chip or board. For example, a delay-based PUF measures

and digitizes variations that occur in paths and/or gates within the

chip or along wires in a printed circuit board (PCB) [1]. Although

we use variations in path delays as the entropy source in this paper,

there are many other sources of variations that can be leveraged, as

is evident from the published literature on PUFs.

PUFs have been proposed for other types of applications

including encryption, for detecting malicious alterations of design

components and for activating vendor specific features on chips.

Each of these applications has a unique set of requirements regard-

ing the security properties of the PUF. For example, PUFs that pro-

duce secret keys for encryption are not subject to model building

attacks (as is true for PUF-based authentication) which attempt to

‘machine learn’ individual path delays for a chip as a means of pre-

dicting the complete response space of the PUF. This is true for

encryption because the responses to challenges are typically not

‘readable’ from an interface on the chip. In general, the more

access a given application provides to the PUF externally, the more

resilience it needs to have to adversarial attack mechanisms.

Authentication as an application for PUFs clearly falls in the

category of extended access. The term ‘hardware token’ or prover

is typically used to identify a fielded device that embeds the PUF,

such as a smart card, and the term ‘secure server’ is used in refer-

ence to the verifier.

1. This work supported by NSF grant 1118025.

Applications such as authentication require a strong PUF, i.e.,

a PUF that can produce a very large number of challenge-response-

pairs or CRPs. Challenges and responses are the digital inputs and

corresponding outputs of the PUF. In order for authentication to

work, it must be necessary and impractical for an adversary to

apply all possible challenges to the PUF on a chip as a means of

obtaining all of its responses. Making this infeasible makes it

impossible for an adversary to build a ‘clone’ of the chip that repli-

cates the CRP behavior. However, the requirement of a very large

CRP space is, in general, challenging to meet for PUFs. It requires

a large source of entropy, which can become expensive area-wise

when the PUF is implemented using dedicated and specialized

components.

Authentication is typically characterized as having two phases:

enrollment and regeneration. Enrollment occurs immediately after

manufacture and involves the verifier generating a random set of

challenges which are applied to the token to generate a correspond-

ing set of responses. The set of CRPs are stored on the verifier for

each chip individually in a secure environment. The stored CRPs

can then be used to carry out authentication in the field with the

token. The verifier only needs to store a limited set of CRPs in the

secure database because the very large CRP space of the strong

PUF combined with the secrecy of the chosen CRPs makes it diffi-

cult or impossible for an adversary to know how to respond using a

clone of the token.

Bear in mind, authentication can also be implemented by hav-

ing the PUF generate a secret key for encrypting communication

between the prover and verifier. The enrollment process involves

the PUF generating a shared key that is stored on the server through

a one-time interface, i.e., an interface that can be disabled, along

with helper data. The helper data is later transmitted to the token as

needed for authentication in the field to enable precise regeneration

of the key. The token in this scenario needs to incorporate an

encryption algorithm, which adds to the required resources.

Although this method requires only a weak PUF that is capable of

producing only a small number of bits (a plus), the encryption oper-

ation carried out by the token is subject to side-channel attacks that

attempt to learn the key (a minus). Once learned, the security mech-

anism is defeated. Therefore, strong PUFs that have a very large

CRP space provide an advantage by making it infeasible for an

adversary to extract all the secrets embedded in each token.

Most authentication proposals also limit the amount (or elimi-

nate completely) the need for helper data and instead allow for

fuzzy matching to occur between server stored responses and those

generated in the field by the token. In other words, a small number

of differences are tolerated in the response bitstrings. Although

fuzzy matching reduces the storage requirements for the verifier by

eliminating the helper data, it also increases the possibility of alias-

ing and impersonation, i.e., the likelihood that two devices produce

the same responses (within the noise margin).

PUF-Based Authentication

Invited Paper

Wenjie Che - Univ. of New Mexico (wjche@unm.edu)
Fareena Saqib - Florida Institute of Technology (fsaqib@fit.edu)

Jim Plusquellic - Univ. of New Mexico (jimp@ece.unm.edu)

In this paper, we propose a hardware-embedded delay PUF

called HELP as a strong PUF for authentication. HELP leverages

entropy present in functional units already present in the chip, and

therefore, it does not require the insertion of dedicated components.

Moreover, the overhead associated with integrating HELP into

functional unit is very small relative to the size of the functional

unit. HELP is unique in that it leverages delay variations in struc-

tures that are not identical and implicitly provides tamper protec-

tion of the functional unit(s). This paper contributes beyond

previously published work in [2][3] in the following ways:

• We implement HELP on a Xilinx 28 nm 7020 Zynq chip
embedded on AVNET’s Zedboard [4] using both glitchy and
glitch-free functional units as the source of entropy and ana-
lyze the statistical quality of the bitstrings.

• We isolate and analyze entropy introduced from multiple
sources and discuss the trade-offs and impact on security.

• We propose an authentication protocol using HELP.

2. Related Work
An excellent survey and critical review has been recently pub-

lished that covers the state-of-the-art with regard to PUF authenti-

cation for resource constrained devices [5]. The criteria used to

review the existing methods assume a low-cost resource con-

strained token and resource-rich server, and the use of a strong

PUF. The authors indicate that protocols which require NVM are

less attractive because of the increased cost of manufacturing of

NVM components in CMOS technologies and because of recently

disclosed vulnerabilities of NVMs to probing attacks. The PUF

protocols proposed in [6-22] are evaluated against the following

characteristics [5]:

• Resilience to measurement and temperature/voltage (TV)
noise sources.

• Resilience to machine learning via use of cryptographic hash
functions and XOR functions as needed.

• Are techniques needed to expand the response space (PRNG)
of the strong PUF?

• Ease of instantiation of the PUF authentication mechanism.

• Resistance to protocol attacks, i.e., token and/or server imper-
sonation and denial of service attacks.

