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Abstract—In the process of globalization, heterogeneous 

SoCs play an important role in an embedded application, 

security aspects of such a system are crucial. The system is 

susceptible to many attacks out of which we focus on two main 

attacks, namely, boot time attacks, where malware are injected 

to leak information and modify the functionality and run-time 

software attacks causing memory corruption. In this paper, we 

propose a hardware/software-based solution to secure the 

system integrity by providing secure boot which prevents 

malicious and unauthorized software during startup and 

Information Flow Tracking (IFT) technique to track the 

spurious data during run-time and preventing buffer overflow 

attacks. This proposed solution is implemented on the RISC-V 

and provides a self-authentication mechanism for FPGAs using 

TPM.  

Keywords— Information Flow Tracking (IFT), Secure Boot, 

RISC-V, TPM, Run-time attacks 

I. INTRODUCTION  

The major concern in today’s hardware design is the 
vulnerability towards untrusted entities which results in 
designing a secure architecture which is capable of firmware 
integrity and tracking the flow of information during run time 
and protecting the system from software-based attacks. 
Internet of Things is a special purpose small-scale devices that 
are typically connected in nature. Due to this nature, they may 
need to communicate with untrusted nodes. These untrusted 
nodes may try to exploit some software vulnerabilities that the 
vendor may not be aware of at that time and when they are 
deployed on the field, they become susceptible to application 
level as well as firmware level attacks. This may lead to a 
system compromise. 

RISC-V is an open source ISA which allows optimization, 
modification, and usage according to specific requirements. 
This makes the system running on RISC-V more susceptible 
to attacks at any point in time. The processor can be untrusted 
at boot time or run time. In this paper, we propose a solution 
for securing the RISC-V processor by providing Secure Boot 
and Information Flow Tracking schemes for RISC-V to 
mitigate boot level as well as runtime software-based attacks. 

Malware cause malfunction in systems, reduce 
productivity and leakage of sensitive and secret data. 
Specifically, malware developers have begun to target 
firmware that starts up the computer system, focusing on the 
gap between firmware and when the operating system starts. 
These are rootkit and bootkit attacks. Malware can attack 
systems in a pre-boot environment. This happens as there is 
no filter to distinguish between authentic and malware 
software. The Unified Extensible Firmware Interface (UEFI) 
proposes the secure boot which is a security standard which 
makes sure that the system boots using only software that is 
trusted. Secure boot ensures the integrity of firmware and 

software running on a platform. It allows only those software 
and firmware which are approved by trusted keys. It 
establishes the relationship between BIOS and software which 
gets launched. Secure boot prevents malicious software and 
unauthorized operating system during the system startup 
process. Malware may attack bootloaders in the absence of 
secure boot, and this could be the reason for not booting the 
system at all. 

Runtime attacks are also powerful attacks. The attestation 
of the firmware is a security service where device proves that 
the firmware is attested with a trusted remote entity. Today, 
securing of computing platforms from malicious entities is a 
high priority task to protect sensitive information and data. 
Information Flow Tracking (IFT) is a security technique 
which tracks the untrusted data inputs during run-time and 
restricts the use of such inputs along with protecting the 
system from buffer overflow attacks. The main observation in 
IFT is the difficulty in preventing fault injection, code 
injection and protecting the system from a security breach. 
Thus IFT tracks the flow of the data during execution time to 
identify the malicious inputs and marks them as spurious or 
tainted input.  

Hardware Trojans have become a major threat to 
reconfigurable devices. Trojans can be inserted in an IC 
design process which can alter the design functionality or leak 
secure information from the system. It is difficult to identify 
the Trojans during post-manufacturing, which results in 
various methodologies to detect, distinguish and mitigate such 
attacks. Providing device authentication by using physically 
unclonable functions or trusted platform modules can be 
further used to detect and prevent Trojan attacks by measuring 
the variations such as power and delay to capture anomalies 
or outshoots caused by Trojans.  

We demonstrate TPM based secure boot and architectural 
level information flow tracking extensions to track the 
information flow within a processor. It considers the system 
as a logic function which has both trusted and untrusted inputs 
and outputs and based on the propagation tagged or tainted 
bits are added. Shadow logics are used to develop rules for 
trusted and untrusted inputs and tracks the flow of the data. 
Each register and memory should be shadowed to store a one-
bit tainted value. Shadow logics can be integrated with IFT to 
trace the tag propagation of each operand. The RISC-V 
architecture can be configured to implement shadow registers 
and by adding new instructions to the architecture to access 
the registers. 

