
Abstract: Cryptographic and authentication applications in

application-specific integrated circuits (ASICs) and FPGAs,

as well as codes for the activation of on-chip features, require

the use of embedded secret information. The generation of

secret bitstrings using physical unclonable functions, or

PUFs, provides several distinct advantages over conventional

methods, including the elimination of costly non-volatile

memory, and the potential to increase the number of random

bits available to applications. In this paper, we propose a

Hardware-Embedded Delay PUF (HELP) that is designed to

leverage path delay variations that occur in the core logic

macros of a chip to create random bitstrings. The bitstrings

produced by a set of 30 FPGA boards are evaluated with

regard to several statistical quality metrics including

uniqueness, randomness, and stability. The stability

characteristics of the bitstrings are evaluated by subjecting

the FPGAs to commercial-level temperature and supply

voltage variations. In particular, we evaluate the

reproducibility of the bitstrings generated at 0°C, 25°C, and

70°C, and at nominal and ±10% of the supply voltage. An

error avoidance scheme is proposed that provides significant

improvement against bit-flip errors in the bitstrings.

Keywords: Physical unclonable function, PUF, hardware

security, cryptography, path delay variation

1 Introduction

Physical unclonable functions (PUFs) are becoming

increasingly attractive for generating random bitstrings for a

wide range of security-related applications. PUFs are designed

to reliably differentiate one chip from another by leveraging

the naturally-occurring random process variations which occur

when the chips are fabricated. Process variations are

increasing as layout geometries shrink across technology

generations. Although undesirable from a design perspective,

the electrical variations introduced by process variations

define the entropy source on which PUFs are based. PUFs are

designed to measure and 'digitize' these electrical variations to

create random bitstrings. The most common sources of

variations that PUFs leverage include path delay, metal

resistance and SRAM power-up patterns.

The quality of the bitstrings produced by a PUF are

typically evaluated using a suite of statistical tests. Generally,

three criteria are considered essential for a PUF to be used for

applications such as encryption: 1) the bitstrings produced for

each chip must be sufficiently unique to distinguish each chip

in the population, 2) the bitstrings must be random, making

them difficult for an adversary to model and predict, and 3)

the bitstring for any one chip must be stable over time and

across varying environmental conditions.

In this paper, we present a detailed examination of a PUF,

called HELP, that is based on path delay variations. The novel

features that differentiate HELP from other delay-based PUFs

include: 1) the capability of comparing paths of different

lengths without adding bias, 2) elimination of specialized test

structures, 3) a minimally invasive design with low per-bit area

and performance impact, and 4) a PUF engine that is

integrated into the existing functional units of the chips and

requires no external testing resources. The integration of HELP

into an existing functional unit, such as the Advanced

Encryption Standard (AES), allows it to leverage a large

source of entropy while minimizing its overall footprint. This

large source of entropy allows HELP to generate long

bitstrings, while being conservative in the paths selected for bit

generation. The large availability of paths also enables unique

opportunities for avoiding bit-flip errors.

Unique Contributions of this Paper: The following are

the novel contributions of this paper:

� A novel modulus-based technique that permits the

direct comparison of delay measurements from logic

paths of widely varying lengths

� A path delay measurement binning scheme that

improves tolerance to environmental, measurement

and meta-stability noise sources

� Fault-tolerant bit generation techniques that provide

resilience against bit-flip errors caused by these noise

sources

These characteristics of the HELP PUF are demonstrated

on a set of 30 Virtex-II Pro FPGA boards. HELP is integrated

into an AES functional unit and is evaluated across a set of 9

temperature-voltage (TV) corners, which represent

commercial-grade standards. The bitstrings produced by each

board are evaluated using statistical tests, which are designed

to measure their uniqueness, reliability, and randomness.

2 Background

The PUF first appeared as a mechanism for generating

secure bitstrings in [1] and [2]. The PUF as a chip identifier,

however, was introduced earlier in [3]. Proposed PUF designs

generally fall into one of the following classifications: SRAM

PUFS [4], ring oscillators [5,6], MOS drive-current PUFs [7],

delay line and arbiter PUFs [8], and PUFs based upon

variations in a chip's metal wires [9]. Delay-based PUFs also

include such designs as the Glitch PUF, which leverages

variation in glitch behavior and is presented in [10]. Each of

these PUFs takes advantage of one or more naturally-varying

properties, and nearly all PUFs share a common set of

challenges such as measurement error and uncertainty, and

fluctuations in voltage or temperature. The degree to which a

given PUF can tolerate or mitigate these challenges is an

important indicator of its utility for generating secret data.

The HELP PUF proposed in this paper, and introduced in

[15], is to the best of our knowledge the only delay-based PUF

that combines the following features:

� The HELP PUF is entangled with the hardware in which it

Error-Tolerant Bit Generation Techniques For Use With A

Hardware-Embedded Path Delay PUF
D. Acharyya
AdvanTest, Inc.

