
True Random Number Generation with the
Shift-register Reconvergent-Fanout (SiRF) PUF

Nafis Irtija
ECE

University of New Mexico
Albuquerque, USA

nafis@unm.edu

Eirini Eleni Tsiropoulou
ECE

University of New Mexico
Albuquerque, USA

eirini@unm.edu

Cyrus Minwalla
Financial Technology Research Group

Bank of Canada
Ottawa, ON, Canada

cminwalla@bank-banque-canada.ca

Jim Plusquellic
ECE

University of New Mexico
Albuquerque, USA
jimp@ece.unm.edu

Abstract—True Random Number Generator (TRNG) is an im-
portant hardware security primitive for system security. TRNGs
are capable of providing random bits for initialization vectors
in encryption engines, for padding and nonces in authentication
protocols and for seeds to pseudo random number generators
(PRNG). A TRNG needs to meet the same statistical quality
standards as a physical unclonable function (PUF) with regard
to randomness and uniqueness, and therefore one can envi-
sion a unified architecture for both functions. In this paper,
we investigate a FPGA implementation of a TRNG using the
Shift-register Reconvergent-Fanout (SiRF) PUF. The SiRF PUF
measures path delays as a source of entropy within a engineered
logic gate netlist. The delays are measured at high precision using
a time-to-digital converter, and then processed into a random
bitstring using a series of linear-time mathematical operations.
The SiRF PUF algorithm that is used for key generation is
reused for the TRNG, with simplifications that improve the
bit generation rate of the algorithm. This enables the TRNG
to leverage both fixed PUF-based entropy and random noise
sources, and makes the TRNG resilient to temperature-voltage
attacks. TRNG bitstrings generated from a programmable logic
implementation of the SiRF PUF-TRNG on a set of FPGAs are
evaluated using statistical testing tools.

Index Terms—True Random Number Generator, Physical Un-
clonable Function, FPGA

I. INTRODUCTION

True random number generators generate a stream of bits
from measurements of a physical and stochastic source of
entropy. The physical source is often analog in nature and
requires an ancillary circuit and post-processing algorithm to
convert from analog signal measurements to discrete bit values
of 0 and 1. In many cases, the physical source is not truly
random, e.g., it exhibits a bias to generate more 0’s than 1’s
or produces sequences with specific patterns, and therefore
a post-processing algorithm is required to distill the raw bit
sequence until sufficiently high levels of entropy are achieved.
The distillation process typically consumes more bits than it
emits, which reduces the bit generation rate and increases the
size of the implementation. Moreover, most TRNGs provide
no protection against adversarial attacks, which attempt to
manipulate the system or environment to inject bias and cause
non-random bit sequence behaviors.

A physical unclonable function (PUF) is a second, related
hardware security primitive responsible for generating and

regenerating secret keys and bitstrings for encryption and au-
thentication protocols. PUFs share many of the same attributes
as a TRNG from the perspective of the generated bitstrings.
In particular, both need to produce bit sequences that are truly
random across the emitted stream and both need to produce
bit sequences that are unique with respect to the bit sequences
generated by other devices.

TRNGs and PUFs differ in two primary ways. First, the
bit generation rate requirement for a PUF is typically relaxed
(slower) than the rate required from a TRNG. Second, the
PUF needs to reproduce a fixed bit sequence on demand and
potentially under adverse environmental conditions, while a
TRNG is charged with just the opposite, i.e., it should never
reproduce a fixed bit sequence. This second difference imposes
a fundamental change on the source of entropy leveraged by
TRNGs and PUFs. In particular, PUFs generate a random bit
sequence from a baked-in (fixed) source of entropy within the
device, e.g., from variations in transistor threshold voltages.
TRNGs, on the other hand, typically leverage noise as a source
of entropy and are not designed to incorporate a fixed source.
This is true because the amount of entropy available from
a fixed source of entropy is finite and therefore such fixed
sources do not have a significant impact on the size of the
entropy pool.

In this paper, we propose a unified architecture that incor-
porates both a PUF and TRNG. The proposed PUF lever-
ages variations in the delay of paths, measured through an
engineered network of logic gates, as a source of entropy.
The Shift-register, Reconvergent-Fanout (SiRF) PUF (SiRF)
PUF utilizes shift registers and MUXs to create structural
diversity in the placement and routing of gate-level netlists,
and reconvergent-fanout to add uncertainty regarding which
logic gates actually define the paths whose delays are utilized
in the bitstring generation process. Post-processing techniques
including a temperature-voltage calibration method are utilized
to significantly improve uniqueness and error-free bitstring
regeneration by reducing undesirable environmentally-induced
changes in delay, e.g., delay variations introduced by changes
in temperature or supply voltage, as well as delay variations
that occur globally to all components on the device, a.k.a.
chip-to-chip process variations.