II. SECURITY EXTENSIONS IN RISC-V PROCESSORS 

A. RISC-V 

RISC-V is an open source Instruction Set Architecture 
developed by UC Berkeley and is currently supported by the 
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RISC-V foundation. It is based on the reduced instruction set 
principles and has found several applications in different 
domains like IoT, embedded applications, etc. It supports 32, 
64 and 128-bit instruction widths and has a fixed base integer 
ISA which is mandatory for all RISC-V processor 
implementations. The base integer ISA supports two primary 
variants namely: RV32I and RV64I which provides 32-bit and 
64-bit user-level address spaces respectively [15].  

The base integer ISA has fixed-length 32-bit instructions 
with variable length encoding possible. The base integer ISA 
consists of 32 general purpose registers and a program 
counter. The privilege levels are used to provide protection 
between different components of the software stack [14]. The 
three modes include machine, supervisor and reserved modes. 
Machine mode has the highest privilege and is used to run 
simple embedded system applications. This mode does not 
provide protection to the system against incorrect or malicious 
application code. The user mode is used to run secure 
embedded applications and protects the system against 
malicious application code. The supervisor mode is used in 
systems which have Unix like OS. The RISC-V processor is 
written in Chisel (Constructing Hardware in Scala Embedded 
Language) which converts the code into an intermediate RTL 
representation (FIRRTL) which is then converted to a Verilog 
or C++ code. 

B. Secure Boot with Trusted Modules 

To integrate secure boot, we propose the RISC-V interface 
with the secure and trusted module (TM) and demonstrate a 
secure boot chain of trust, that validates firmware checks. The 
firmware checks include the signature of each piece of boot 
software sequentially or hierarchically verification. If the 
signature is valid, the system boots and firmware gives control 
to the operating system. Secure boot mechanism relies on 
public/private key pairs and digest attestation to verify the 
digital signatures of all firmware and software before 
execution. When the boot is enabled, it checks the loading 
software and checks whether this software is signed with the 
trusted keys which are already present in the firmware. The 
proposed scheme blocks the malicious software by using 
Trusted Module (TM) which is a hardware security module or 
secure co-processor that implements cryptographic functions. 
These functions include encryption, data signing, and data 
sealing. We consider Trusted Platform Module TPM as 
Trusted module.  

TPM specifications are defined by the Trusted Computing 
Group (TCG) [1]. All TPM implementation must follow the 
specifications however, the specifications do provide 
flexibility in terms of the functionality it can implement. TPM 
has tamper resistant non-volatile memory. This memory can 
be used for storing cryptographic objects including keys and 
other user-defined values. There are currently two 
specifications that are being followed are TPM 1.2 and 2.0. 
However, there is a shift from TPM 1.2 to TPM 2.0 due to the 
advanced features that TPM 2.0 provides. An overview of the 
differences between the two standards is given in Table 1. 

TABLE I.    Comparison between TPM 1.2 and TPM 2.0 
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 Trusted Module (TM) supports provision for 
implementing measurable boot using Platform Configuration 
Registers (PCR). PCRs are registers that hold cumulative hash 
values. These registers are populated using 
TPM_PCR_Extend and the data streaming enabled 
TPM_HASH structures. 256 bits of data is hashed using either 
SHA-1 or SHA-2 hashing algorithm on the TPM. Once the 
process is completed, the computed SHA value is added to an 
existing selected PCR value. Equation 1 shows the process of 
PCR extension. 

SHAnew = SHAold || SHAComputed (1) 

The boot process can be divided into stages, e.g. firmware, 
operating system, applications, etc. Figure. 1 shows the 
different stages in the secure boot software chain of trust. For 
measuring the boot process, the PCR is computed and verified 
for the next layer in the process before the execution can be 
passed to that layer. At the end of the process, the value of the 
PCR provides sequential attestation of all the components in 
the chain. 

The secure boot is demonstrated on FPGA prototype of RISC-
V and the performance evaluation is discussed. 