Dhruva.Acharyya@advantest.com

J. Aarestad, J. Plusquellic
University of New Mexico

jaarestad@ece.unm.edu

jimp@ece.unm.edu

is embedded, in the sense that the path delays measured

in, e.g., an AES core logic macro, can be used to

generate a bitstring that is subsequently used as the key

for use by AES in functional mode. The proximity of the

bit generation to the hardware that uses the bitstring

improves robustness against invasive or probing attacks

designed to steal the key.

� The bit flip avoidance scheme proposed in this paper

significantly reduces the probability of bit-flip errors

during regeneration.

� The physical implementation of HELP uses standard

hardware resources commonly available in the fabric of

an FPGA, including an on-chip digital clock manager

(DCM). The authors of [11] also leverage the high timing

resolution provided by a DCM for Trojan detection and

IC authentication.

� By using the core logic of AES itself, a large source of

existing entropy is leveraged.

3 HELP PUF Overview

The HELP PUF produces a bitstring using a challenge-

response mechanism. The challenge component for HELP

consists of a randomly selected, two-vector test sequence

applied to the inputs of the macro-under-test (MUT). The test

sequence introduces a set of transitions that propagate through

the core logic of the MUT and appear on its outputs. The

responses are defined as the measured path delays, represented

as 8-bit numbers as explained below, for each of the outputs.

The delays on each MUT output are measured one-at-a-time.

The precision of the delay measurement impacts the

stability of HELP. We use an embedded test structure called

REBEL to obtain high-precision, digitized representations of

the path delays [12]. REBEL is integrated directly with the

scan chain logic and uses the on-chip clock tree network for

launch-capture (LC) timing events.

Fig. 1 depicts an overview of the REBEL test structure,

which consists of two rows of flip-flops (FFs) connected

together into a scan chain. Small logic blocks on the left of

each row, labeled RCL for Row Control Logic, allow the scan

elements on each row to be configured as follows:

� The top row is the launch row, and is configured to

operate in functional mode.

� The second row is the capture row, and is configured in

'mixed mode', in which a specific FF, called the

insertion point (IP), is chosen. This scan-FF and each

scan-FF to the right of it in the row are placed in 'flush

delay' mode (described below), and form a

combinational delay chain, effectively extending the path

at the IP.

Flush-delay mode (FD) is a special mode in which a scan

chain can be configured as a combinational delay chain. This

is depicted in the callout in Fig. 1, which shows two

master/slave FFs in which the output of the first master feeds

into the scan input of the second FF. Any transition that occurs

on the IP propagates through the functional input and into the

first master using logic that selects that path (not shown). In

contrast, the logic controlling the scan mux for the second FF

(and all FFs to its right) selects the scan input, effectively

allowing the transition to propagate unimpeded through the

masters of these FFs. Details concerning the control logic for

the scan chain MUXes can be found in [12].

A REBEL path delay test is carried out by scanning in

configuration information, which selects the IP and configures

the delay chain as shown in Fig. 1. A clock transition is then

applied to the launch row FFs which generates transitions that

propagate into the MUT. Any transition that occurs on the

MUT output at the IP will propagate into the delay chain. By

asserting the clock input on the capture row FFs, the master

latches revert to storage mode and digitize the time behavior of
the transition(s) as a sequence of 1's and 0's. The combined

delay of the MUT path and the delay chain can be derived by

searching, from right to left, in the binary sequence for the FF

that contains the first transition.

4 Experimental Setup

We've created a complete HELP implementation on an

FPGA and carried out experiments on a set of 30 Virtex-II Pro

XUP FPGA boards [16]. The Virtex-II Pro board incorporates

a 130-nm Virtex-II Pro device and permits power for the core

logic to be supplied by an external power supply, which

proved to be convenient for the TV corner testing carried out

in our experiments1. Fig. 2 shows a top-level structural

diagram of our HELP implementation.

The MUT used in our implementation is the logic defining

a single round of a pipelined AES implementation from

OpenCores [13]. Space limitations on the Virtex-II Pro

prevented inclusion of all 10 rounds of a full AES

implementation. The block labeled 'Initial Launch Vector

(256)' represents the pipeline FFs in the full-blown AES

implementation, converted here to MUX-D scan-FFs. A

second copy of this block, labeled 'Final Launch Vector (256)',

is added to emulate the logic from the omitted previous round.

In our implementation, two randomly generated vectors that

represent the challenge are scan-loaded into the two blocks.

The block labeled 'REBEL (Capture) Row' in Fig. 2 also

represents the pipeline FFs between the logic blocks defining

the rounds in AES. We modified this row to incorporate

REBEL, and designed it to implement the 'mixed mode'

functionality described previously in reference to Fig. 1. The

number of FFs in this row is expanded from 256 to 264 to

extend the delay chain for the IPs on the right end of the MUT.

The remaining components in Fig. 2 define the HELP PUF

engine, and can be divided into the Data Collection Engine

1 Although the Virtex-II Pro chips are fabricated in an older technology, we

expect similar (or better) results to those presented using chips fabricated
in more advanced technologies.

Fig. 1: REBEL embedded test structure.