The authors conclude that the main problems with the proto-

cols are rooted in the PUF itself and that research should focus on

developing a truly strong PUF with solid cryptographic properties.

3. Overview
3.1 Goals and Objectives

One of the goals of this work is to isolate and characterize the

main sources of delay variations (the entropy source) on the chip,

namely, 1) within-die delay variations that occur within individual

FPGA LUT primitives, 2) global delay variations that occur across

all LUTs on the chip and 3) delay variations introduced by static

and dynamic logic hazards. All of these sources of variations

change the delay characteristics of paths uniquely on each chip.

A key objective is to determine the magnitude of these varia-

tions with respect to measurement and temperature/voltage (TV)

noise sources. We refer to this noise as “TV noise” since TV domi-

nates even when repeated sampling and TV compensation tech-

niques are applied. TV noise works to impede access to the entropy

provided by delay variations, and reduces the amount of usable

entropy. Delay variations introduced by within-die process varia-

tions are relatively small even when measured through a single

LUT. On the other hand, global variations and variations introduced

by hazards are well above the TV noise margin, making them

attractive as a source of entropy. However, there is a downside to

leveraging these larger sources of entropy as discussed below.

We integrate HELP into a GF(4) subcomponent and a full-

blown GF(256) version of the Advanced Encryption Standard

(AES) SBOX functional unit [23]. The GF(4) version can be imple-

mented using a logic depth of 1, which allows individual LUT

delays to be analyzed. We implement the GF(256) in two ways

referred to as: Standard: without any type of special logic style or

constraints and WDDL: without glitches using wave-differential

dynamic logic [24]. The Standard implementation includes all three

sources of entropy. Inter-chip hamming distance (HD), Inter-chip

HD and the results of NIST statistical tests are reported to under-

stand the trade-off of the two logic styles on bitstring generation

and reproduction [25][26].

A modulus technique is used in combination with a helper data

string as a mechanism to maximize the strength of the crypto-

graphic properties of the PUF in the proposed authentication proto-

col. Glitch-free logic implementations of the functional unit, such

as WDDL, provide a distinct advantage in resource-constrained

authentication applications by reducing bit flips while improving

access to the limited, but most important source of entropy, namely

that provided by within-die variations.

3.2 Attack Scenarios and Assumptions

Traditional “resource-constrained” applications such as RFID

and smart cards utilize memory, small microcontrollers and/or

ASICs for implementing functions. The attack models and assump-

tions that we describe in the context of FPGAs can be extended to

these implementations as noted below. Although HELP is proposed

as an FPGA authentication mechanism in this paper, the concept

and techniques presented are also applicable to ASIC implementa-

tions [2].

Secure computing using FPGAs requires encryption of the

programming bitstream. Modern FPGAs integrate encryption/

decryption modules, and NVM-based key storage mechanisms, to

support this requirement. Beyond protecting Intellectual Property,

encryption also prevents tampering with the design. Although our

technique can detect tamper within functional unit(s), we assume an

attacker is not able to defeat the bitstream encryption mechanism.

No security mechanism, PUF or otherwise, is secure if this require-

ment is not met.

We consider two attack scenarios. First, the adversary can gain

(temporary) possession of the token and attempt to read out all

responses or enough of them to “machine learn” the entropy source.

Once known, a clone can be ‘programmed’. In general, strong

PUFs can significantly impede, or make impossible, the success of

this type of attack. For PUF architectures in which machine learn-

ing is effective, the proposed protocols typically incorporate obfus-

cation mechanisms to prevent direct control of the PUF and

observation of its responses. The second attack mechanism is simi-

lar except that the adversary carries out a ‘man-in-the-middle’

attack, i.e., he or she listens to exchanges between the token and the

server.

Other types of attack scenarios can be avoided. For example,

some protocols require one-time interfaces to be present during

enrollment but such interfaces can be ‘undone’ using focused ion

beam techniques. Still other protocols require the use of small

NVMs, which add cost and weaken security because ‘read-out’

mechanisms are becoming increasingly effective. Therefore, avoid-

ing one-time interfaces and NVM is a plus.

4. Experiment Setup
4.1 HELP Overview

HELP measures path delays using a simplified version of a

embedded test structure called REBEL [2]. The simplified version

eliminates the delay chain component and instead samples the path

delays at the capture FF directly. Fig. 1 shows the test setup with

the ‘functional unit’ or FU representing the entropy source. The

inputs and outputs of the FU are connected to a set of Launch Row

and Capture Row flip-flops (FFs), resp.

The delay of a path is determined using the fine phase adjust

feature of a Xilinx embedded MMCM (mixed mode clock man-

ager). A series of launch-capture clocking events are applied to the

functional unit using two clocks, Clk1 and Clk2, as shown on the

left side of Fig. 1. The phase shift between Clk1 and Clk2 is

adjusted dynamically across the sequence of launch-capture tests.

The digitally selected value of the fine phase shift between the two

clocks is referred to as the launch-capture interval (LCI). The

smallest LCI interval that allows the propagating edge along a path

to be captured in the capture FF is used as the digitized timing value

for the path. The MMCM on the Zynq FPGA clocked at 25 MHz

provides a resolution of 18 ps. Digital values between 150 (smallest

LCI with value of approx. 18 ps * 150 = 2.7 ns) and 2,200 (largest

LCI with value approx. 39.6 ns) are used as the path delay value.

The repeated testing of the FU at different LCIs is referred to as

clock strobing. The LCI used to represent the delay of a path is

referred to a PUFNum or PN. The signed difference of two ran-

domly selected PNs is referred to as a PNDiff.