C. Information Flow Tracking  

There are various hardware and software-based defense 
mechanisms implemented on IFT techniques. It can be 
implemented on different types of architecture along with 
heterogeneous SoCs and hardware accelerators. Dynamic 
Information Flow Tracking (DIFT) is a  hardware technique 
which protects the programs from malicious software attacks, 
but these implementations result in performance overhead by 
using additional physical memory to store the tag bits [8]. The 
authors extended the RI5CY/PULPino to develop a prototype 
for IoT applications. Tainted pointer technique is used to 
protect control and non-control data inputs resulting in a non-
zero false positive rate with some synthetic false scenarios to 
mitigate memory attacks, but the overall performance 
overhead is high [10]. Code flow integrity and various 
defensive techniques for non-control data attacks are analyzed 
to develop a realistic and generic security technique for 
memory attacks[9][13]. 

Gate Level Information Flow Tracking (GLIFT) is another 
technique at gate level implementation which uses shadow 
logic to track the information flow of gates and marks the 
untrusted values [11]. This paper integrates the architecture 
level support for implementing the Information Flow 

Figure 1. Secure Boot Software Chain of Trust 
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Tracking on a RISC-V processor to detect and reduce the 
impacts of various run-time attacks. This scheme protects 
bare-metal applications against memory corruption by adding 
tag bits to the untrusted data inputs. Figure 2 shows the register 
file,  data memory and tag cache for storing the one-bit tags. 

A separate area in the memory is dedicated to the tags 
which result in two separate accesses to the memory, one for 
the actual word and the other for the tag, that is done in parallel 
to not impact the performance. Additional instructions are 
added to read and write tags in the memory. To support the 
tagged memory the data cache is revised to store the tags 
alongside data. Tag functional units are added in the Rocket 
core pipeline to support the features. Fine-grained memory 
protection is achieved by using tag bits and tagged memory to 
mitigate buffer overflow attacks and memory corruption 
attacks. 

Register File

Data memory

Tag Cache to store 

one bit tag

 

Figure 2. Separate Tag Cache with register and data memory 

III. THREAT MODEL 

SRAM Based FPGAs consist of a volatile memory which 
holds the configuration for all logic components of the 
Programmable Logic (PL) block of an FPGA. The bitstream 
is loaded into the configuration SRAM as a bootup process 
using a First Stage Boot Loader (FSBL) [2]. This method 
requires bitstream to be stored in a non-volatile storage 
medium, such as a flash, SD-card, etc. Whereas, during 
runtime, the bitstream can be loaded using PL fabric interfaces 
such as Internal Configuration Access Port (ICAP) [3] or 
Programmable Configuration Access Port (PCAP). 
Additionally, Dynamic Partial Reconfiguration can also be 
used to reconfigure a target area on the fabric during runtime. 
Dynamic Partial Reconfiguration allows modifying the 
configuration while the system is active. 

FPGAs face the threat of malicious modification of 
bitstreams. An adversary can modify the bitstream to be 
configured during bootup. This attack can be achieved by 
modifying the source bitstream either locally or remotely 
using remote update mechanisms. This forces the tainted 
bitstream to be loaded the next time the FPGA is booted up or 
during a complete configuration reload. An adversary has the 
option to target the PL fabric during runtime. ICAP and PCAP 
allow readback as well as reconfiguration during runtime. An 
adversary can perform runtime modification attacks using 
either of the ports. As such, the modifications performed will 
last either till the next boot-up or the instant the FPGA 
reconfiguration is triggered. Thus a self-authentication 
mechanism is required for FPGA based designs. 

Once the system boots with self-authentication, the 
application code is prone to run time attacks. The malicious or 
untrusted data inputs can corrupt the return address, or the 
payload can inject codes to run different functions and fault 
can be injected. Additionally, leakage of information is hard 

to detect. Hence the information flow tracking technique is 
investigated to mitigate malicious attacks and can be further 
extended to detect trojan activations with minimal 
performance overhead. In this paper, we assume that the 
application code is vulnerable to the attackers to perform 
read/write operation, inject codes or leakage of information 
which causes memory corruption. In order to protect the 
integrity of the system, a new fine-grained identifier called as 
tags are attached to the spurious data inputs and these tags are 
propagated from the input operand to the output operand on 
an instruction. A straightforward,  new fine-grained one-bit 
tag based IFT with minimum overhead has been implemented 
with RISC-V as the test bed. 

