
Abstract: Cryptographic  and  authentication  applications  in  

application-specific  integrated circuits  (ASICs)  and  FPGAs,  

as well as codes for the activation of on-chip features, require  

the  use  of  embedded secret  information.  The  generation  of  

secret  bitstrings  using  physical  unclonable  functions,  or 

PUFs, provides several distinct advantages over conventional  

methods,  including  the  elimination  of  costly  non-volatile  

memory, and the potential to increase the number of random  

bits  available  to  applications.  In  this  paper,  we  propose  a  

Hardware-Embedded Delay PUF (HELP) that is designed to  

leverage  path  delay  variations  that  occur in  the core  logic  

macros of a chip to create random bitstrings. The bitstrings 

produced  by  a  set  of  30  FPGA boards  are  evaluated  with  

regard  to  several  statistical  quality  metrics  including  

uniqueness,  randomness,  and  stability.  The  stability  

characteristics of  the bitstrings  are evaluated by subjecting 

the  FPGAs  to  commercial-level  temperature  and  supply  

voltage  variations.  In  particular,  we  evaluate  the 

reproducibility of the bitstrings generated at 0°C, 25°C, and 

70°C, and at nominal and  ±10% of the supply voltage. An  

error avoidance scheme is proposed that provides significant  

improvement against bit-flip errors in the bitstrings.

Keywords:  Physical  unclonable  function,  PUF,  hardware 

security, cryptography, path delay variation

1  Introduction

Physical  unclonable  functions  (PUFs)  are  becoming 

increasingly attractive for generating random bitstrings for a 

wide range of security-related applications. PUFs are designed 

to reliably differentiate one chip from another by leveraging 

the naturally-occurring random process variations which occur 

when  the  chips  are  fabricated.  Process  variations  are 

increasing  as  layout  geometries  shrink  across  technology 

generations. Although undesirable from a design perspective, 

the  electrical  variations  introduced  by  process  variations 

define the entropy source on which PUFs are based. PUFs are 

designed to measure and 'digitize' these electrical variations to 

create  random  bitstrings.  The  most  common  sources  of 

variations  that  PUFs  leverage  include  path  delay,  metal 

resistance and SRAM power-up patterns.

The  quality  of  the  bitstrings  produced  by  a  PUF  are 

typically evaluated using a suite of statistical tests. Generally, 

three criteria are considered essential for a PUF to be used for 

applications such as encryption: 1) the bitstrings produced for 

each chip must be sufficiently unique to distinguish each chip 

in the population, 2) the bitstrings must  be  random,  making 

them difficult for an adversary to model and predict, and 3) 

the bitstring for any one chip must  be  stable over time and 

across varying environmental conditions. 

In this paper, we present a detailed examination of a PUF, 

called HELP, that is based on path delay variations. The novel 

features that differentiate HELP from other delay-based PUFs 

include:  1)  the  capability  of  comparing  paths  of  different 

lengths without adding bias, 2) elimination of specialized test 

structures, 3) a minimally invasive design with low per-bit area 

and  performance  impact,  and  4)  a  PUF  engine  that  is 

integrated into the existing functional units of the chips and 

requires no external testing resources. The integration of HELP 

into  an  existing  functional  unit,  such  as  the  Advanced 

Encryption  Standard  (AES),  allows  it  to  leverage  a  large 

source of entropy while minimizing its overall footprint. This 

large  source  of  entropy  allows  HELP  to  generate  long 

bitstrings, while being conservative in the paths selected for bit 

generation. The large availability of paths also enables unique 

opportunities for avoiding bit-flip errors.

Unique Contributions of this Paper:  The following are 

the novel contributions of this paper: 

� A novel  modulus-based  technique  that  permits  the 

direct comparison of delay measurements from logic 

paths of widely varying lengths

� A  path  delay  measurement  binning  scheme  that 

improves  tolerance  to  environmental,  measurement 

and meta-stability noise sources

� Fault-tolerant  bit  generation techniques that  provide 

resilience against bit-flip errors caused by these noise 

sources

These characteristics of the HELP PUF are demonstrated 

on a set of 30 Virtex-II Pro FPGA boards. HELP is integrated 

into an AES functional unit and is evaluated across a set of 9 

temperature-voltage  (TV)  corners,  which  represent 

commercial-grade standards. The bitstrings produced by each 

board are evaluated using statistical tests, which are designed 

to measure their uniqueness, reliability, and randomness.

2 Background

The  PUF first  appeared  as  a  mechanism  for  generating 

secure bitstrings in [1] and [2]. The PUF as a chip identifier, 

however, was introduced earlier in [3]. Proposed PUF designs 

generally fall into one of the following classifications: SRAM 

PUFS [4], ring oscillators [5,6], MOS drive-current PUFs [7], 

delay  line  and  arbiter  PUFs  [8],  and  PUFs  based  upon 

variations in a chip's metal wires [9]. Delay-based PUFs also 

include  such  designs  as  the  Glitch  PUF,  which  leverages 

variation in glitch behavior and is presented in [10]. Each of 

these PUFs takes advantage of one or more naturally-varying 

properties,  and  nearly  all  PUFs  share  a  common  set  of 

challenges  such  as  measurement  error  and  uncertainty,  and 

fluctuations in voltage or temperature. The degree to which a 

given  PUF  can  tolerate  or  mitigate  these  challenges  is  an 

important indicator of its utility for generating secret data.