4.2 TV Compensation
The majority of the delay variations introduced by changes in

temperature and voltage is removed by applying a TV compensa-

tion process. TV compensation is carried out by computing the

mean (offset) and range (multiplier) from a set of PNDiffs for each

chip and for each TV corner separately. The offset and multiplier

computed during enrollment are used with the offset and multiplier

computed at each TV corner to compensate the PNDiffs generated

at the TV corners using Eq. 1.

Here, zvali represents a standardized PNDiff after subtracting

the mean and dividing by the range computed using a set of

PNDiffs produced at the TV corner, TVx, for a specific chip. The

individual zvali are then transformed using the mean and range

computed earlier for the same chip during enrollment, i.e., at TVEn-

roll. We refer to the PNDiffs generated during enrollment as the

reference. This linear transformation is very effective at eliminat-

Eq. 1.zvali

PNDiffTVx µTVx–()

rngTVx

---=

PNDiffsTVComp zvalirngTVEnroll µTVEnroll+=

ing the shifting and scaling that occurs to path delays at different

TV corners (note: using the PNDiffs directly without this type of

compensation does not compensate for scaling).

4.3 Bit Generation Algorithm

The bit generation uses the signed difference in two path

delays (PNDiff) as a means of both hardening the algorithm against

model building and increasing the diversity in the PUF responses. A

ModPNDiff is defined by computing a signed difference between

two arbitrary selected PNs, and then applying a modulus. The mod-

ulus is necessary because the paths in the FU vary in length, for

example, in our experiments, short paths consist of 1 LUT while the

longest paths consist of 13 LUTs, which is captured in the PNDiffs.

The modulus removes the ‘path length’ bias while fully preserving

the smaller within-die delay variations.

For example, the top of Fig. 2(a) shows two sets of waveforms

labeled ‘Rising edge PNs’ (black) and ‘Falling edge PNs’ (blue).

The points in the waveforms represents the delay values (PNs) mea-

sured from a set of paths in chip C1 in the AES SBOX GF(4) exper-

iment. Each group of waveforms with similar shape and color

represent the PNs measured at each of the 10 TV corners after a TV

compensation method is applied (a process identical to the TV

compensation applied to the PNDiffs described above). The vertical

spread in the 10 points represent uncompensated TV noise. The

waveforms shown in (b) represent the PNDiffs computed from ran-

domized pairings of rising and falling edge PNs in (a). Although

only chip C1 data is shown, the shape of the difference waveforms

is similar for other chips because of the path length bias. The Mod-

PNDiffs shown in (c) are the result of applying a modulus of 64 to

the PNDiffs in (b). The modulus effectively ‘wraps’ all differences

into the range of 0 to 63 and reduces and/or eliminates the bias. The

bit generation algorithm assigns ModPNDiffs in the range from 0 to

31 as ‘0’ while those in the range of 32 to 63 are assigned ‘1’.

The red circles on points 10 and 14 show bit flips. Bit flips

occur when some, but not all, of the 10 points in each group cross

over one of the boundaries given by 0 or 63. An additional bit flip is

shown by the blue circle for point 4, where the points cross over the

Fig. 1. Configuration of the functional unit (FU).

Functional Unit (FU)PUT

Clk1

LFSR generated values

Launch Row FFs

Capture Row FFs

Clk1

Clk2

Clk

in[0]in[n-1]

Clk2

out[0]out[n-2]out[n-1]

in[n-2]

strobing

bit = 1

bit = 0

bit flips

0

1 5 9 15

Fig. 2. Example rising and falling path PNs (top),
random pairings of rising and fall PN differences

(middle), PN differences modulo 64 (bottom).

31

63

0

-32

32

64

Path Pairing Number

125

200

(a)

(b)

(c)

Delays for 10
TV corners

3 7 11 13 17

Rising edge PNs Falling edge PNs

175

150

PNDiffs

ModPNDiffs

bit flip

boundary between ‘0’ and ‘1’. The close grouping of the 10 points

makes it is possible to apply a predictive screening process that

avoids most/all of these bit flips as we show below. Moreover, the

modulus parameter can be used to remove bias as described but it is

also useful for increasing the input-output space of the HELP PUF,

which is also discussed in the following sections.

4.4 Functional Unit Synthesis Flow
The AES SBOX is used as the functional unit in our experi-

ments because its interconnection implementation structure is ran-

dom and complex. Although only the SBOX is used in this work,

the technique can be extended to the full implementation of AES

and other types of functional units (see [2] and [3]). As indicated

earlier, we implement the SBOX using a special glitch-free logic

style called WDDL [24] as a means of distinguishing between the

underlying sources of entropy, and as a means of improving the

reliability of HELP. WDDL eliminates functional and logic hazards

by imposing stimulus constraints and restricting the implementa-

tion to use only AND and OR gates. WDDL is proposed as a mech-

anism to harden a design unit such as AES against side-channel

attacks, and therefore, also attempts to eliminate information in the

power curves. This latter feature is not required to improve the reli-

ability of HELP and therefore, we are also looking into simpler

glitch-free-only strategies that have less area overhead [27]. The

benefit of WDDL is that it is simple to implement and provides a

nice test bed for evaluation of glitch-free logic implementation.

Fig. 3 illustrates the design flow followed to implement the

WDDL version of the AES SBOX. A behavioral VHDL description

of the SBOX along with a standard cell library are used as input to

the CADENCE RC synthesis tool. The standard cell library only

includes 2-input to 6-input AND and OR gates to match the LUT

capabilities on the FPGA, and a NOT gate. No timing constraints

were used in the synthesis and therefore, RC optimized for area.

A structural netlist consisting of only AND, OR and NOT

gates represents the output of the synthesis. This file along with a

set of synthesis and implementation constraints are processed by a

perl script to produce a WDDL version of the netlist. One example

transformation is shown in the figure where a AND gate followed

by an NOT gate is converted to a complementary pair of AND/OR

gates, with the outputs swapped for connections downstream as a

means of emulating (and eliminating) the NOT gate.