RCL

RCL

SI

011

IP

Rst

FD

FD_L
ModeCtrl

Combinational Logic

Master Slave

D

SI

MUXD Scan-FF

Master Slave

D

SI

MUXD Scan-FF

SI

D

Functional
Input

Scan
Input

(DCE), and the BitGen Engine (BGE). One iteration of the

whole process produces the bitstring. The engine behaves

differently depending on whether a new bitstring is requested

(a process called enrollment) or whether the bitstring needs to

be reproduced (a process called regeneration). We distinguish

between these scenarios in the following description as

needed.

The overhead of HELP is given in TABLE I. The

resources under the column 'Single AES Stage' correspond to a

single stage of the pipelined AES macro. The fully pipelined

version is 10X larger, and therefore, the reported overhead for

HELP in the first 3 rows would reduce by a factor of 10 in a

full implementation, e.g., the values in the 'LUTs' row of

TABLE I. would become '31220, 3931, 12.6%'.

TABLE I. HELP PUF RESOURCE OVERHEAD

Single AES Stage PUF w/o AES % Overhead

Flip-flops 1297 456 35%

LUTs 3122 3931 126%

Slices 2146 1831 85%

RAMB16 0 58 ---

BUFGMUX 1 4 400%

DCMs 0 3 ---

4.1 HELP Components

The DCE in Fig. 2 carries out a sequence of LC tests,

measures the path delays, and records the digitized

representation of them, called PUF numbers or PNs, in block

RAM on the FPGA. In our current implementation, the DCE

runs to completion before the BGE component is started.

Clock Generator. The clock generator module generates

two clock signals: a Launch clock and a Capture clock, and is

shown on the left in Fig. 2. In our design, this module contains

three digital clock managers, or DCMs. A 'master' DCM is

used to reduce the off-chip oscillator-generated 100 MHz

clock to 50 MHz. The output of the master DCM drives the

Launch and Capture DCMs. We utilize the fine phase

adjustment (FPA) feature of the Capture DCM to 'tune' the

phase relationship between the Launch and Capture clocks. At

50 MHz, the FPA allows 80 ps increments/decrements in the

phase shift of the Capture clock on the Virtex-II Pro chips.

When the DCE is configuring the scan chains in

preparation for the LC test, the phase relationship between the

Launch and Capture clocks is set to 0. Just prior to the launch

event, the controlling state machine selects the 180° phase-

shifted output of the Capture DCM, and the FPA feature is

used to tune the phase in an iterative process designed to meet

a specific goal (to be discussed).

TABLE II. CAPTURE CLOCK PHASE ADJUSTMENT

Phase Adj. Phase Angle LC Interval

0 90° 5 ns

64 180° 10 ns

128 270° 15 ns

TABLE II. summarizes the characteristics of the Capture

clock, and Fig. 3 illustrates the timing relationship between the

Launch and Capture clocks for different values of the 'Phase

Adj.' control counter in the DCM. The launch and capture

events occur on the rising edge of the corresponding clocks.

From the timing diagram, this allows path delays from 5 ns to

15 ns in length to be measured. The 0 to 128 range of values

(called PNs) are used as a digital representation of the path

delays.

PN Memory: A block RAM used to store the PNs.

LC LFSR Controller: A 32-bit linear feedback shift

register (LFSR) used to produce the randomized launch

vectors.

REBEL Controller: Configures the IP in the REBEL row

attached to the output of the AES logic block.

Sample Analysis Engine (SAE): Analyzes the digitized

results in the delay chain after each LC test for a given path

and determines whether the path is 'valid'. A valid path is

defined as one that has a real transition, is glitch-free, and

produces consistent results across multiple samples.

Valid Path Memory: A block RAM used to record a

pass/fail flag for each tested path that reflects its validity (as

defined under SAE). These values are technically stored

during enrollment and then read back in from non-volatile or

off-chip memory (public storage) during regeneration, and

represent the helper data needed in the regeneration process.

Random Pairing Generator: Uses a 28-bit LFSR to

generate randomized pairings of PNs for bit generation.

Stop Point Memory/Strong Bit Memory: A block RAM

used by the Bit Generation Engine to record 'stop points' or

'strong bits' (depending on the bit generation method in use �

see Sects. 4.4 and 4.5) during enrollment. The values stored in

this memory, like the Valid Path Memory, are also components

of the helper data.

The Serial Interface component is used to interact with the

HELP engine, and to transfer the results of the path testing and

bit generation processes.

4.2 Path Delay Measurement

A sequence of paths are tested by the DCE process to

produce the PNs used later in bit generation. The starting point

and order in which the paths are tested is determined by the

LC LFSR. The DCE process begins by loading the LC LFSR

with a seed (provided by the user), and instructs the LC LFSR

controller to load a random pair of vectors into the launch

rows. Simultaneously, the REBEL controller configures the

REBEL row with a specific IP and places the REBEL row in

FD mode. The same random vector pair is reloaded to test

each of the 256 IPs, one at a time, before the LC LFSR

generates and loads the next random vector pair.

A key contribution of our technique is the discovery that

path stability can be used as the basis for random bitstring

generation. Path stability is defined as those paths which have

a rising or falling transition, do not have temporary transitions

or glitches, and that produce a small range of PNs (ideally

only one) over multiple repeated sampling. As we show in

Sect. 5 below, the paths that pass the stability test are different

for each chip in the population.