The HELP PUF proposed in this paper, and introduced in 

[15], is to the best of our knowledge the only delay-based PUF 

that combines the following features: 

� The HELP PUF is entangled with the hardware in which it 
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is embedded, in the sense that the path delays measured 

in,  e.g.,  an  AES  core  logic  macro,  can  be  used  to 

generate a bitstring that is subsequently used as the key 

for use by AES in functional mode. The proximity of the 

bit  generation  to  the  hardware  that  uses  the  bitstring 

improves robustness against invasive or probing attacks 

designed to steal the key.

� The  bit  flip  avoidance  scheme  proposed  in  this  paper 

significantly  reduces  the  probability  of  bit-flip  errors 

during regeneration.

� The  physical  implementation  of  HELP  uses  standard 

hardware resources commonly available in the fabric of 

an FPGA,  including  an  on-chip digital  clock  manager 

(DCM). The authors of [11] also leverage the high timing 

resolution provided by a DCM for Trojan detection and 

IC authentication. 

� By using the core logic of AES itself, a large source of 

existing entropy is leveraged.

3 HELP PUF Overview

The HELP PUF produces  a  bitstring  using  a  challenge-

response  mechanism.  The  challenge  component  for  HELP 

consists  of  a  randomly  selected,  two-vector  test  sequence 

applied to the inputs of the macro-under-test (MUT). The test 

sequence introduces a set of transitions that propagate through 

the  core  logic  of  the  MUT and  appear  on  its  outputs.  The 

responses are defined as the measured path delays, represented 

as 8-bit numbers as explained below, for each of the outputs. 

The delays on each MUT output are measured one-at-a-time.

The  precision  of  the  delay  measurement  impacts  the 

stability of HELP. We use an embedded test structure called 

REBEL to obtain high-precision, digitized representations of 

the path delays [12]. REBEL is integrated directly with the 

scan chain logic and uses the on-chip clock tree network for 

launch-capture (LC) timing events.

Fig.  1 depicts  an overview of the REBEL test  structure, 

which  consists  of  two  rows  of  flip-flops  (FFs)  connected 

together into a scan chain. Small logic blocks on the left of 

each row, labeled RCL for Row Control Logic, allow the scan 

elements on each row to be configured as follows:

� The  top  row  is  the  launch  row,  and  is  configured  to 

operate in functional mode.

� The second row is the capture row, and is configured in 

'mixed  mode',  in  which  a  specific  FF,  called  the 

insertion point (IP), is chosen. This scan-FF and each 

scan-FF to the right of it in the row are placed in 'flush 

delay'  mode  (described  below),  and  form  a 

combinational delay chain, effectively extending the path 

at the IP.

Flush-delay mode (FD) is a special mode in which a scan 

chain can be configured as a combinational delay chain. This 

is  depicted  in  the  callout  in  Fig.  1,  which  shows  two 

master/slave FFs in which the output of the first master feeds 

into the scan input of the second FF. Any transition that occurs 

on the IP propagates through the functional input and into the 

first master using logic that selects that path (not shown). In 

contrast, the logic controlling the scan mux for the second FF 

(and  all  FFs  to  its  right)  selects  the  scan  input,  effectively 

allowing the  transition to propagate unimpeded through  the 

masters of these FFs. Details concerning the control logic for 

the scan chain MUXes can be found in [12]. 

A REBEL path  delay  test  is  carried  out  by  scanning  in 

configuration information, which selects the IP and configures 

the delay chain as shown in Fig.  1. A clock transition is then 

applied to the launch row FFs which generates transitions that 

propagate  into  the  MUT.  Any  transition  that  occurs  on  the 

MUT output at the IP will propagate into the delay chain. By 

asserting the clock input on the capture row FFs, the master 

latches revert to storage mode and digitize the time behavior of 
the transition(s) as a sequence of 1's and 0's.  The combined 

delay of the MUT path and the delay chain can be derived by 

searching, from right to left, in the binary sequence for the FF 

that contains the first transition.

4 Experimental Setup

We've  created  a  complete  HELP implementation  on  an 

FPGA and carried out experiments on a set of 30 Virtex-II Pro 

XUP FPGA boards [16]. The Virtex-II Pro board incorporates 

a 130-nm Virtex-II Pro device and permits power for the core 

logic  to  be  supplied  by  an  external  power  supply,  which 

proved to be convenient for the TV corner testing carried out 

in  our  experiments1.  Fig.  2 shows  a  top-level  structural 

diagram of our HELP implementation. 

The MUT used in our implementation is the logic defining 

a  single  round  of  a  pipelined  AES  implementation  from 

OpenCores  [13].  Space  limitations  on  the  Virtex-II  Pro 

prevented  inclusion  of  all  10  rounds  of  a  full  AES 

implementation. The  block  labeled  'Initial  Launch  Vector 

(256)'  represents  the  pipeline  FFs  in  the  full-blown  AES 

implementation,  converted  here  to  MUX-D  scan-FFs. A 

second copy of this block, labeled 'Final Launch Vector (256)', 

is added to emulate the logic from the omitted previous round. 

In our  implementation, two randomly generated vectors that 

represent the challenge are scan-loaded into the two blocks.