The WDDL version therefore is constructed by creating a

complementary OR gate (with complementary inputs) for all exist-

ing AND gates, and vise versa. The 8 primary inputs of the SBOX

are also replicated and are driven with complementary values dur-

ing evaluation. The operation of WDDL consists of two phases: a

pre-charge phase in which all primary inputs (including the com-

plementary inputs) are driven with ‘0’. This forces ‘0’s on the

inputs and output of all gates throughout the circuit. The evaluate

phase applies the true and complementary values to the 8 true and

complementary primary inputs, resp., and causes a set of rising

transitions to propagate through the circuit. For the SBOX imple-

mentation, half of the true outputs and half of the complementary

outputs transition on average during evaluate. Therefore, for each

of the 256 possible input transitions, i.e., from 0000000-

>xxxxxxxx, 8 PNs are obtained to produce a total of 2048 PNs.

Another 2048 are obtained for the precharge phase, i.e., from

xxxxxxxx->00000000, so a total of 4096 PNs are produced, from

which a set of 2048 PNDiffs can be uniquely constructed.

From Fig. 3, the WDDL version of SBOX is combined with

the HELP engine (described using behavioral-level VHDL) in a

project that is processed by the Xilinx Vivado synthesis and imple-

mentation tool. The constraints added by the perl script prevent the

FPGA synthesis and implementation tools from optimizing the

WDDL structural netlist. The programming bitstream generated by

Vivado is then used to program the Xilinx 7020 Zynq chip on a

Zedboard [4], which is placed in a temperature chamber.

We also synthesized AES SBOX GF(4) and GF(256) versions

using a standard synthesis flow to serve as a comparison to the

WDDL implementation. The flow for the standard versions simply

uses VHDL descriptions of the GF(4) and GF(256) as input to the

Xilinx Vivado synthesis tool without any constraints. We instantiate

two copies of the GF(256) in the standard version, with the inputs

to the 2nd copy complemented, to model the complementary net-

work within the WDDL version as a means of making the two

implementations as similar as possible. A similar strategy is used

for the GF(4) except four copies are instantiated (each copy has

only 4 inputs/outputs). The input transition sequence used for the

WDDL version are also used here. Note that there are significant

differences in the resource usage by the two GF(256) versions,

however. For example, the standard version uses 80 LUTs in a 2-

level logic structure while the WDDL version uses 756 LUTs in a

multi-level logic style of up to 13 levels. The GF(4) has only 16

LUTs in 1 level of logic and therefore allows a single LUT delay to

be measured.

5. Experimental Results
We ran our experiments on 30 copies of the Zedboard [4].

Commercial grade 7020 Zynq chips are incorporated on the Zed-

board, which restricts the temperature range between 0oC and 85oC

and the operating voltage between 0.95 V and 1.05 V (5% around

the nominal 1.00 V). The Agilent precision power supply and

ESPEC temperature chamber are controlled using a LABVIEW

program running on a host computer. The Zedboards were tested at

25oC, 1.00 V, which we use as enrollment data, and 9 regeneration

corners, which includes all combinations of three temperatures,

0oC, 25oC and 85oC and three voltages, +/- 5% and nominal. The

MMCM on the FPGA is configured with a 25 MHz clock fre-

quency.

5.1 AES SBOX GF(4) Analysis
The goal of the GF(4) analysis is to determine the magnitude

of within-die variations in the shortest constructible path on an

FPGA, i.e., paths with 1 launch FF, 1 LUT and 1 capture FF. Fig. 4

AES SBOX (FU) CADENCE
RC compiler

Std-cell library
2-, ... 6-input AND
2-, ... 6-input OR
NOT (inv)

AES SBOX
AND, OR, NOT
version

perl script
conversion
to WDDL

a1
a2

conv. to

a1
a2

a1
a2WDDL

vivado
synthesis

HELP
engine

host comp.
LABVIEW

Zynq
FPGA

temperature
chamber

Agilent B2901
power sup.

Fig. 3. Process Flow

syn. and
impl. constraints

shows the configuration synthesized by Vivado. Two copies of the

logic expressions for GF(4) given in [23], and two copies imple-

menting their inverse, synthesized to a set of 16 4-input LUTs

labeled L15 down to L0. The inputs, e.g., in[7]/in[7] fan-out to the

LUTs of the true and inverse copies, resp. and the outputs, e.g.,

out[7]/out[7], wire to a row of capture FFs. Given all inputs are

applied simultaneously, there is no glitching that occurs on the out-

puts even though the potential exists given the diverse truth tables

implemented with the LUTs.

A 25 point sample of the 2048 PNDiffs measured from the 30

chips at the 10 TV corners is shown in Fig. 5. The PNDiffs are

computed by selecting a unique random pair (chosen by an LFSR)

of PNs, one from the rising paths and one from the falling paths

(see Fig. 2(a)). The groups of waveforms of the same color shown

along the top have been TV compensated as described in Section

4.2, i.e., using the enrollment values for each chip as the ‘refer-

ence’. The vertical offsets between the waveform groups are caused

by global (chip-wide) variations, i.e., variations in the overall per-

formance characteristics of the chips. Although global variations

can be leveraged as a source of entropy, similar to within-die varia-

tions, there are drawbacks to depending on it.

To illustrate this problem, the black waveforms shown along

the bottom of Fig. 5 are again from the 30 chips but are TV com-

pensated using a special process in which the enrollment data from

chip C1 is used as the reference for all chips. This effectively elimi-

nates the global variations and leaves only measurement noise,

uncompensated TV noise and within-die variations (WDV) (see

label in figure). In a large population of chips, it is highly likely that

sets of chips will have the same level of global variations, so this

graph illustrates this case, where only within-die variations can be

leveraged as a source of entropy.