IV. RUNTIME SELF AUTHENTICATION FOR RISC-V ON 

FPGAS 

This work presents a self-authentication mechanism for 
FPGA based designs. In this paper, we demonstrate RISC-V 
FPGA implementation. The secure boot scheme consists of 
verifier and prover entities. The prover is the untrusted entity, 
which must prove its authenticity to the verifier. Whereas, the 
verifier is a trusted entity that sends a challenge to the prover. 
The prover responds to the challenges and if the prover cannot 
satisfy the verifier with its response, the verifier marks the 
prover system as compromised.  

In different kinds of literature, the verifier is implemented 
either as a function of the programmable logic (PL) fabric or 
occupies a part of the fabric [3][4]. This approach has two 
limitations. PL Fabric based authentication frameworks 
require additional fabric for implementing cryptographic 
functions. Additionally, the implemented cryptographic 
functions use dedicated fabric-based access-controlled 
memory elements. Using configuration readback 
mechanisms, such as ICAP and PCAP, an adversary may be 
able to retrieve secret keys being used. This work instead 
offloads security to externally established cryptosystems and 
trusted modules (TM) such as the TPM.  

The presented self-authentication design assumes that the 
verifier consists of a processor-based design implemented on 
an SoC that has trusted processing system and untrusted 
bitstreams programs the PL fabric. In order to mitigate the 
chances for spoofing attacks, this design assumes that PL 
fabric only uses on-chip Block RAM components and not any 
external memory components, e.g. DDR RAM. This 
limitation is practical realizing resource-constrained 
embedded system devices. The verifier can either be an off-
chip processor or a hard-core processor sharing the system 
bus. The secure and trusted module (TM) is shared between 
the prover and the verifier on a shared bus interconnect or a 
secure network. Network security is not in the scope of this 
paper. The verifier-interconnect connection must not be 
visible to the verifier to mitigate eavesdropping. We assume 

Figure 3. Secure boot attestation framework 
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that the verifier is secure and uses code stored on an isolated 
non-volatile Read Only Memory (ROM). The application 
bitstream is stored in a separate persistent storage medium. 
This bitstream is expected to be updated in case of an update. 
The verifier relates to a secure back-end update server through 
a secure network connection. An illustration of the design is 
given in Figure 3. 

At boot-up, the verifier is booted up first. The verifier after 
initializing itself performs an initial attestation of the RISC-V 
design bitstream. The integrated/interfaced TM device is 
initialized by the verifier. In order to initialize the TM, for the 
demonstration we have integrated TPM with the verifier, the 
verifier performs the following sequence of actions: 

• The TPM is sent a TPM_STARTUP structure. This 
command initializes the TPM. The drivers for the TPM 
are written to be able to access the security co-
processor at the time of first stage boot loader is 
loaded. 

• The verifier requests the backend for the expected 
SHA value of the bitstream. At each request, the 
backend computes a new SHA value. In order to 
ensure freshness, the SHA computation is initialized 
with a nonce. The computed cumulative SHA and the 
nonce is sent to the verifier.  

• A TPM has five localities numbered 0 through 4. Each 
locality can use different functions and has access to 
separate memory locations on the TPM[5]. Locality 4 
is used to computing Dynamic Root for Trusted 
measurement (DRTM) using PCRs. The verifier using 
locality 4, first sends TPM_HASH_START structure 
to the TPM. This readies the TPM to accept streaming 
data packets. The verifier now first pushes the nonce 
 ro ided by the backend ser er into the T  ’s 
TPM_HASH_DATA FIFO. The verifier now 
continues to push bitstream packets into the TPM. In 
this process, the bit locations where any memory 
element is expected is masked. This is done since the 
state of the memory cannot be guaranteed during 
execution. 

• Once the bitstream has been pushed, 
TPM_HASH_END structure is sent to the verifier to 
confirm the end of data. PCR 17 on the TPM is 
populated with SHA value. 

• The verifier compares the computed hash value with 
the SHA value sent by the back end. If the value is 
different, the verifier first notifies the backend of the 
change and then requests a new copy of the bitstream.  