The block labeled 'REBEL (Capture) Row' in Fig.  2 also 

represents the pipeline FFs between the logic blocks defining 

the  rounds  in  AES. We  modified  this  row  to  incorporate 

REBEL,  and  designed  it  to  implement  the  'mixed  mode' 

functionality described previously in reference to Fig.  1. The 

number of  FFs in this row is  expanded from 256 to 264 to 

extend the delay chain for the IPs on the right end of the MUT.

The remaining components in Fig. 2 define the HELP PUF 

engine, and can be divided into the  Data Collection Engine 

1 Although the Virtex-II Pro chips are fabricated in an older technology, we 

expect similar (or better) results to those presented using chips fabricated 
in more advanced technologies.

Fig. 1: REBEL embedded test structure.
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(DCE), and the  BitGen Engine (BGE). One iteration of the 

whole  process  produces  the  bitstring.  The  engine  behaves 

differently depending on whether a new bitstring is requested 

(a process called enrollment) or whether the bitstring needs to 

be reproduced (a process called regeneration). We distinguish 

between  these  scenarios  in  the  following  description  as 

needed.

The  overhead  of  HELP  is  given  in  TABLE  I.  The 

resources under the column 'Single AES Stage' correspond to a 

single stage of the pipelined AES macro. The fully pipelined 

version is 10X larger, and therefore, the reported overhead for 

HELP in the first 3 rows would reduce by a factor of 10 in a 

full  implementation,  e.g.,  the  values  in  the  'LUTs'  row  of 

TABLE I. would become '31220, 3931, 12.6%'.

TABLE I. HELP PUF RESOURCE OVERHEAD

Single AES Stage PUF w/o AES % Overhead

Flip-flops 1297 456 35%

LUTs 3122 3931 126%

Slices 2146 1831 85%

RAMB16 0 58 ---

BUFGMUX 1 4 400%

DCMs 0 3 ---

4.1  HELP Components

The DCE in Fig.  2 carries  out  a  sequence  of  LC tests, 

measures  the  path  delays,  and  records  the  digitized 

representation of them, called PUF numbers or PNs, in block 

RAM on the FPGA. In our current implementation, the DCE 

runs to completion before the BGE component is started. 

Clock Generator.  The clock generator module generates 

two clock signals: a Launch clock and a Capture clock, and is 

shown on the left in Fig. 2. In our design, this module contains 

three digital  clock managers,  or  DCMs. A 'master'  DCM is 

used  to  reduce  the  off-chip  oscillator-generated  100  MHz 

clock to 50 MHz. The output of the master DCM drives the 

Launch  and  Capture  DCMs. We  utilize  the  fine  phase 

adjustment  (FPA) feature of  the Capture  DCM to 'tune'  the 

phase relationship between the Launch and Capture clocks. At 

50 MHz, the FPA allows 80 ps increments/decrements in the 

phase shift of the Capture clock on the Virtex-II Pro chips. 

When  the  DCE  is  configuring  the  scan  chains  in 

preparation for the LC test, the phase relationship between the 

Launch and Capture clocks is set to 0. Just prior to the launch 

event,  the  controlling state  machine selects  the 180°  phase-

shifted output  of  the Capture DCM, and the FPA feature is 

used to tune the phase in an iterative process designed to meet 

a specific goal (to be discussed).

TABLE II. CAPTURE CLOCK PHASE ADJUSTMENT

Phase Adj. Phase Angle LC Interval

0 90° 5 ns

64 180° 10 ns

128 270° 15 ns

TABLE II.  summarizes the characteristics of the Capture 

clock, and Fig. 3 illustrates the timing relationship between the 

Launch and Capture clocks for different values of the 'Phase 

Adj.'  control  counter  in  the  DCM. The  launch  and  capture 

events occur on the rising edge of the corresponding clocks. 

From the timing diagram, this allows path delays from 5 ns to 

15 ns in length to be measured. The 0 to 128 range of values 

(called PNs) are used as a digital  representation of the path 



delays.

PN Memory: A block RAM used to store the PNs.

LC  LFSR  Controller:  A  32-bit  linear  feedback  shift 

register  (LFSR)  used  to  produce  the  randomized  launch 

vectors.

REBEL Controller: Configures the IP in the REBEL row 

attached to the output of the AES logic block. 

Sample Analysis Engine (SAE):  Analyzes the digitized 

results in  the delay chain after each LC test for a given path 

and  determines  whether  the  path  is  'valid'.  A valid  path is 

defined as one that has a real transition, is glitch-free, and 

produces consistent results across multiple samples.

Valid  Path  Memory:  A block  RAM used  to  record  a 

pass/fail flag for each tested path that reflects its validity (as 

defined  under  SAE). These  values  are  technically  stored 

during enrollment and then read back in from non-volatile or 

off-chip  memory  (public  storage)  during  regeneration,  and 

represent the helper data needed in the regeneration process.

Random  Pairing  Generator:  Uses  a  28-bit  LFSR  to 

generate randomized pairings of PNs for bit generation. 

Stop Point Memory/Strong Bit Memory: A block RAM 

used by the Bit Generation Engine to  record 'stop points' or 

'strong bits' (depending on the bit generation method in use � 

see Sects. 4.4 and 4.5) during enrollment. The values stored in 

this memory, like the Valid Path Memory, are also components 

of the helper data.

The Serial Interface component is used to interact with the 

HELP engine, and to transfer the results of the path testing and 

bit generation processes.