A state machine within the DCE is responsible for

measuring path delays and for determining the stability of the

paths. Our algorithm begins testing a path by setting the FPA

to 128, which configures the Capture clock phase to 270°. It

then iteratively reduces the phase shift in a series of LC tests,

called a sweep. For paths that have transitions, the process of

'tuning' the FPA toward smaller values over the sweep

effectively 'pushes' the transition backwards in the delay

chain, since each successive iteration reduces the amount of

time available for the transition to propagate. When the edge

is 'pushed back' to a point just before a target FF in the delay

chain, the process stops (the goal has been achieved). The

target FF is an element in the delay chain that is a specific

distance (in FFs) from the IP. The value of the FPA at the stop

point is saved as the PN for this path, i.e., the PN represents

the 'response' to the 'challenge' defined by the launch vector

and IP.

Evaluating path stability is accomplished by counting the

number of transitions that occurred in the REBEL row by

'XOR'ing' neighboring FFs in the delay chain. The path is

immediately classified as unstable (and the sweep is halted) if

the number of transitions exceeds 1 at any point during the

sweep. Once the sweep is complete, the whole process is

repeated multiple times. If the range of PNs measured across

multiple samples varies by more than a user-specified

threshold, the path is classified as unstable and is discarded.

Note that path stability evaluation occurs ONLY during

enrollment. In order to make it possible for regeneration to

replay the valid path sequence discovered during enrollment,

the 'valid path' bitstring is updated after testing each path. For

paths considered valid, a '1' is stored and for those classified as

unstable (or have no transition), a '0' is stored. During

regeneration, the exact same sequence of tests can be carried

out by loading the LC LFSR with the same seed and using the

'valid path' bitstring to determine which paths are to be tested

(a '1' forces the path to be tested, and a '0' forces the path to be

skipped).

4.3 TV Compensation and Jumps

Temperature and voltage can vary between enrollment and

regeneration, which will introduce variations in path delays.

The modulus technique that we discuss in the next section

requires the PNs to remain as constant as possible during

regeneration at different TV corners, and therefore it is

necessary to calibrate for these types of environmental effects.

We developed a calibration technique called

Temperature/Voltage Compensation or TVCOMP to deal with

TV variations. The principle behind TVCOMP is to derive a

constant during regeneration that, when added to all PNs,

shifts the PN distribution so that it matches the distribution

obtained during enrollment. Calibration is carried out by

computing a 'mean PN' during enrollment from a small subset

of tests (we found 64 to be sufficient) which is then recorded

as helper data. Later, during regeneration, the mean is again

computed using the same set of tests and the difference

between the two mean values is added as a 'correction factor'

to the PNs obtained during regeneration. In our experiments,

we found these correction factors to be in the range from -8 to

+14 PNs, depending on the TV corner.

Unfortunately, not all types of path delay variations can be

compensated for using TVCOMP. In particular, we found that

a small number of the PNs tend to "jump" to new values well

beyond that predicted by the correction factor. Although these

jumps are exacerbated by TV variations, the underlying cause

for the jump behavior is the appearance and disappearance of

'hazards' on off-path inputs to gates along the PUT. Under

certain TV conditions, it is possible that an off-path input

(which normally remains at its non-dominant value, e.g., a '1'

on an input to an AND gate) changes momentarily to a

dominant value. Depending on the relative timing between the

appearance of the hazard and the actual signal transition along

the tested path, it is further possible that the actual signal

transition is momentarily delayed by the hazard. When this

occurs, a fundamental change occurs in the path timing.

Unfortunately, there is no way to predict or compensate for

these situations short of running fault simulations and

enforcing constraints during test vector generation. This jump

behavior is the principle reason for the bit flips that occur in

the reported results given in the following sections.

4.4 The �Dual-PN Count� (DPNC) Method

Most PUF are designed using identical circuit primitives as

a means of avoiding bias. This is not the case for HELP,

because the PUTs vary widely in length. We developed a

technique called 'Dual-PN Count' which post-processes the

PNs to eliminate this bias. The technique applies a modulus

operation to the PNs, which 'trims off' the higher order bits of

the path delay measurement. The truncation of the PNs

effectively reduces all path delays to a range upper-bounded

by the modulus, i.e., it makes short paths out of long paths and

allows unbiased comparisons to be made along all paths. The

trimmed PNs, called Mod-PNs, are then partitioned into two

groups for bit generation purposes.

The diagram in Fig. 5 provides a graphical depiction of

this two-step process. The process begins on the left using a

PUT with a delay between 5 ns and 15 ns. The measured PN

for this PUT is originally in the range 0 to 128, but the

modulus operation reduces it to a number in the range of 0 to

M-1 (where M is a user-specified modulus). The right-most

portion of the diagram in Fig. 5 shows the partitioning of the

Mod-PNs into two groups, where values in the range of 0 to

M/2-1 are placed in the low PN group, while PNs in the range

of M/2 to M-1 comprise the high PN group. As indicated

above, TV variations are not completely compensated for by

TVCOMP. This issue is dealt with by discarding additional

PNs (beyond those discarded because of path stability

problems as described in Sect. 4.2). In particular, Mod-PNs

that fall into regions outside those delineated in the center

portion of Fig. 5 are considered invalid during enrollment.