The magnitude of the noise sources is reflected in the width of

the band of same colored waveforms shown along the top of Fig. 5.

Measurement noise (with 16 sample averaging) is approx. 1 PN on

average (approx. 18 ps), so the majority of the variation is intro-

duced by uncompensated TV noise. The mean value of variation,

computed as the mean of the 3σ values of the 10 TV compensated

PNDiffs, that remains in the waveforms is on average approx. +/-

2.5 LCIs or 45 ps above or below the enrollment value, and the

worst case value is less than +/- 8 LCIs or 145 ps. This number is

important since it represents the amount of entropy that is lost, i.e.,

within-die variations less than this LCI value are more difficult to

leverage. Within-die variations are reflected in the change in shape

of the waveform groups for each chip. The magnitude of the varia-

tions introduced by within-die variations is, on average, approx. 4x

larger (20 LCIs) than the average variation introduced by TV noise

(5 LCIs), i.e., 360 ps vs 90 ps, resp.

A quantitative analysis of the entropy provided by within-die

variations is shown in Fig. 6 using the 2048 PNDiffs from the 30

chips. The range across the 30 chips for each of the 2048 PNDiffs is

computed using the TV compensated waveforms shown along the

bottom of Fig. 5, i.e., those without global variations. Only the

enrollment PNDiffs are considered here, so the histogram plots the

distribution of the 2048 ranges without TV noise. Given that mea-

surement noise is very low, the shape of the histogram is predomi-

nated determined by within-die variations. As indicated above, the

average value is close to 20 but the ranges vary from 10 to more

than 40.

Fig. 7 provides a second quantitative analysis using the ham-

ming distances (HD) of bitstrings computed using the proposed bit-

string generation algorithm and the ModPNDiffs with and without

global variations. The analysis is carried out over a set of PN modu-

lus (PNMod) values plotted along the x-axis. Inter-chip HD is com-

puted by counting the number of bits that are different in the 2048-

bit bitstrings produced by two chips during enrollment and then

dividing by the number of bits. The values plotted are the average

Inter-chip HDs across all possible pairings of the bitstrings (30*29/

2=435 pairings). Intra-chip HD is computed in a similar fashion

except the pairings are defined using the bitstrings produced at the

10 TV corners for each chip (10*9/2=45 pairings). The value plot-

ted is again the average computed across the 30 individual chip val-

ues. Worst-case Intra-chip HD is simply the maximum value

produced by one of the individual chips.

The curves for worst case and average case Intra-chip HD in

Fig. 7 reflect the noise levels, while the difference between the

Inter-chip and Intra-chip HD curves reflect the range of usable

entropy. The results with global variation included are shown in

1 25

0

-50

-50

0

Fig. 5. TV compensated PNDiffs with (top) and without
(bottom) global variations for 30 chips.

C1 thr C30

Fig. 4. Configuration of the AES SBOX FG(4) [23].

Clk1

LFSR generated values

Launch Row

Capture Row

in[7]

Clk2

eval?

0

1 0

in[7] in[0]

eval?

0

1 0

in[0]

L15 L14 L0

out[7] out[7] out[0] out[0]

L1

50

PNDiff number

With global variations

50

Without global variations
WDV + noise

variations

C1 thr C30

Fig. 6. Histogram of enrollment delay variations using
TV compensation of PNDiffs with no global variations.

0 40

LCI

20 60

150

0

200

100

50

AES SBOX GF(4) delay variations
introduced by within-die variations
using enrollment data

co
u
n
ts

black while the results without global variations are shown in blue.

The bit flips created by uncompensated TV noise remains rela-

tively constant independent of whether global variations are present

or not, as shown by the superposition of the black and blue Intra-

chip HD curves. The difference between the Inter-chip HD without

global variations and the worst-case Intra-chip curves varies

between 0% on the left to approx. 15% at the widest point around

PNMod = 28. The worst-case Intra-chip HD at PNMod of 48 is

approx. 10% while the Inter-chip HD is approx. 20%. This suggests

that the average Inter-chip HD of a large chip population will be

smaller than its ideal value of 50% without some type of entropy

amplification process. The Inter-chip HD with global variations

shows that the ideal value of 50% is nearly achieved for PNMods

up to approx. 64. Unfortunately, as just mentioned, this is not likely

to hold true as the number of chips used in the HD calculation

increases well beyond the 30 available in our experiments. There-

fore, in these experiments and on this 28 nm FPGA, either entropy

amplification methods or other sources of entropy need to be lever-

aged to produce good quality bitstrings.

5.2 AES SBOX GF(256), Standard vs. WDDL

The test setup for the Standard GF(256) and WDDL versions

of the AES SBOX is similar to that shown in Fig. 4. As indicated

above, the structure of the Standard version is un-constrained and

therefore, is subject to static and dynamic hazards occurring inter-

nally and on some outputs, which act to increase the occurrence of

bit flips.

Fig. 8(a) presents the statistical HD results in the same fashion

as discussed in relation to Fig. 7. The results are very similar to the

GF(4) version except for the approx. doubling of the worst- and

average-case Intra-chip HD over the GF(4) version. The increase in

bit flips is directly attributable to presence of glitching. Note that

glitching can increase both Intra-chip and Inter-chip HD. For paths

whose delays are affected by glitches consistently across all TV

corners, the effect is beneficial because the path delay typically

changes by 10 to 100 LCIs, and therefore represents a significant

source of within-die variations. For those paths where the glitch is

present at some TV corners and disappears at others, the effect is

detrimental, resulting in bit flips. The worst-case Intra-chip HD and

Inter-chip HD curves illustrate that both types occur because the

distance between the curves (and their shape) is similar to the corre-

sponding curves shown in Fig. 7. Although Inter-chip HD

increases, this benefit is partially offset by the increase in worst-

case bit-flips. Average-case Intra-chip HD, on the other hand, only

increases slightly. Although we cannot present the results in detail

here, it turns out that a small subset of our chips have many more

occurrences of the detrimental form of glitching than the remaining

chips. It was also possible to identify these glitchy chips by the dif-

ference in their rising and falling delays as shown in Fig. 2(a), using

data from the WDDL version of the AES SBOX. The falling PNs

(blue waveforms) are offset downwards from the rising PNs (black

waveforms) in the extra glitchy chips, i.e., the falling delays are

noticeable smaller than the rising delays. The extra glitchy chip

Intra-chip HDs are 3 times larger than the less glitchy chips.