4.2 Path Delay Measurement

A sequence  of  paths  are  tested  by  the  DCE  process  to 

produce the PNs used later in bit generation. The starting point 

and order in which the paths are tested is determined by the 

LC LFSR. The DCE process begins by loading the LC LFSR 

with a seed (provided by the user), and instructs the LC LFSR 

controller  to  load a  random pair  of  vectors  into  the launch 

rows. Simultaneously,  the  REBEL controller  configures  the 

REBEL row with a specific IP and places the REBEL row in 

FD mode. The same random vector  pair  is reloaded to test 

each  of  the  256  IPs,  one  at  a  time,  before  the  LC  LFSR 

generates and loads the next random vector pair.

A key contribution of our technique is the discovery that 

path stability can be used as the basis for random bitstring 

generation. Path stability is defined as those paths which have 

a rising or falling transition, do not have temporary transitions 

or  glitches,  and that  produce a  small  range of  PNs (ideally 

only  one)  over  multiple  repeated sampling.  As we show in 

Sect. 5 below, the paths that pass the stability test are different 

for each chip in the population. 

A  state  machine  within  the  DCE  is  responsible  for 

measuring path delays and for determining the stability of the 

paths. Our algorithm begins testing a path by setting the FPA 

to 128, which configures the Capture clock phase to 270°. It 

then iteratively reduces the phase shift in a series of LC tests, 

called a sweep. For paths that have transitions, the process of 

'tuning'  the  FPA  toward  smaller  values  over  the  sweep 

effectively  'pushes'  the  transition  backwards  in  the  delay 

chain, since each successive iteration reduces the amount of 

time available for the transition to propagate. When the edge 

is 'pushed back' to a point just before a target FF in the delay 

chain,  the  process  stops  (the  goal  has  been  achieved). The 

target  FF is an element  in the delay chain that is a specific 

distance (in FFs) from the IP. The value of the FPA at the stop 

point is saved as the PN for this path, i.e., the PN represents 

the 'response'  to the 'challenge' defined by the launch vector 

and IP. 

Evaluating path stability is accomplished by counting the 

number  of  transitions  that  occurred  in  the  REBEL row  by 

'XOR'ing'  neighboring  FFs  in  the  delay  chain.  The  path  is 

immediately classified as unstable (and the sweep is halted) if 

the number  of transitions exceeds 1  at  any point  during the 

sweep. Once  the  sweep  is  complete,  the  whole  process  is 

repeated multiple times. If the range of PNs measured across 

multiple  samples  varies  by  more  than  a  user-specified 

threshold, the path is classified as unstable and is discarded.

Note  that  path  stability  evaluation  occurs  ONLY during 

enrollment.  In  order  to  make it  possible  for  regeneration to 

replay the valid path sequence discovered during enrollment, 

the 'valid path' bitstring is updated after testing each path. For 

paths considered valid, a '1' is stored and for those classified as 

unstable  (or  have  no  transition),  a  '0'  is  stored.  During 

regeneration, the exact same sequence of tests can be carried 

out by loading the LC LFSR with the same seed and using the 

'valid path' bitstring to determine which paths are to be tested 

(a '1' forces the path to be tested, and a '0' forces the path to be 

skipped).

4.3  TV Compensation and Jumps

Temperature and voltage can vary between enrollment and 

regeneration, which will  introduce variations  in path delays. 

The  modulus  technique  that  we  discuss  in  the  next  section 

requires  the  PNs  to  remain  as  constant  as  possible  during 

regeneration  at  different  TV  corners,  and  therefore  it  is 

necessary to calibrate for these types of environmental effects. 

We  developed  a  calibration  technique  called 

Temperature/Voltage Compensation or TVCOMP to deal with 

TV variations. The principle behind TVCOMP is to derive a 

constant  during  regeneration  that,  when  added  to  all  PNs, 

shifts  the PN distribution so that  it  matches the distribution 

obtained  during  enrollment.  Calibration  is  carried  out  by 

computing a 'mean PN' during enrollment from a small subset 

of tests (we found 64 to be sufficient) which is then recorded 

as helper data. Later, during regeneration, the mean is again 

computed  using  the  same  set  of  tests  and  the  difference 

between the two mean values is added as a 'correction factor' 

to the PNs obtained during regeneration. In our experiments, 

we found these correction factors to be in the range from -8 to 

+14 PNs, depending on the TV corner.

Unfortunately, not all types of path delay variations can be 

compensated for using TVCOMP. In particular, we found that 

a small number of the PNs tend to "jump" to new values well 

beyond that predicted by the correction factor. Although these 

jumps are exacerbated by TV variations, the underlying cause 

for the jump behavior is the appearance and disappearance of 

'hazards'  on  off-path  inputs  to  gates  along  the  PUT.  Under 

certain  TV  conditions,  it  is  possible  that  an  off-path  input 

(which normally remains at its non-dominant value, e.g., a '1' 

on  an  input  to  an  AND  gate)  changes  momentarily  to  a 

dominant value. Depending on the relative timing between the 

appearance of the hazard and the actual signal transition along 

the  tested  path,  it  is  further  possible  that  the  actual  signal 

transition  is  momentarily  delayed  by  the  hazard.  When  this 

occurs,  a  fundamental  change  occurs  in  the  path  timing. 