This allows valid PNs, i.e., those that fall within the center

portions, to 'shift' during regeneration by up to M/4 in either

direction before causing a bit flip. Therefore, this scheme both

eliminates bias and adds bit flip resilience to HELP.

4.4.1 Bit Generation using DPNC

The filtering operations described above are sufficient to

eliminate the adverse effects on delay introduced by noise and

TV variations. However, large changes in the Mod-PNs

introduced by �jumps�, as described in Sect. 4.3, require a

more resilient technique. The rare nature of �jumps� makes it

possible to develop a bit-flip avoidance method that imposes a

low area and time overhead. The 'Count' term in DPNC refers

to this feature of the method, and characterizes the process

used to generate bits, which is described as follows. During

enrollment, DPNC parses the valid PNs until it encounters a

sequence of k consecutive values from the same group, where

k is an odd-numbered, user-specified threshold. Two counters

track the length of a sequence of PNs from the same group. As

each PN is read, the counter for the corresponding group is

incremented, while the other group's counter is reset to 0.

When either of the counters reaches k (indicating that the k

most recent PNs belong to the same group), a new bit is

generated and added to the bitstring, and a 'stop point' flag is

set in the Stop Point Memory to indicate that a bit was

generated at this point. The value of the generated bit is a '1' if

the PNs are from the high PN group, and a '0' if the PNs are

from the low PN group. During regeneration, the stop point

flags (represented as a bitstring) are consulted to determine

when bit generation occurs. Therefore, the bitstring of stop

point flags represents additional helper data.

4.4.2 DPNC Example

An example of the DPNC process is shown in Fig. 4. The

modulus is set to M=22, and the range of valid PNs accepted

in the low PN bin are given by {4,5,6}, while the valid PNs for

the high PN bin are defined as {15,16,17}. The value of

counter k is set to 5. This example first depicts the enrollment

process, in which PNs are read from the on-chip memory, left

to right, as shown in the top of the figure. Also shown are the

states of the counters after each PN is read. When the high PN

counter reaches 5 (as shown in the circle), a '1' bit is generated

and added to the bitstring (not shown), and a '1' is written to

the current location in the Stop Point Memory. At this point,

both counters are cleared and the process continues until a

second bit (a '0' in this case) is generated. The bitstring is built

up in this fashion one bit at a time, until a user-specified

number is reached.

The bottom portion of Fig. 4 illustrates the process carried

out during regeneration. Here, the '1' bits in the Valid Path

Memory (not shown) indicate which paths were used for bit

generation during enrollment, and dictate now those paths that

must be re-tested for proper regeneration. Similarly, the '1' bits

in Stop Point Memory force bits to be generated at these points

(the counters are not consulted). The counters, however, are

consulted to determine the value of the generated bit, which is

determined by the larger of the two counter values. In the

example, two of the five values that were in the high PN bin

during enrollment have 'flipped' and now appear in the low PN

bin (see elements highlighted with the heavy borders).

However, because the majority, 3 out of 5, are high PNs, the

algorithm correctly regenerates a '1' bit despite the presence of

the erroneous measurements. Also note that the first erroneous

measurement (the '8' in the heavy border) is of no

consequence since it is not part of the consecutive sequence of

5 PNs that are consulted to determine the value of the bit

(these 5 PNs are identified in the figure with a curly bracket).

4.5 The "UNM Difference" (UNMD) Technique

In [15], we presented the HELP PUF and a bit generation

technique called Universal/No-Modulus (UNM). We

investigate a variant of this UNM technique in this section.

Unlike the DPNC described above, UNM leverages the

randomness associated with the stability of paths across chips

(see Sect. 4.2) and therefore it does not need to calibrate for

bias, i.e., UNM can compare short paths with long paths

directly without truncating the high order bits of the PNs as is

true for DPNC. The technique described in [15] defines a low

and a high PN bin (similar to DPNC), but with the bins

defined in this case over the entire path distribution range

from 0 to 128. A large margin of approx. 100 is created

between the bins to allow for shifts and jumps in the PNs

during regeneration. The original technique therefore discards

a large fraction of PNs that fall within this margin during

enrollment (beyond those discarded because of path stability

problems as described in Sect. 4.2).

We refer to the variant

described here as 'UNM

Difference' or UNMD. In

UNMD, we replace the fixed

margin with the concept of a

noise threshold, discussed

below. By doing so, UNMD

does not discard stable PNs as

is true of UNM, but rather

preserves and makes use of all

PNs generated by the DCE.

This feature reduces the

workload imposed on the DCE

to find a suitable set of PNs

that meet a bitstring target by

95.8% when compared with

the original fixed threshold

technique. As we will show,

UNMD offers significant

advantages in both running

time and memory

requirements.