The SiRF TRNG is derived directly from the PUF architec-



Fig. 1. Block diagram of the shift-register, reconvergent-fanout (SiRF) PUF.

ture and algorithm and is the focus of the analysis in this paper.
With the TRNG mode switch enabled, operations related to the
transfer of challenges, the collection of multiple path delay
samples and other algorithmic processes related to improving
reliability for bitstring reproduction are disabled and instead,
random challenges are generated and applied to test random
paths within the network. A time-to-digital (TDC) is used to
obtain high-precision measurements of the path delays. The
digitized path delay representations are processed through the
SiRF algorithm, which pairs path delays to create differences
and calibrates them for temperature-voltage environmental
conditions. The low-order bit of the calibrated path delay
differences is used as the TRNG bit sequence. Therefore,
the SiRF TRNG utilizes both a fixed and random source of
entropy, and actively removes temperature-voltage effects on
the measured path delays. These characteristics are unique and
novel features of the SiRF TRNG.

The following are the main contributions of this paper:
• A compact system architecture implementing both TRNG

and PUF hardware security primitives is proposed.
• The TRNG is designed to leverage both a random and

fixed source of entropy, increasing the statistical quality
of the generated bit sequences.

• The TRNG makes use of the PUF’s temperature-voltage
calibration algorithm as a means of defending against
temperature-voltage attacks.

• Bit sequences from a set of FPGAs are evaluated using
the statistical tools.

II. PREVIOUS WORK

The authors of [1] propose a combined PUF-TRNG archi-
tecture that utilizes an array of ring oscillators (ROs) and jitter
measurements as a source of entropy. The architecture does
not incorporate any protections against temperature-voltage at-
tacks, and uses noise as a sole source of entropy for the TRNG.
This work was built on by the authors in [2] who propose a
calibration process to improve the performance of the orig-
inal design. Notably the underlying RO architecture remains
susceptible to machine-learning attacks. The authors in [3] de-
signed a unified PUF built on magnetic RAM (MRAM) based
on variations in the spin-transfer torque, showcasing zero-bit

error rates, however, the PUF itself was not constructed and
the proposed error performance not experimentally verified.
Khan et al. [4] proposed a similar MRAM construction, where
a fabricated version was extensively tested. Larimian et al.
[5] proposed a unified PUF and TRNG architecture based
on spatial and temporal current variations in embedded flash
memory. The PUF was constructed on a (Global Foundries)
55 nm process and successfully thwarted machine learning
attacks. In recent work, the authors in [6] developed and con-
structed an SRAM-based unified PUF and TRNG architecture.
While fast and scalable, it has a relatively high LSB BER
of 2.0%, which under temperature gradient testing degrades
to 4.8%. A PUF-TRNG hybrid architecture is proposed [7]
that addresses environmental variations but does so using
experimental trials on a 1-bit representation of path delay
differences. In contrast, the SiRF PUF computes path delay
differences from an exponentially large number of paths in
a non-identically designed netlist, leveraging both fixed and
random entropy sources, and applying a distribution-based
compensation technique to remove environmental variation
effects from a set of multi-bit digitized path delays. Moreover,
the run time of the algorithm in [7] is unpredictable and bit
rates are not reported.

III. SIRF PUF-TRNG ARCHITECTURE

A block diagram of the SiRF PUF architecture is shown in
Fig. 1. The physical design is constructed as a set of modules,
arranged as a set of rows as shown on the left side of the figure.
The input challenge configures a network of shift-registers,
logic gates and MUXs within the modules to create a set of
paths between the Launch FFs on the inputs and the MUX
on the output. The number of possible paths through the logic
gate network (which represents the source of entropy) is more
than 10 million, each testable with a rising or falling transition
on the inputs, for a total of more than 20 million paths.

Logic signal transitions are introduced by a set of n = 32
Launch FFs shown along the top and path delays are mea-
sured, one-at-a-time, by selecting a path output using the
MUX shown along the bottom of the figure. The path selected
for timing is directed to the input of a time-to-digital (TDC)
converter shown in the center of the figure. The TDC consists



of a sequence of 32 Carry4 elements in the Xilinx FPGA,
with each of the 128 carry chain buffers connected to a
corresponding FF. The Timing Engine component of the SiRF
PUF-TRNG utilizes a state machine to apply a sequence of
launch-capture tests to the logic gate network until a valid
digital representation of the path delay is obtained from the
TDC FFs (similar to the method proposed in [8]).