Unfortunately, there is no way to predict  or compensate for 

these  situations  short  of  running  fault  simulations  and 

enforcing constraints during test vector generation. This jump 

behavior is the principle reason for the bit flips that occur in 

the reported results given in the following sections.

4.4  The �Dual-PN Count� (DPNC) Method

Most PUF are designed using identical circuit primitives as 

a  means  of  avoiding  bias.  This  is  not  the  case  for  HELP, 

because  the  PUTs  vary  widely  in  length.  We  developed  a 

technique  called  'Dual-PN  Count'  which  post-processes  the 

PNs to eliminate this bias. The technique applies a modulus 

operation to the PNs, which 'trims off' the higher order bits of 

the  path  delay  measurement.  The  truncation  of  the  PNs 

effectively reduces all path delays to a range upper-bounded 

by the modulus, i.e., it makes short paths out of long paths and 

allows unbiased comparisons to be made along all paths. The 

trimmed PNs, called Mod-PNs, are then partitioned into two 

groups for bit generation purposes.

The diagram in Fig.  5 provides a  graphical  depiction of 

this two-step process. The process begins on the left using a 

PUT with a delay between 5 ns and 15 ns. The measured PN 

for  this  PUT is  originally  in  the  range  0  to  128,  but  the 

modulus operation reduces it to a number in the range of 0 to  

M-1 (where  M is a user-specified modulus).  The right-most 

portion of the diagram in Fig. 5 shows the partitioning of the 

Mod-PNs into two groups, where values in the range of  0 to  

M/2-1 are placed in the low PN group, while PNs in the range 

of  M/2  to  M-1 comprise  the  high  PN  group.  As  indicated 

above, TV variations are not completely compensated for by 

TVCOMP. This issue  is  dealt  with by discarding additional 

PNs  (beyond  those  discarded  because  of  path  stability 

problems as described in Sect.  4.2).  In particular,  Mod-PNs 

that  fall  into  regions  outside  those  delineated  in  the  center 

portion  of  Fig.  5 are  considered  invalid  during  enrollment. 

This allows valid PNs, i.e.,  those that  fall  within the center 

portions, to 'shift' during regeneration by up to  M/4 in either 

direction before causing a bit flip. Therefore, this scheme both 

eliminates bias and adds bit flip resilience to HELP. 

4.4.1 Bit Generation using DPNC

The filtering operations described above are sufficient to 

eliminate the adverse effects on delay introduced by noise and 

TV  variations.  However,  large  changes  in  the  Mod-PNs 

introduced by  �jumps�,  as  described in Sect.  4.3,  require  a 

more resilient technique. The rare nature of �jumps� makes it 

possible to develop a bit-flip avoidance method that imposes a 

low area and time overhead. The 'Count' term in DPNC refers 

to this  feature  of  the method,  and characterizes the process 

used to generate bits,  which is described as follows. During 

enrollment, DPNC parses the valid PNs until it encounters a 

sequence of k consecutive values from the same group, where 

k is an odd-numbered, user-specified threshold. Two counters 

track the length of a sequence of PNs from the same group. As 

each PN is read, the counter for the corresponding group is 

incremented,  while  the  other  group's  counter  is  reset  to  0. 

When either of the counters reaches  k (indicating that the  k 

most  recent  PNs  belong  to  the  same  group),  a  new  bit  is 

generated and added to the bitstring, and a 'stop point' flag is 

set  in  the  Stop  Point  Memory  to  indicate  that  a  bit  was 

generated at this point. The value of the generated bit is a '1' if 

the PNs are from the high PN group, and a '0' if the PNs are 

from the low PN group. During regeneration,  the stop point 

flags  (represented as a  bitstring)  are  consulted to determine 

when  bit  generation  occurs.  Therefore,  the  bitstring  of  stop 

point flags represents additional helper data.

4.4.2 DPNC Example 

An example of the DPNC process is shown in Fig. 4. The 

modulus is set to M=22, and the range of valid PNs accepted 

in the low PN bin are given by {4,5,6}, while the valid PNs for 

the  high  PN  bin  are  defined  as  {15,16,17}.  The  value  of 

counter k is set to 5. This example first depicts the enrollment 

process, in which PNs are read from the on-chip memory, left 

to right, as shown in the top of the figure.  Also shown are the 

states of the counters after each PN is read.  When the high PN 

counter reaches 5 (as shown in the circle), a '1' bit is generated 

and added to the bitstring (not shown), and a '1' is written to 

the current location in the Stop Point Memory.  At this point, 

both  counters  are  cleared  and  the  process  continues  until  a 

second bit (a '0' in this case) is generated. The bitstring is built 

up  in  this  fashion  one  bit  at  a  time,  until  a  user-specified 

number is reached.

The bottom portion of Fig. 4 illustrates the process carried 

out  during  regeneration.  Here,  the '1'  bits  in  the  Valid  Path 

Memory (not shown) indicate which paths were used for bit 

generation during enrollment, and dictate now those paths that 

must be re-tested for proper regeneration. Similarly, the '1' bits 

in Stop Point Memory force bits to be generated at these points 

(the counters are not  consulted). The counters,  however,  are 

consulted to determine the value of the generated bit, which is 

determined  by  the  larger  of  the  two counter  values.  In  the 

example, two of the five values that were in the high PN bin 

during enrollment have 'flipped' and now appear in the low PN 

bin  (see  elements  highlighted  with  the  heavy  borders). 