5.3 Margin Technique
Fig. 8(b) shows the results after applying a Margin technique.

The method identifies PNDiffs during enrollment that have the

highest probability of introducing bit flips. The PN modulus tech-

nique illustrated in Fig. 2 shows several examples of bit flips that

occur at data points 4, 10 and 14. All of these data points are close

to the lines that represent the boundaries between ‘0’ and ‘1’, i.e, 0,

31 and 63. The Margin technique classifies an enrollment PNDiff as

‘invalid’ if it falls within a small region (a margin) around these

boundaries. The margin is set ideally to the worst case TV noise

level for best results, but can be tuned according to the level of tol-

erance the server has to bit flips. A helper data bitstring is con-

structed during enrollment that records the valid status of each

PNDiff data point. The helper data is stored on the server along

with the margin, PNMod, challenge and response bitstrings. During

regeneration, the server sends the margin, PNMod, challenge and

helper data to the token, which uses the helper data to discard the

‘weak’ bits in the response.

The Margin technique significantly improves both the Intra-

chip and Inter-chip HD results, as shown on the Fig. 8(b). We used

a Margin of 7 as the threshold to identify ‘weak’ bits in the

response. Inter-chip HD improves because the PNDiffs correspond-

ing to the generation of the ‘strong’ bits in different chips can now

vary. This is true because within-die variations cause PNDiffs for

some chips to fall within the margins, while on others, those same

PNDiffs are outside the margins. Another important characteristic

is the lower sensitivity of the results to whether global variations

are present or not, which we indicated earlier is a highly desirable

feature.

The size of the smallest bitstring generated by one of the 30

chips is also plotted in Fig. 8(b) to illustrate the overhead associated

with the helper data. By selecting a PNMod that is >= 64, the helper

data bitstring is no larger than twice the size of the response bit-

string in the worst case. It is also possible to use the complement of

the helper data to generate a second response bitstring when the

Fig. 7. Inter-chip HD and worst case and average case
Intra-chip HD as a function of PN modulus.

stable entropy: ~10%
over worst case noise

Ave Intra-chip HD

Worst Intra-chip HD
Inter-chip HD

black: with global variations
blue: w/o global variations

0

20

40

60

80

100
(%

)

8 32 96 128
PNMod

64

AES SBOX GF(4)

0

20

40

60

80

100

(%
)

8 64
PN modulus

128

Standard AES SBOX GF(256)

32 64 12832

Ave Intra-chip HD
Worst Intra-chip HD

Inter-chip HD

black: with global variations
blue: w/o global variations

With Margin techniqueWithout Margin technique

Smallest bitstring size

(a)

Near ideal result
at 49.6%

Fig. 8. Hamming distance (HD) results without (a) and
with (b) the Margin technique for the Standard design.

(b)

sum of the regions delineated by the margins is equal to the sum of

the ‘valid’ regions defined for ‘0’ and ‘1’. For example, a PNMod

of 64 as shown in Fig. 2 requires the margins to be set to 8, yielding

valid regions of size 16. The second response bitstring uses the

same set of PNDiffs but first adds an offset equal to 1/4 of the

PNMod (16 in the example) before applying the modulus opera-

tion, which effectively shifts the distribution and converts all of the

previous ‘weak’ bits into ‘strong’ bits (and vise versa), thereby

making the helper data to response data ratio 1.

The results using the WDDL version are shown in Fig. 9. The

longer paths present in the WDDL version are responsible for the

improvement in the Inter-chip HD to nearly ideal as shown on the

left side in Fig. 9(a). We confirmed this in a separate set of experi-

ments (not shown) in which the path lengths in the Standard version

are doubled. Therefore, longer paths improve Inter-chip HD but

only in the case where global variations are preserved, i.e., the

Inter-chip HD curve without global variations shows a very differ-

ent result. The results using the Margin technique shown in Fig.

9(b), on the other hand, are nearly ideal with or without global vari-

ations. The Intra-chip HD curves also illustrate that the majority of

the bit flips that remain in the corresponding results from Fig. 8(b)

are attributable to the glitches produced in the Standard version,

i.e., margining is not effective for glitches because the change in

delay is larger than the worst case TV noise used as the margin.

This is evident by the near 0 values for the worse case and average

Intra-chip HD for the WDDL version.

5.4 NIST Statistical Test Results
The enrollment bitstrings generated in each of these 8 experi-

ments were used as input to the NIST statistical test suite [26]. The

small size of the bitstrings (largest is 2,048 bits), allowed up to 10

of the 15 NIST tests to be applied. The test is classified as passed if

at least 28 of the 30 chip bitstrings pass the test. The NIST results

are similar for the four sets of results in Fig 8(a), where all tests are

passed for PNMod values less than 64. The PNMod of 64 repre-

sents a cut-off where some tests are failed but by only 2-3 chip in

the worst case. The fail rates increase for PNMods larger than 64,

with only a few passing some of the tests at the largest PNMod val-

ues. In contrast, the NIST results for the WDDL experiments

shown in Fig. 9 are good throughout the entire PN modulus range,

with only a few instances of fails, and by only 3 chips in the worst

case. These results suggest that glitchy implementations of the FU

produce bitstrings of good statistical quality but impose restrictions

on the PNMod values, while glitch-free FUs are able to produce

high quality bitstrings under a wider range of modulus values.