A. SiRF TRNG Algorithm

Fig. 2. A set of DVD created by the difference module of the TRNG
algorithm.

Fig. 3. A set of DVDc created by the global-process-environmental-variation
(GPEV) calibration module of the TRNG algorithm.

The path delays are discretized by the TDC at a resolution of
approx. 18 ps and stored as digital values, called delay values
or DV , in a Block RAM (BRAM) for subsequent processing
into bit sequences by the SiRF TRNG algorithm. The BRAM
and post-processing modules associated with the SiRF TRNG
algorithm are shown on the right side of Fig. 1. The algorithm
selects pairs of DV and creates differences, called DVD, and
then applies a global-process-environmental-variation (GPEV)
calibration method to generate DVDc, which reduces unde-
sirable environmentally-induced changes in the path delays.

The impact of the GPEV calibration method is shown for a
set of path pairings in Figs. 2 and 3. The DV are measured
from an FPGA at a set of temperature-voltage (TV) corners
given by all combinations of temperatures 25oC, 0oC, −40oC,
85oC and 100oC and voltages 1.00V , 1.05V and 0.95V , for
a total of 15 TV corners. The difference module selects pairs
of DV to create DVD which are plotted in Fig. 2. The black
curve represents the DVD under nominal conditions, 25oC,

1.00V , while the red curves represent the DVD at each of
the remaining 14 TV corners. The impact of adverse TV
conditions on the DVD is depicted by vertical excursions of
the red points around the black points. In contrast, the nearly
superimposed DVDc curves shown in Fig. 3 illustrate that
very little delay variation exists after the GPEV calibration
process. Although the SiRF TRNG does not require this type
of calibration to generate random bit sequences, the application
of GPEV defeats any type of temperature-voltage attack that is
designed to purposely bias the SiRF TRNG random bitstring
generation process.

The last component of the SiRF TRNG algorithm, labeled
BitGen module in Fig. 1 generates the bit sequence using the
low order bit of DVDc, which is influenced by both the fixed
entropy associated with the calibrated path pairing difference
delay and measurement noise.

IV. TRNG IMPLEMENTATION

The SiRF TRNG generates a random bit sequence by
carrying out the sequence of steps shown in Fig. 4. The
diagram shows an SoC FPGA as the host system but other
FPGA-only implementations are also possible. The processor
side (PS) of the FPGA is shown along the top of the figure
and the programmable logic (PL) side along the bottom. The
following sequence of operations are carried out to generate a
bit sequence of 5,120 bytes (40,860 bits).

Fig. 4. TRNG flow diagram, showing the sequence of operations carried out
to generate 5,120 random nonce bytes.

1) A C program running in the PS side generates a random
64-bit seed, i.e., using srand() or /dev/urandom.

2) The PS side asserts the start signal and transfers the
seed through a memory-mapped GPIO register to a 64-
bit LFSR implemented in the PL side. The start signal
is then deasserted.



3) The Vector Gen. module is started which generates 64-
bit pseudo-random numbers that are used as the 2-vector
sequences to the SiRF TRNG’s Timing Engine. The
Timing Engine generates a random 64-bit LFSR seed
by XOR-distilling the least significant bit (LSB) of 12
consecutive path delays (DV ) to generate each LFSR
bit.

4) The new 64-bit LFSR seed is transferred to the LFSR.
5) The Timing Engine is started again to measure the delays

of a new set of 4096 paths. The DV are transferred to
the BRAM (not shown but see Fig. 1) concurrently with
the generation of 42-bytes of a nonce, generated as in
the previous step by XOR-distilling the LSBs of DV .

6) The remaining steps of the SiRF TRNG algorithm are
run in which a 32-bit chunk of the nonce is used
to set parameters of the DVD and GPEV modules.
Although the details are omitted, the DVD module
incorporates two 11-bit LFSRs to create pairings of DV
and the GPEV module uses 10 bits to control the
transformation of DVD to DVDc.

7) The 256-byte output of the BitGen is transferred to the
C program through the GPIO Out register.

8) The SiRF TRNG algorithm iterates 20 times using a
sequence of overlapping 32-bit chunks from the nonce
register as parameters to the DVD and GPEV modules
in each iteration.