However, because the majority, 3 out of 5, are high PNs, the 



algorithm correctly regenerates a '1' bit despite the presence of 

the erroneous measurements. Also note that the first erroneous 

measurement  (the  '8'  in  the  heavy  border)  is  of  no 

consequence since it is not part of the consecutive sequence of 

5  PNs  that  are  consulted  to  determine  the value  of  the  bit 

(these 5 PNs are identified in the figure with a curly bracket).

4.5  The "UNM Difference" (UNMD) Technique

In [15], we presented the HELP PUF and a bit generation 

technique  called  Universal/No-Modulus  (UNM).  We 

investigate  a  variant  of this UNM technique in this section. 

Unlike  the  DPNC  described  above,  UNM  leverages  the 

randomness associated with the stability of paths across chips 

(see Sect.  4.2) and therefore it does not need to calibrate for 

bias,  i.e.,  UNM  can  compare  short  paths  with  long  paths 

directly without truncating the high order bits of the PNs as is 

true for DPNC. The technique described in [15] defines a low 

and  a  high  PN  bin  (similar  to  DPNC),  but  with  the  bins 

defined  in  this  case  over  the  entire  path  distribution  range 

from  0  to  128.  A large  margin  of  approx.  100  is  created 

between the  bins  to  allow for  shifts  and  jumps in  the  PNs 

during regeneration. The original technique therefore discards 

a  large  fraction  of  PNs  that  fall  within  this  margin  during 

enrollment (beyond those discarded because of path stability 

problems as described in Sect. 4.2).

We  refer  to  the  variant 

described  here  as  'UNM 

Difference'  or  UNMD.  In 

UNMD,  we replace  the  fixed 

margin with  the concept  of  a 

noise  threshold,  discussed 

below.  By  doing  so,  UNMD 

does not discard stable PNs as 

is  true  of  UNM,  but  rather 

preserves and makes use of all 

PNs  generated  by  the  DCE. 

This  feature  reduces  the 

workload imposed on the DCE 

to  find  a  suitable  set  of  PNs 

that  meet  a bitstring target  by 

95.8% when  compared  with 

the  original  fixed  threshold 

technique.   As  we will  show, 

UNMD  offers  significant 

advantages  in  both  running 

time  and  memory 

requirements.

4.5.1 Bit Generation Process and Procedure.

All components except for the BitGen Engine in Fig. 2 are 

identical  for  both  the  DPNC  and  UNMD  techniques.  The 

BitGen Engine for UNMD, shown in Fig. 6, randomly selects 

two PNs to compare (unlike DPNC which parses the PNs one 

at a time as shown in Fig. 4). The Random Pairing Generator 

produces the two addresses of  the PNs to compare and the 

values are read from on-chip memory into a pair of registers 

(PN 'A' and PN 'B'). PN 'B' is then subtracted from PN 'A' to 

produce  a  PN  difference.  The  magnitude  of  the  difference 

determines the strength of that pairing, as discussed in the next 

section. If that difference is sufficiently large, then the sign of 

the comparison determines the value of the generated bit. A 

negative sign produces a '0', and a positive sign produces a '1'.

4.5.2 Thresholding Technique.

A thresholding technique similar to that proposed in [17] is 

used to decide if  a given comparison generates a  strong bit 

(which  is  kept)  or  a  weak  bit  (which  is  discarded). 

Thresholding  works  as  follows.  During  enrollment,  a  noise 

threshold is defined using the path distribution histogram for 

the  chip.  The  histogram  is  constructed  using  all  n PNs 

collected  by  the  DC  engine.  The  noise  threshold  is  then 

computed as a constant that is proportional to the difference 

between the PNs at the 5 and 95 percentiles in this distribution. 

Therefore, each chip uses a different threshold that is 'tuned' to 

that chip's overall (chip-to-chip) delay variation profile.

For each comparison, the difference between the two PNs 

is  compared  against  the  noise  threshold.  A  strong  bit  is 

generated  if  the  magnitude  of  the  difference  exceeds  the 

threshold, otherwise the bit is discarded. Simultaneously, a bit 

is  added  to  the  'Strong  Bit  Memory'  shown in  Fig.  6 that 

reflects  the status of  the comparison,  with a '1'  indicating a 

strong bit and a '0' indicating a weak bit. During regeneration, 

the  Strong  Bit  Memory  is  consulted  to  determine  which 

comparisons are used to regenerate the bitstring.

Fig.  7 shows the path distribution for a typical chip. The 

dashed lines indicate the 5 and 95 percentiles, with PNs of 23 

and  117  respectively.  The  difference  between  these  PNs  is 

multiplied by a noise margin (0.90 in this example) to compute 

a noise threshold of 84.6. Pairings which differ by more than 

this threshold form 'strong' bits, while pairings that differ by 

less than this threshold are deemed to be 'weak' and will be 

discarded.  The 'pairings' in Fig. 7 illustrate this concept.

4.5.3 TMR-Based Error Correction Scheme.

In  Sect.  4.3,  we  described  �jumps�  as  a  worst-case 

condition and they represent our biggest challenge in dealing 

with bit flips. Both DPNC and UNMD are adversely impacted 

by  jumps.  In  our  experiments,  some  path  delays  changed 

because of jumps by as much as 4.5 ns, or 58 PNs, at different 

TV  corners.  Moreover,  the  PN  differences  computed  by 

UNMD  exacerbate  the  problem,  where  jumps  in  two  path 

delays can combine in a worse-than-worst-case fashion.