4.5.1 Bit Generation Process and Procedure.

All components except for the BitGen Engine in Fig. 2 are

identical for both the DPNC and UNMD techniques. The

BitGen Engine for UNMD, shown in Fig. 6, randomly selects

two PNs to compare (unlike DPNC which parses the PNs one

at a time as shown in Fig. 4). The Random Pairing Generator

produces the two addresses of the PNs to compare and the

values are read from on-chip memory into a pair of registers

(PN 'A' and PN 'B'). PN 'B' is then subtracted from PN 'A' to

produce a PN difference. The magnitude of the difference

determines the strength of that pairing, as discussed in the next

section. If that difference is sufficiently large, then the sign of

the comparison determines the value of the generated bit. A

negative sign produces a '0', and a positive sign produces a '1'.

4.5.2 Thresholding Technique.

A thresholding technique similar to that proposed in [17] is

used to decide if a given comparison generates a strong bit

(which is kept) or a weak bit (which is discarded).

Thresholding works as follows. During enrollment, a noise

threshold is defined using the path distribution histogram for

the chip. The histogram is constructed using all n PNs

collected by the DC engine. The noise threshold is then

computed as a constant that is proportional to the difference

between the PNs at the 5 and 95 percentiles in this distribution.

Therefore, each chip uses a different threshold that is 'tuned' to

that chip's overall (chip-to-chip) delay variation profile.

For each comparison, the difference between the two PNs

is compared against the noise threshold. A strong bit is

generated if the magnitude of the difference exceeds the

threshold, otherwise the bit is discarded. Simultaneously, a bit

is added to the 'Strong Bit Memory' shown in Fig. 6 that

reflects the status of the comparison, with a '1' indicating a

strong bit and a '0' indicating a weak bit. During regeneration,

the Strong Bit Memory is consulted to determine which

comparisons are used to regenerate the bitstring.

Fig. 7 shows the path distribution for a typical chip. The

dashed lines indicate the 5 and 95 percentiles, with PNs of 23

and 117 respectively. The difference between these PNs is

multiplied by a noise margin (0.90 in this example) to compute

a noise threshold of 84.6. Pairings which differ by more than

this threshold form 'strong' bits, while pairings that differ by

less than this threshold are deemed to be 'weak' and will be

discarded. The 'pairings' in Fig. 7 illustrate this concept.

4.5.3 TMR-Based Error Correction Scheme.

In Sect. 4.3, we described �jumps� as a worst-case

condition and they represent our biggest challenge in dealing

with bit flips. Both DPNC and UNMD are adversely impacted

by jumps. In our experiments, some path delays changed

because of jumps by as much as 4.5 ns, or 58 PNs, at different

TV corners. Moreover, the PN differences computed by

UNMD exacerbate the problem, where jumps in two path

delays can combine in a worse-than-worst-case fashion.

This is illustrated in the graphs of Fig. 8, which depict data

from one of the Virtex-II boards. The graphs plot the 'strong

bit' number along the x-axis against the PN differences on the

y-axis, with the noise thresholds (as described above) set to

±77.4 for this Virtex-II board. The data points from

enrollment on the left all fall above or below these thresholds

(by definition), but data points from measurements taken at

different TV corners in the graph on the right 'infringe' into the

space between the thresholds. Most data points remain close to

the thresholds, but some move significantly (because of

0 20 40 60 80 100 120

PN Difference: 117-23=94

Noise Threshold: 0.90 * 94 = 84.6

95%

(117)

5%

(23)

'Strong' Bit
'Weak' Bit

Fig. 7: Thresholding Technique

jumps), as highlighted, by as much as 5.6 ns or 71 PNs.

By choosing a conservative noise threshold, bit flips

caused by jumps such as those shown in Fig. 8 can be avoided.

However, a different strategy is needed in cases where the

application requires the probability of a bit-flip to be

negligibly small (e.g., encryption). We proposed a technique

in [17] that is based on a popular fault tolerant technique

called triple modular redundancy (TMR), which is capable of

reducing the probability of failure to values below 1e-11. The

method constructs 3 copies of the bitstring (using the

abundance of bits provided by the PUF) and uses majority

voting to construct the final bitstring. The probability of a bit-

flip error is significantly reduced because any single bit-flip

that occurs in any column of bits defined by the 3 copies can

be tolerated. Probability of failure is investigated in Sect. 5.4.

5 Experimental Results And Analysis

We conducted environmental experiments on 30 Virtex-II

Pro boards using a thermoelectric cooler (TEC) apparatus and

a programmable power supply. As indicated earlier, each

board was tested at 9 TV corners, defined by all combinations

of three temperatures, 0C, 25C and 70C, and three voltages,

1.35V, 1.50V and 1.65V. Data collected at 25°C and 1.5 is

treated as enrollment data while the data collected at the

remaining 8 TV corners is treated as regeneration data.