It should be noted that the seed and LFSR have no bearing on
the specific bit sequence produced, and instead are used only
as the initial challenge and for uniform challenge selection.
The seed is not secret and, in this work, is a fixed constant
for all repeated applications of the SiRF TRNG algorithm.

Fig. 5. NIST test results for 32 chips using bit sequences of length 1,024,000
bits. The minimum number of FPGAs that must pass the test before NIST
classifies the overall test as a pass is 29 except for Random Exc. and Ran.
Exc. Var. which require a value of at least 15 to pass. Only Block Freq. fails
but 28 of the FPGAs pass, so the test failed by 1 FPGA.

V. EXPERIMENTAL RESULTS

The bit sequences generated by a SiRF TRNG implementa-
tion on a set of 32 Xilinx Zynq 7010 SoC FPGAs are evaluated

for statistical quality in this section. The average bit sequence
generation rate is approx. 30 KBytes/sec.

The results from applying the NIST statistical test suite [9]
to TRNG bit sequences of length 1,024,000 collected from the
32 FPGAs are shown in Fig. 5. The names of the 15 NIST
statistical tests are given along the x-axis while the number of
passing FPGAs are given along the y-axis. The NIST statistical
tools apply the named test to the bit sequence for each FPGA
and then compares the computed test statistics to a threshold.
The default α value of 0.01 is used as the significance level.
Although NIST allows some FPGAs to fail individual tests,
it requires a minimum number of 29 FPGAs to pass the test
in order to classify the overall test as passed. The TRNG bit
sequences pass all tests except for Block Frequency, which
fails by only one chip with 28 FPGAs passing.

Inter-chip hamming distance (HD) measures the degree of
similarity between two bit sequences from different chips by
computing the number of bits that are different in the two bit
sequences. The ideal value is 50%, i.e., exactly half of the bits
are different. We compute the Inter-chip HD for each of the
(32*31)/2 = 496 bit sequence pairings, and then compute an
overall average. The average value is 49.999% which is very
close to the ideal value.

VI. CONCLUSION

A compact unified system architecture that incorporates
both a PUF and TRNG is proposed in this paper. The TRNG
is designed to leverage both random noise sources and a
persistent (fixed) source of entropy that is associated with the
PUF. The bit sequence generation algorithm also carries out
temperature-voltage calibration to protect against temperature-
voltage attacks designed to add bias to the generated bit
sequences. The bit sequences from 32 FPGAs are subjected
to a suite of statistical analysis tools, and are shown to exhibit
high, cryptographic-level quality.

REFERENCES

[1] A. Maiti, R. Nagesh, A. Reddy, and P. Schaumont, “Physical unclonable
function and true random number generator: A compact and scalable
implementation,” in GLSVLSI, 2009, p. 425–428.

[2] C. Martı́nez-Gómez and I. Baturone, “Calibration of ring oscillator puf
and trng,” in ECCTD, 2020, pp. 1–4.

[3] E. I. Vatajelu, G. Di Natale, and P. Prinetto, “Security primitives (puf and
trng) with stt-mram,” in VTS, 2016, pp. 1–4.

[4] M. N. I. Khan, C. Y. Cheng, S. H. Lin, A. Ash-Saki, and S. Ghosh,
“A morphable physically unclonable function and true random number
generator using a commercial magnetic memory,” in ISQED, 2020, pp.
197–197.

[5] S. Larimian, M. R. Mahmoodi, and D. B. Strukov, “Lightweight integrated
design of puf and trng security primitives based on eflash memory in 55-
nm cmos,” Trans. on Electron Devices, vol. 67, no. 4, pp. 1586–1592,
2020.

[6] S. Taneja, V. K. Rajanna, and M. Alioto, “36.1 unified in-memory
dynamic trng and multi-bit static puf entropy generation for ubiquitous
hardware security,” in ISSCC, vol. 64, 2021, pp. 498–500.

[7] G. E. S. Charles W. O’Donnell and S. Devadas, “Puf-based random
number generation,” in MIT CSAIL CSG TM 481, 2004, pp. 1–4.

[8] D. Owen Jr., D. Heeger, C. Chan, W. Che, F. Saqib, M. Areno, and
J. Plusquellic, “An autonomous, self-authenticating, and self-contained
secure boot process for field-programmable gate arrays,” Cryptography,
vol. 2, no. 3, 2018.

[9] (2010) A statistical test suite for random and pseudorandom number
generators for cryptographic applications.