This is illustrated in the graphs of Fig. 8, which depict data 

from one of the Virtex-II boards. The graphs plot the 'strong 

bit' number along the x-axis against the PN differences on the 

y-axis,  with the noise thresholds (as described above) set  to 

±77.4  for  this  Virtex-II  board.  The  data  points  from 

enrollment on the left all fall above or below these thresholds 

(by definition),  but  data  points from measurements taken at 

different TV corners in the graph on the right 'infringe' into the 

space between the thresholds. Most data points remain close to 

the  thresholds,  but  some  move  significantly  (because  of 
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jumps), as highlighted, by as much as 5.6 ns or 71 PNs.

By  choosing  a  conservative  noise  threshold,  bit  flips 

caused by jumps such as those shown in Fig. 8 can be avoided. 

However,  a  different  strategy  is  needed  in  cases  where the 

application  requires  the  probability  of  a  bit-flip  to  be 

negligibly small (e.g., encryption). We proposed a technique 

in  [17]  that  is  based  on  a  popular  fault  tolerant  technique 

called triple modular redundancy (TMR), which is capable of 

reducing the probability of failure to values below 1e-11. The 

method  constructs  3  copies  of  the  bitstring  (using  the 

abundance of  bits  provided by  the PUF)  and uses  majority 

voting to construct the final bitstring. The probability of a bit-

flip error is significantly reduced because any single bit-flip 

that occurs in any column of bits defined by the 3 copies can 

be tolerated. Probability of failure is investigated in Sect. 5.4.

5 Experimental Results And Analysis

We conducted environmental experiments on  30 Virtex-II 

Pro boards using a thermoelectric cooler (TEC) apparatus and 

a  programmable  power  supply.  As  indicated  earlier,  each 

board was tested at 9 TV corners, defined by all combinations 

of three temperatures, 0C, 25C and 70C, and three voltages, 

1.35V,  1.50V and 1.65V. Data  collected at  25°C and 1.5  is 

treated  as  enrollment  data  while  the  data  collected  at  the 

remaining 8 TV corners is treated as regeneration data.

5.1  Hamming Distance (HD)

Inter-chip Hamming Distance (HD) measures uniqueness 

of the bitstrings across boards, and is computed by counting 

the number of bits that are different in the bitstrings from each 

pairing  of  boards.  An  average  inter-chip  HD  is  computed 

using  the  results  from  all  possible  pairings,  which  in  our 

experiments  is  30*29/2  =  435.  The  inter-chip  HDs  are 

typically converted into percentages by dividing each of them 

by the length of  the bitstrings. The best  achievable average 

HD  under  these  conditions  is  50%.  Intra-chip HD,  on  the 

other hand, is the number of bits that differ in two bitstrings 

obtained  from  the  same chip  but  tested  under  different 

environmental conditions. The ideal intra-chip HD is zero, and 

a non-zero value indicates that one or more bit flips occurred 

during regeneration. In our  experiments,  intra-chip HDs are 

computed across the 9 TV corners for each board and then an 

average is computed using the 9*8/2 = 36 individual HDs. The 

'average-of-the-averages' is then computed using the average 

HDs from all boards.  Fig.  9 shows histograms for the inter-

chip HDs and other statistical results obtained for the DPNC 

and UNMD techniques. 

DPNC. The length  of  the  bitstrings  using  the  DPNC 

technique is 256 bits. The average inter-chip HD in Fig. 9(a) is 

49.923%. A Gaussian curve is shown fitted on top of the inter-

chip HD distribution as a  means of  illustrating its  expected 

behavior. The standard deviation of the normal curve is 8.192 

(where  smaller  is  better).  This  value  is  consistent  with  the 

expected standard deviation of  a  normally distributed set  of 

random values.

The average intra-chip HD is 0.038%. The non-zero value 

indicates that bit-flips occurred with a frequency of 0.097 bit-

flips per 256-bit string.

UNMD. The  length  of  the  bitstrings  for  the  UNMD 
technique  is  6,698,512.  Fig.  9(b)  plots  the  inter-chip  HD 

distribution. The average inter-chip HD is 50.001%. The intra-

chip HD using the bitstrings prior to applying is 4.59%, which 

became 0% after applying TMR.

5.2  NIST Statistical Analysis of Randomness

To test  the randomness of the bitstrings produced by the 

HELP PUF,  we used a  statistical  test  suite  provided  by the 

National  Institute of Science and Technology, or NIST [14]. 

These tests were applied to the bitstrings from the 30 boards. 

DPNC.  All  of  the  bitstrings  generated  by  this  method 

passed each of the tests in the subset  of NIST tests that are 

applicable to 256-bit strings.

UNMD. The  bit  sequences  generated  by  the  UNMD 

method  were  sufficiently  long  that  all  15  NIST  tests  are 

applicable. All 15 tests passing, with no fewer than 28 boards 

passing any one test (the number required by NIST for a test to 

be considered 'passed').

5.3  Analysis of Running Time

DPNC.  Bitstring generation times for HELP are reported 
here  as  the  average  number  of  bits  generated  per  minute, 

excluding serial data transfer time. During enrollment, the time 

required  to  generate  each  bit  depends  on  several  factors, 

including  the  percentage  of  tested  paths  that  are  stable,  the 

value  of  k (the  number  of  consecutive  copies  of  a  value 

required to produce a bit), and the number of PNs that are read 

from memory before encountering k consecutive copies.