5.1 Hamming Distance (HD)

Inter-chip Hamming Distance (HD) measures uniqueness

of the bitstrings across boards, and is computed by counting

the number of bits that are different in the bitstrings from each

pairing of boards. An average inter-chip HD is computed

using the results from all possible pairings, which in our

experiments is 30*29/2 = 435. The inter-chip HDs are

typically converted into percentages by dividing each of them

by the length of the bitstrings. The best achievable average

HD under these conditions is 50%. Intra-chip HD, on the

other hand, is the number of bits that differ in two bitstrings

obtained from the same chip but tested under different

environmental conditions. The ideal intra-chip HD is zero, and

a non-zero value indicates that one or more bit flips occurred

during regeneration. In our experiments, intra-chip HDs are

computed across the 9 TV corners for each board and then an

average is computed using the 9*8/2 = 36 individual HDs. The

'average-of-the-averages' is then computed using the average

HDs from all boards. Fig. 9 shows histograms for the inter-

chip HDs and other statistical results obtained for the DPNC

and UNMD techniques.

DPNC. The length of the bitstrings using the DPNC

technique is 256 bits. The average inter-chip HD in Fig. 9(a) is

49.923%. A Gaussian curve is shown fitted on top of the inter-

chip HD distribution as a means of illustrating its expected

behavior. The standard deviation of the normal curve is 8.192

(where smaller is better). This value is consistent with the

expected standard deviation of a normally distributed set of

random values.

The average intra-chip HD is 0.038%. The non-zero value

indicates that bit-flips occurred with a frequency of 0.097 bit-

flips per 256-bit string.

UNMD. The length of the bitstrings for the UNMD
technique is 6,698,512. Fig. 9(b) plots the inter-chip HD

distribution. The average inter-chip HD is 50.001%. The intra-

chip HD using the bitstrings prior to applying is 4.59%, which

became 0% after applying TMR.

5.2 NIST Statistical Analysis of Randomness

To test the randomness of the bitstrings produced by the

HELP PUF, we used a statistical test suite provided by the

National Institute of Science and Technology, or NIST [14].

These tests were applied to the bitstrings from the 30 boards.

DPNC. All of the bitstrings generated by this method

passed each of the tests in the subset of NIST tests that are

applicable to 256-bit strings.

UNMD. The bit sequences generated by the UNMD

method were sufficiently long that all 15 NIST tests are

applicable. All 15 tests passing, with no fewer than 28 boards

passing any one test (the number required by NIST for a test to

be considered 'passed').

5.3 Analysis of Running Time

DPNC. Bitstring generation times for HELP are reported
here as the average number of bits generated per minute,

excluding serial data transfer time. During enrollment, the time

required to generate each bit depends on several factors,

including the percentage of tested paths that are stable, the

value of k (the number of consecutive copies of a value

required to produce a bit), and the number of PNs that are read

from memory before encountering k consecutive copies.

With k=5, the average number of paths tested for each

generated bit during enrollment is 1,261, due to the highly

selective nature of the DPN binning algorithm described

previously. Bits are generated at an average rate of 36.4 bits

per minute. During regeneration, since only valid paths are

measured, the average bit generation rate increases to 167 bits

per minute.

UNMD. On average, the data collection engine tested 3.92

paths for each of the 4,096 valid PNs that we collected across

30 boards. On average, 22.35 paths were tested, at up to 12

samples per path, for stability every second. For the UNMD

analysis, the PNs were collected by the HELP PUF engine,

while the bit generation process was completed off-chip using

Noise
Threshold
(+/- 77.4)

Worst-case
Jumps

Fig. 8: Thresholding Technique
Fig. 9: HD Analysis

60

10

0

70

0.3 0.4 0.5 0.6 0.7

HD (PCH)
Mean: 49.923%
StDev: 0.320%

HD (Actual)
Mean: 127.8

StDev: 8.2

Length:
256 Bits

#
 o

f
in

s
ta

n
c
e
s

Intra-chip HD
Mean: 0.038%
(0.097 bits)

HD (Actual)
Mean: 3.35M
StDev: 1273

Length:
6.7M Bits

HD (PCH)
Mean: 50.001%
StDev: 0.0002%

Intra-chip HD
Mean: 4.59%
(Non-TMR)

0.3 0.4 0.5 0.6 0.7

#
 o

f
in

s
ta

n
c
e

s

10

0

60

70

(a) (b)

DPNC UNMD

(TMR)
Mean: 0.00%

a software program. This was done to allow us to evaluate a

range of noise thresholds without needing to re-collect the

PNs each time. As a result, the FPGA running time of the bit

generation process for UNMD is not known.

5.4 Probability of Failure: Results and Analysis

DPNC. There were a total of 9 unique errors that resulted

in 19 bit flips during the 240 regenerations that were

performed during our experimentation. The overall single-bit

probability of failure (POF) is 3.09x10-4 (19 errors per (30

boards * 8 regenerations per board * 256 bits per

regeneration)). 16 of these 19 bit flips occur when the core

logic voltage of the FPGA is 10% lower than nominal.

UNMD. The POF analysis for the UNMD method is

performed as two analyses: the POF for the initial bitstring

and the POF for the TMR-based bitstring described in Sect.

4.5.3. Both of these analyses involve generating bitstrings at

all 9 TV corners across a range of noise thresholds. In each

case, we record the number of bit flips that occur at each noise

threshold, and then fit an exponential curve to this data. The

exponential fit allows us to model expected error rates for

noise thresholds far higher than those at which bit flips

actually occur in our empirical results.