5.5 ATPG Analysis of Entropy
We used CADENCE Encounter Test (ET) to analyze the num-

ber of paths in the WDDL version of the AES SBOX. The underly-

ing entropy source consists of both individual LUT gate delays and

the interconnect routing delays, which are combined in unique

ways and measured as path delays by HELP. Therefore, the number

of paths reflects the amount of entropy present in the functional

unit. This analysis will help support our claim that HELP is a strong

PUF, with both a large input and output space, when used with

functional units in which the number of paths is exponentially

related to the number of its inputs.

A WDDL implementation contains two networks of intercon-

nected logic gates (true and complemented) that ‘cross-over’ at

points where inverters occur in the original network. The RC syn-

thesized AND-OR-NOT version of the AES SBOX (see Fig. 3) pro-

duced 26 NOT gates in a network of 570 total gates, so the number

of cross-overs is fairly limited. With 16 inputs, the expected number

of paths would be 2^16 or 65,536. ET reports 15,511 structural

paths, which reflects the small interconnection structure between

the two networks. As expected, automatic test pattern generation

(ATPG) reports that 98.6% of all paths are hazard-free robust test-

able, which indicates that the paths are independent. Using the set

of 512 WDDL vectors (Section 4.4), 37.8% of these paths are

tested, which indicates that the remaining paths can only be tested

by violating the complementary input patterns required with

WDDL. However, testing the WDDL implementation using illegal

patterns is possible and recommended when operating the func-

tional unit in PUF mode.

6. Authentication Protocol
The proposed authentication protocol is shown in Fig. 10. Dur-

ing enrollment, the server generates random challenges, ci, PNModi

and margini which are used by the token as a seed to an LFSR (or a

pair of LFSRs to enable arbitrary two vector sequences to be

applied). The PUF produces response ri and helper data hi, which

are stored on the server with the challenge information. In cases

where global variations are utilized, a µ and rng are also computed

for the chip and stored on the server (note these values can also be

used as a pseudo-id for the chip). The challenge is optionally passed

through a cryptographic hash function to increase the difficulty of

model building attacks which attempt to systematically apply a set

of seeds designed to carry out path delay tests in a deterministic

manner. The hash makes it difficult to determine how to choose ci

such that the output of the hash is controlled to specific seed values.

The XOR obfuscation function of the response is optionally added

0

20

40

60

80

100
(%

)
WDDL AES SBOX GF(256)

8 64
PN modulus

12832 64 12832

black: with global variations
blue: w/o global variations

With Margin techniqueWithout Margin technique

Smallest bitstring size

Ave Intra-chip HDWorst Intra-chip HD

Inter-chip HD

(a)

at 49.9%
Near ideal result

(b)

Fig. 9. Hamming distance (HD) results without (a) and
with (b) the Margin technique for the WDDL design.

Secure ServerToken

hash ci

HELP
r’i

Enrollment

XOR

Authentication

hi

ri

µ, rng one time pseudo-id

µ, rng

ci

r
fuzzy match

Fig. 10. Proposed authentication protocol.

hash

HELP r’i XOR

PNModi, margini

PNModi, margini, hi

for a similar purpose (note that only one of the input and output

obfuscation methods is needed). As indicated in [5], XOR networks

amplify bit flip behavior in r and therefore, are applicable only

when Intra-chip HDs are very low. Authentication is carried out in a

similar fashion except for the direction of transmission of the helper

data, hi, µ and rng. Note that µ and rng are not needed if the

PNDiffs are TV compensated to a universal standard (which also

eliminates entropy from global variations).

As indicated, the margin and PNMod parameters are also ben-

eficial because they expand the CRP space. However, allowing

these parameter to be set without constraints can be used by an

adversary to assist with model building. Our experiments suggest

that a hard coded margin or allowing only a small range of values,

e.g., between 5 and 8, accomplishes the goal of improving the sta-

tistics while maintaining a limited information leakage channel.

The same is true of the PNMod parameter, where only a limited set

of values should be allowed, e.g., restricting to powers of 2 also sig-

nificantly simplifies the implementation of the modulus operation

while providing a ‘limited’ expansion of the CRP space.

7. Summary and Conclusion
In this paper, we investigated the strengths and weaknesses of

using a delay-based strong PUF for authentication. Glitch-free

functional units were used as the entropy source and shown to

enhance the quality of the generated bitstrings. Within-die varia-

tions by itself is not large enough to produce unique bitstrings

across a large population of chips. A margining technique is shown

to significantly improve the statistical quality of the bitstrings while

adding moderately to the storage overhead in the secure database.

The following areas will be investigated in future work. We

will investigate the use of ATPG generated input vectors as chal-

lenges, which can target additional sources of entropy represented

by ‘random pattern resistant’ paths, that are not likely tested using

an LFSR scheme. We will also investigate enrollment schemes

which store PNDiffs directly through a one-time interface. These 8-

bit values can then be used to generate a set (>> 8) of bitstrings by

changing the modulus and margin parameters, thereby improving

the storage efficiency on the server. Alternative, lower overhead,

glitch-free logic implementation styles will be investigated as an

alternative to WDDL. Low power techniques that only reduce the

occurrence of glitches will also be investigated.

Although not reported on in this paper, we have also evaluated

a voltage-based enrollment (VBE) scheme, which uses the bit-

strings generated at a fixed set of supply voltages, in particular,

those at the extremes of the specification range, and then records, as

weak bits in the helper data, those bits that flip in the regenerated

bitstrings. VBE works well to reduce the Intra-chip HD for nor-

mally synthesized functional units, i.e., those with glitches. We also

found significant diversity is created by the synthesis tool in path

delays and the corresponding bitstrings when inconsequential

changes are made to the HDL, which again can be used to expand

the input/output space of HELP. Last, we are investigating the

applicability of techniques described here to board-level authenti-

cation as described in [1].