With  k=5,  the  average  number  of  paths  tested  for  each 

generated  bit  during  enrollment  is  1,261,  due  to  the  highly 

selective  nature  of  the  DPN  binning  algorithm  described 

previously. Bits are generated at an average rate of  36.4 bits 

per  minute.  During  regeneration,  since  only  valid  paths  are 

measured, the average bit generation rate increases to 167 bits 

per minute.

UNMD. On average, the data collection engine tested 3.92 

paths for each of the 4,096 valid PNs that we collected across 

30 boards. On average,  22.35  paths were tested, at  up to 12 

samples per path, for stability every second. For the UNMD 

analysis,  the PNs were collected by the HELP PUF engine, 

while the bit generation process was completed off-chip using 

Noise 
Threshold 
(+/- 77.4)

Worst-case 
Jumps

Fig. 8: Thresholding Technique
Fig. 9: HD Analysis

60

10

0

70

0.3 0.4 0.5 0.6 0.7

HD (PCH)
Mean: 49.923%
StDev: 0.320%

HD (Actual)
Mean: 127.8

StDev: 8.2

Length:
256 Bits

#
 o

f 
in

s
ta

n
c
e
s

Intra-chip HD
Mean: 0.038%
(0.097 bits)

HD (Actual)
Mean: 3.35M
StDev: 1273

Length:
6.7M Bits 

HD (PCH)
Mean: 50.001%
StDev: 0.0002%

Intra-chip HD
Mean: 4.59%
(Non-TMR)

0.3 0.4 0.5 0.6 0.7

#
 o

f 
in

s
ta

n
c
e

s

10

0

60

70

(a) (b)

DPNC UNMD

(TMR)
Mean: 0.00%



a software program. This was done to allow us to evaluate a 

range  of  noise  thresholds  without  needing  to  re-collect  the 

PNs each time. As a result, the FPGA running time of the bit 

generation process for UNMD is not known.

5.4  Probability of Failure: Results and Analysis

DPNC.  There were a total of 9 unique errors that resulted 

in  19  bit  flips  during  the  240  regenerations  that  were 

performed during our experimentation. The overall single-bit 

probability  of  failure  (POF)  is  3.09x10-4 (19  errors  per  (30 

boards  *  8  regenerations  per  board  *  256  bits  per 

regeneration)).  16 of these 19 bit  flips occur when the core 

logic voltage of the FPGA is 10% lower than nominal.

UNMD.  The  POF  analysis  for  the  UNMD  method  is 

performed as two analyses:  the POF for  the initial  bitstring 

and the POF for the TMR-based bitstring described in Sect. 

4.5.3. Both of these analyses involve generating bitstrings at 

all 9 TV corners across a range of noise thresholds.  In each 

case, we record the number of bit flips that occur at each noise 

threshold, and then fit an exponential curve to this data. The 

exponential  fit  allows us  to  model  expected  error  rates  for 

noise  thresholds  far  higher  than  those  at  which  bit  flips 

actually occur in our empirical results. 

For the initial bitstrings, we computed a theoretical error 

rate  of  1.54  x  10-6,  or  1  bit  flip  in  approx.  650,000 bits 

generated. Fig. 10(a) illustrates the actual and theoretical error 

rates for each of the TMR-based bitstrings. Fig.  10(b) shows 

an enlarged view of the theoretical error rate at a noise margin 

of 0.90.  At this noise threshold, our POF is 1.096 x 10-11, or 1 

bit flip in approx. 91 billion bits generated.

6 UNMD Security Vulnerability and Mitigation

The  HELP  PUF,  when  using  the  UNMD  method,  is 

capable  of  generating  reliable,  cryptographic-strength 

bitstrings of up to several million bits in length.  However, an 

adversary with  access to the simulation model  of  the target 

system may be able to �reverse engineer� the secret bitstring. 

While this vulnerability would be difficult to exploit, the only 

way  to  completely  eliminate  the  threat  is  to  obfuscate  the 

Valid Path Memory component of the public data.

Since the DPNC method is not subject to this vulnerability, 

we propose to use DPNC to generate a small (32- to 64-bit) 

bitstring that can be used to obscure the public data produced 

by the UNMD technique using the same set of PNs during the 

enrollment process. The public data for this short bit string is 

added to the obfuscated UNMD public data. At the start of 

regeneration,  the  un-obscured  public  data  for  the  DPNC 

method is used to regenerate the short bitstring, which is then 

used  to  unveil  the  public  data  for  the  UNMD regeneration 

process.

7 Conclusions

In  this  paper,  we  have  presented  details  of  HELP,  a 

practical, realizable PUF, and have proposed and demonstrated 

two bit generation techniques called DPNC and UNMD. The 

HELP PUF is based on variations in path delays and on the 

stability  of  those  paths,  each  measured  from  a  core  logic 

macro embedded within the chip. The results of the HD, NIST, 

and POF analyses show the bitstrings to be genuinely random, 

unique,  and  highly  reproducible  under  changing 

environmental  conditions,  all  of  which  are  critical 

requirements  for  the  potential  use  of  HELP in  applications 

such as  mobile computing or smartcards.
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