For the initial bitstrings, we computed a theoretical error

rate of 1.54 x 10-6, or 1 bit flip in approx. 650,000 bits

generated. Fig. 10(a) illustrates the actual and theoretical error

rates for each of the TMR-based bitstrings. Fig. 10(b) shows

an enlarged view of the theoretical error rate at a noise margin

of 0.90. At this noise threshold, our POF is 1.096 x 10-11, or 1

bit flip in approx. 91 billion bits generated.

6 UNMD Security Vulnerability and Mitigation

The HELP PUF, when using the UNMD method, is

capable of generating reliable, cryptographic-strength

bitstrings of up to several million bits in length. However, an

adversary with access to the simulation model of the target

system may be able to �reverse engineer� the secret bitstring.

While this vulnerability would be difficult to exploit, the only

way to completely eliminate the threat is to obfuscate the

Valid Path Memory component of the public data.

Since the DPNC method is not subject to this vulnerability,

we propose to use DPNC to generate a small (32- to 64-bit)

bitstring that can be used to obscure the public data produced

by the UNMD technique using the same set of PNs during the

enrollment process. The public data for this short bit string is

added to the obfuscated UNMD public data. At the start of

regeneration, the un-obscured public data for the DPNC

method is used to regenerate the short bitstring, which is then

used to unveil the public data for the UNMD regeneration

process.

7 Conclusions

In this paper, we have presented details of HELP, a

practical, realizable PUF, and have proposed and demonstrated

two bit generation techniques called DPNC and UNMD. The

HELP PUF is based on variations in path delays and on the

stability of those paths, each measured from a core logic

macro embedded within the chip. The results of the HD, NIST,

and POF analyses show the bitstrings to be genuinely random,

unique, and highly reproducible under changing

environmental conditions, all of which are critical

requirements for the potential use of HELP in applications

such as mobile computing or smartcards.

8 References

[1] R.S.Pappu, B. Recht, J. Taylor, N. Gershenfeld; "Physical

One Way Functions", Science, 297(6), 2002, pp. 2026-2030.

[2] B. Gassend, D. Clarke, M. van Dijk, S. Devadas;

"Controlled Physical Random Functions", Conf. on Computer

Security Applications, 2002, pp. 149-160.

[3] K. Lofstrom, W.R. Daasch, D. Taylor; "IC Identification

Circuits using Device Mismatch", SSCC, 2000, pp. 372-373.

[4] P. Simons, E. van der Sluis, V. van der Leest; �Buskeeper

PUFs, a Promising Alternative to D Flip-Flop PUFs�, HOST,

2012, pp. 7-12.

[5] G.E. Suh, S. Devadas; "Physical Unclonable Functions for

Device Authentication and Secret Key Generation", DAC,

2007, pp. 9-14.

[6] A. Maiti, P. Schaumont; "Improving the Quality of a

Physical Unclonable Function using Configurable Ring

Oscillators", Conf. on Field-Programmable Logic and

Applications, 2009, pp. 703-707.

[7] Y. Su, J. Holleman, B. Otis; "A 1.6pJ/Bit 96% Stable Chip

ID Generating Circuit Using Process Variations", SSCC, 2007,

pp. 406-407.

[8] M. Majzoobi, F. Koushanfar, M. Potkonjak; "Lightweight

Secure PUFs", ICCAD, 2008, pp. 670-673.

[9] J. Ju, J. Plusquellic, R. Chakraborty, R. Rad; �Bitstring

Analysis of Physical Unclonable Functions Based on

Resistance Variations in Metals and Transistors�, HOST, 2012,

pp. 13-20.

[10] D. Suzuki, K. Shimizu; �The Glitch PUF: A New Delay-

PUF Architecture Exploiting Glitch Shapes�, CHES, 2010, pp.

366-382.

[11] J. Li, J. Lach; �At-Speed Delay Characterization for IC

Authentication and Trojan Horse Detection�, HOST, 2008, pp.

8-14.

[12] C. Lamech, J. Aarestad, J. Plusquellic, R. Rad, K.

Agarwal; "REBEL and TDC: Two Embedded Test Structures

for On-Chip Measurements of Within-Die Path Delay

Variations", ICCAD, 2011, pp. 170-177.

[13] OpenCores (website): http:/www.opencores.org

[14] Nat'l Institute of Science & Technology (NIST) Computer

Security Division, Statistical Tests: http://csrc.nist.gov/

[15] J. Aarestad, P. Ortiz, D. Acharyya, J. Plusquellic; �HELP:

A Hardware-Embedded Delay PUF�, IEEE Design & Test,

Volume: PP, Issue: 99, March/April, 2013, pp. 1-8.

[16] Digilent, Inc. (website): http://www.digilentinc.com

[17] R. Chakraborty, C. Lamech, D. Acharyya, J. Plusquellic;

�A Transmission Gate Physical Unclonable Function and On-

Chip Voltage to Digital Conversion Technique�, DAC, 2013

Fig. 10: Probability of Single-Bit Failure