• When the bootup attestation is completed successfully, 
the  eri ier co ies the bitstream into the  L  abric’s 
configuration SRAM. 

• The value of the PCR is discarded, and the PL fabric is 
brought up. Once this process is complete, the soft-
processor system on the PL fabric becomes 
operational. 

Once the PL fabric setup process completes the soft-
processor initiates its boot up sequence and resumes 
application execution normally.  

V. SECURING RISC-V WITH IFT 

The RISC-V Rocket chip SoC contains a rocket Custom 
coprocessor Interface (RoCC) which provides communication 
between the rocket processor and attached co-processors. 
Most of these coprocessors are crypto units and vector 
processing units. The RISC-V processor is modified to 
incorporate a security feature which can be used to protect the 
device against run time attacks like buffer overflows and 
format strings along with self-authentication mechanism. In 
this implementation, we have also integrated the AES 
(Advanced Encryption Standard) in order to protect the 
sensitive data against any tampering or modifications and in 
order to provide data integrity and confidentiality supported at 
the architecture level. The AES crypto engine is a symmetric 
key algorithm where the same key is used to encrypt and 
decrypt the data. It has a fixed block size of 128 bits and a 
variable key size of 128, 192 and 256 bits. The key size of the 
AES engine specifies the number of rounds needed to 
transform the plain text to ciphertext or vice versa. As the key 
sizes used in AES are sufficiently large it can be used to 
protect classified information up to the top level. The AES 
integrated in RISC-V supports all three key sizes (128, 192, 
256).  

The IFT technique includes three main Tag management 
mechanisms namely Tag initialization, Tag propagation, and 
Tag check/update. In Tag initialization, tags are added to the 
incoming sensitive input data to mark it as spurious or 
authentic. Tag propagation follows a set of security policies 
where the tag propagates to the defined classes in which the 
authenticity of the operand is tested on the basis of the type of 
instructions being executed. The processor checks whether the 
spurious data is used in an unsafe manner in Tag check/ update 
mechanism resulting in a security exception. 

 

Figure 4. Modified execution stage of the processor pipeline 

The IFT technique  is implemented on the (SiFive) FE310 
SoC which contains the E31 RISC-V core. This is done by 
modifying the execution phase of the E31 core. The E31 core 
is fully compliant with the RISC-V ISA specification. It is a 
high-performance implementation of RISC-V RV32IMAC 
architecture. Figure 4 illustrates the Modified Execution stage 
of the processor pipeline in RISC-V architecture. The RISC-
V architecture consists of a collection of important Control 
and Status Registers (CSRs) to manage and access the system 
functionalities. Tagged memory has the ability to provide 
metadata, in the form of one-bit tags with each memory 
location [12]. The on-chip cache is extended to hold tags by 



adding a cache tag. To protect the data from memory 
corruption a one-bit tag is attached to the input data where the 
data is physically stored in the memory and the one-bit tag is 
stored in a tag cache. 

Whenever the operands of an instruction are fetched, a 1-
bit tag value is assigned to each operand depending on 

whether they are coming from malicious I/O communication 
channels(1) or from a register file(0) present inside the 
processor. The propagation and check rules for the tags are 
stored in the Tag Propagation Register(TPR) and Tag Check 
Register(TCR) which are added in the CSRs on RISC-V. 
Figure 5 shows the Tag Propagation mechanism in which after 
assigning the tag bits, the type of instruction is checked: 
Arithmetic, Branch, Comparison, Logical, Shift, Jump, 
Branch. Depending on the type of instruction and the input 
operand tag value, the output tag bit value is determined. 
Different classes of instructions have been added to state the 
rules for tag propagation. When an instruction is identified the 
tag propagation rule sets the mode with respect to that class 
and under each mode, different conditions are specified for the 
tags to propagate from the input operand to the output 
operand. 

 

Figure 6. Tag Check Flow 

The Tag Check rule checks for the source and destination 
operand tags and raises an exception when the condition is 
met. It restricts the number of operations which can be 
performed on spurious data. Figure 6 shows the Tag Check 
flow, in which the instruction type is checked for comparison 
or load/store. If it belongs to any of the two instruction types 
and if both the input operands tags of these instructions are 
marked as spurious, the Tag Check does not allow this 
instruction to be executed and raises a security exception. To 
assign the tag bits to the tag memory two new instructions 

have been added to the RISC-V architecture, namely load_tag 
and store_tag. The memory location is augmented with a one-
bit tag that can be accessed in parallel with the data. Tagged 
memory is achieved by maintaining a shadow memory where 
the load and stores are implemented with additional codes. 