8. References
[1] F. Zhang, A. Henessy, and S. Bhunia, “Robust Counterfeit PCB

Detection Exploiting Intrinsic Trace Impedance Variations”,
VLSI Test Symposium, April 2015.

[2] F. Saqib, M. Areno, J. Aarestad and J. Plusquellic, “An ASIC
Implementation of a Hardware-Embedded Physical Unclon-
able Function”, IET Computers & Digital Techniques, Vol. 8,

Issue 6, Nov. 2014, pp. 288-299.
[3] J. Aarestad, J. Plusquellic, D. Acharyya, “Error-Tolerant Bit

Generation Techniques for Use with a Hardware-Embedded
Path Delay PUF”, HOST, 2013, pp. 151-158.

[4] http://zedboard.org/product/zedboard
[5] J. Delvaux, D. Gu, R. Peeters and I. Verbauwhede, “A Survey

on Lightweight Entity Authentication with Strong PUFs”,
Cryptology ePrint Archive: Report 2014/977.

[6] R. S. Pappu. Physical One-Way Functions. PhD thesis, MIT,
2001.

[7] B. Gassend, D. E. Clarke, M. van Dijk, and S. Devadas, “Silicon
Physical Random Functions”, Conference on Computer and
Communications Security, 2002, pp. 148-160.

[8] L. Bolotny and G. Robins, “Physically Unclonable Function-
based Security and Privacy in RFID Systems”, PerCom,
2007, pp. 211-220.

[9] E. Ozturk, G. Hammouri, and B. Sunar, “Towards Robust Low
Cost Authentication for Pervasive Devices”, PerCom, 2008,
pp. 170-178.

[10] G. Hammouri, E. Ozturk, and B. Sunar, “A Tamper-Proof and
Lightweight Authentication Scheme, Pervasive and Mobile
Computing, 2008, 807-818.

[11] L. Kulseng, Z. Yu, Y. Wei, and Y. Guan, “Lightweight Mutual
Authentication and Ownership Transfer for RFID Systems”,
INFOCOM, 2010, pp. 251-255.

[12] A.-R. Sadeghi, I. Visconti, and C. Wachsmann, “Enhancing
RFID Security and Privacy by Physically Unclonable Func-
tions”, Information Security and Cryptography, 2010, pp.
281-305.

[13] S. Katzenbeisser, Unal Kocabas, V. Van Der Leest, A. Sade-
ghi, G. J. Schrijen, H. Schroder, and C. Wachsmann, “Recy-
clable PUFs: Logically Recongurable PUFs”, CHES, 2011,
pp. 374-389.

[14] A. Van Herrewege, S. Katzenbeisser, R. Maes, R. Peeters, A.-
R. Sadeghi, I. Verbauwhede, and C. Wachsmann, “Reverse
Fuzzy Extractors: Enabling Lightweight Mutual Authentica-
tion for PUF-enabled RFIDs”, Vol. 7397 of Lecture Notes in
Computer Science, 2012, pp. 374-389.

[15] U. Kocabas, A. Peter, S. Katzenbeisser, and A. Sadeghi, “Con-
verse PUF-Based Authentication” TRUST, 2012, pp. 142-
158.

[16] Y. S. Lee, T. Y. Kim, and H. J. Lee, “Mutual Authentication
Protocol for Enhanced RFID Security and Anticounterfeit-
ing”, WAINA, 2012, pp. 558-563.

[17] Y. Jin, W. Xin, H. Sun, and Z. Chen, “PUF-Based RFID Au-
thentication Protocol against Secret Key Leakage”, Vol. 7235
of Lecture Notes in Computer Science, 2012, pp. 318-329.

[18] M. Majzoobi, M. Rostami, F. Koushanfar, D. S. Wallach, and
S. Devadas, “Slender PUF Protocol: A Lightweight, Robust,
and Secure Authentication by Substring Matching”, Sympo-
sium on Security and Privacy Workshop, 2012, pp. 33-44.

[19] Y. Xu and Z. He, “Design of a Security Protocol for Low-Cost
RFID”, WiCOM, 2012, pp. 1-3.

[20] Y. S. Lee, H. J. Lee, and E. Alasaarela, “Mutual Authentication
in Wireless Body Sensor Networks Based on Physical Un-
clonable Function”, IWCMC, 2013, pp. 1314-1318.

[21] M.-D. M. Yu, D. M’Rahi, I. Verbauwhede, and S. Devadas, “A
Noise Bifurcation Architecture for Linear Additive Physical
Functions, HOST, pp. 124-129.

[22] S. T. C. Konigsmark, L. K. Hwang, D. Chen, and M. D. F.
Wong, “System-of-PUFs: Multilevel Security for Embedded
Systems”, CODES, pp. 27:1-27:10, 2014.

[23] S. Nikova, V. Rijmen and M. Schlaffer, “Using Normal Bases
for Compact Hardware Implementations of the AES S-Box”,
Security and Cryptography for Networks, Lect. Notes in C.S.,
Volume 5229, 2008, pp 236-245.

[24] K. Tiri and I. Verbauwhede, “A Logic Level Design Method-
ology for a Secure DPA Resistant ASIC or FPGA Implemen-
tation”, DATE, 2004, pp. 246-251.

[25] http://en.wikipedia.org/wiki/Hamming_distance
[26] NIST: Computer Security Division, Statistical Tests, http://cs-

rc.nist.gov/groups/ST/toolkit/rng/stats_tests.html
[27] S. M. Nowick and C. W. O’Donnell, “On the Existence of Haz-

ard-Free Multi-Level Logic”, ASYNC, 2003.