VI. IMPLEMENTATION AND EXPERIMENTAL RESULTS 

The design is based on the lowRISC RISC-V FPGA 
implementation [6]. The lowRISC SoC is implemented on a 
Xilinx Zed board which uses a Xilinx Zynq 7000 
xc7020clg484-1 FPGA. The FPGA is equipped with a hard 
dual-core ARM Cortex A9 (PS) processor. In the base 
implementation, the RISC-V processor is implemented on the 
PL fabric and has access to a serial console and a Serial 
Peripheral Interface (SPI) that are also implemented on the PL 
Fabric, and are a part of the bitstream. Zed board is equipped 
with an external DDR RAM which is directly connected to the 
PS. In order to access the RAM, the RISC-V processor 
instantiates the hard processor as AXI slave. The requests for 
the RAM are forwarded to the attached module by the hard 
processor. In this work, since we have assumed that FPGA 
implementation will not use any external memory module, no 
requests are made for it in the reference implementation code. 

For physical Trusted Module (TM) integration TPM is 
interfaced with the setup, the hardware-based SPI port is 
configured on the PS. The TPM is interfaced using dedicated 
Multiplexed IO (MIO) port. This enables the TPM device to 
be available before the PL is programmed with a bitstream. 
This work uses the Infineon SLB 9670 TPM 2.0 module [7]. 
A custom driver is written for the PS and the RISC-V 
processor to access the TPM and to compute the hash of the 
bitstream. Additionally, a PCAP component is added to the 
RISC-V design to perform runtime attestation. The PS core 
also uses the onboard Ethernet port to communicate with the 

backend server. The setup of our implementation is shown in 
Figure 7. 

The architectural level of the E31 core is modified for IFT 
and two registers are added in the CSR. Two new instructions 
are added and the RISC-V toolchain is extended. The TPR and 
TCR registers contain the rules for the tag propagation and the 
tag check respectively. Each element of the class indicates a 
field in the TPR and TCR register and depending on the rules 
the status of these registers is updated. Whenever an exception 
is raised, the offending instruction is not committed, and an 
exit routine is executed instead. In this implementation, the 
modifications are made in the execution stage of the processor 
pipeline. In order to incorporate the entire Information Flow 

Figure 7.    Experimental Test Bed 

Figure 5.    Tag Propagation Flow 



Tracking technique, these modifications will be integrated 
into the IF, ID and the WB stage of the pipeline. These 
structures can enhance security capability to mitigate the 
propagation of attacks during execution. AES crypto engine is 
integrated into the RISC-V processor. Figure 8 shows the 
results of the AES crypto engine integrated with the RISC-V 
core.  

 

Figure 8. AES integrated in RISC-V Core 

Control and data flow logic is customized in the RISC-V for 
the classes in the TPR and TCR rules and values are set 
according to the input tag operands and type of instruction. At 
the same time, the TPR register bits are also set according to 
the input operands tags for a class. The modified code flash 
programmed into the FPGA board. 

VII. PERFORMANCE ANALYSIS 

 The overhead of the interface to the hardware includes 
additional rule check during the bitstream load process, that is 
integrated at the FSBL. The design requires custom drives to 
interface the Trusted Module and requires an addition of a PL 
based PCAP interface IP.  The bitstream size for XC7020 is 
around 3.4 MB. On average, the total time to compute the hash 
for a bitstream was measured to be approximately 32 seconds.  
The area overhead of the information flow tracking is the 
integration of tag cache and tag registers, inputs, and outputs. 
Tag propagation register and tag check register and state 
machine to update these registers.   
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IX. CONCLUSION 

Considering the threat model and the presented 
architecture, the security solution put forward by our proposed 
architecture is realistic and has negligible performance 
overhead. The paper provides a solution for securing RISC-V 
processors by implementing a self-authenticated secure boot 
during startup and providing information flow tracking to 
detect and stop run-time memory corruption attacks. By using 
shared memory for IFT technique the performance overhead 
is considered negligible. 
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