
A Novel Framework for Functionally Untestable Transition

Fault Avoidance during ATPG

Jeremy Lee1, Nisar Ahmed1, Mohammad Tehranipoor1, Vinay Jayaram2, and Jim Plusquellic1
1Dept. of CSEE, UMBC, Baltimore, MD,{jlee36,nisar1,tehrani,plusquel}@umbc.edu

2 Texas Instruments, Dallas, TX, vjayaram@ti.com

Abstract— Delay fault testing has proven to be a signifi-
cant part of modern manufacturing testing. It has also be-
come a source of overtesting due to detection of function-
ally untestable faults by invalid transitions that would not
occur during functional operation of the chip. There has
been previous work in the field that identifies these faults
allowing them to be removed from active fault lists from
ATPG tools. However, due to the random fill of don’t-
care bits in test patterns, incidental detection of function-
ally untestable faults becomes possible. In this paper, we
propose a novel framework that will generate patterns us-
ing any commercial ATPG that avoid detection of these
functionally untestable transition faults. Previous meth-
ods have required modification of the ATPG tool itself or
designing a new ATPG to avoid such faults, making the
immediate use of these tools very difficult. Our frame-
work builds upon a commercial ATPG tool and modifies the
netlist rather than the tool. By using the present function-
ality of the ATPG tool and a modified netlist, pattern gener-
ation is structurally constrained to avoid generating a pat-
tern that will incidentally detect a functionally untestable
fault. The proposed minimally affects test coverage of func-
tionally testable faults and does not significantly increase
the amount of effort needed by the ATPG tool.

I. INTRODUCTION

Chip scaling and market demands continue to push de-
signers to fit more complex designs into smaller areas.
Not only does a higher design density correlate to a higher
probability of defects, but as the feature size shrinks, the
effective length of the interconnects become longer due
to a shrinking width. This creates the potential for severe
signal integrity problems in the chip, which often presents
itself as signal delay. Delay fault testing detects many of
these defects that cause gate and interconnect delay. How-
ever, design-for-testability (DFT) techniques like scan de-
sign that allow for easier delay fault coverage, also allow
scan patterns that detect functionally untestable faults.

Functionally untestable faults create a difficult situation
for many test engineers. If these faults are treated in a sim-

* This work was supported in part by Semiconductor Research Cor-
poration under contract SRC 2005-TJ-1322.

ilar fashion as functionally testable faults, patterns arebe-
ing applied to the chips that would never occur in the field,
potentially failing chips unnecessarily. Overtesting canre-
sult in a potentially significant yield loss [1]. By avoiding
these functionally untestable faults during pattern gener-
ation, we can prevent detection of these faults during test
allowing only detection of functionally testable faults.

Current delay fault testing techniques already avoid a
portion of the functionally untestable faults due to the
method it is applied. Compared to launch-off-shift (LOS)
[2] and enhanced scan [3], launch-off capture (LOC)
[4] testing assists in avoiding the largest percentage of
such faults due to the functional dependence between the
initializing and transition launching patterns. However,
functionally untestable faults can still be stimulated and
detected by initializing the circuit-under-test (CUT) with
a pattern that is not the functional response of the design.
Avoiding these patterns during pattern generation will be
the key to avoiding the respective untestable fault it stim-
ulates.

Since it is possible to determine functionally untestable
faults separately [5][6][7] before ATPG, a naive solution
to avoid these faults is to exclude these faults from the ac-
tive faults list during pattern generation. However, since
most ATPG tools randomly fill any don’t-care bits with a
random value it may still be possible incidentally detect
these faults. In order to ensure only functionally testable
faults are detected, additional steps must be taken to con-
strain the ATPG tool from creating patterns with function-
ally invalid states.

Previous techniques that avoid functionally untestable
faults during pattern generation have required custom
modifications to ATPG tools or designing a new ATPG
[8][9]. This makes the immediate application of their
techniques to commercial ATPG tools rather difficult. The
work in [8] constrains LOC by taking a random sample
of patterns, determines which of those patterns will de-
tect functionally untestable faults, and uses such patterns
in conjunctive normal form (CNF) to constrain their cus-
tom ATPG tool. In [9], the custom ATPG tool contains
a list of illegal state cubes that would detect functionally
untestable faults. As LOC generation begins, the ATPG



must check the list of illegal states to make sure the pat-
tern it is generating does not contain such combinations.

In this paper, we propose a novel framework to be used
as a wrapper around any commercial ATPG tool. Us-
ing a functionally untestable transition fault identifica-
tion tool, we are able to determine which faults to avoid
during ATPG. The avoided faults are then used as con-
straints by altering the netlist instead of modifying the
ATPG algorithm. Transition fault pattern generation is
then performed without the functionally untestable faults
in the active list, but since the constraints are in place,
patterns generated will not incidentally detect function-
ally untestable faults. The result of the ATPG will be a
test pattern set that will only detect functionally testable
faults.

The remainder of this paper is organized as follows.
Section II covers an overview of the proposed framework.
In Section III, we review the tool used to identify the func-
tionally untestable faults. Section IV will discuss the con-
straint generation and minimization process. Sections V
and VI describe the application and analysis, respectively,
of the framework on the ISCAS’89 benchmarks using the
Synopsys Design Tools [10]. Finally, we conclude our
discussion in Section VII.

II. OVERVIEW OF FRAMEWORK

The framework for functionally untestable transition
fault avoidance consists of a four step process. Figure 1
outlines the general flow of the framework. First, a func-
tionally untestable fault list (FUFL) is generated, which
only needs to be performed once for each design. This
list is generated using the technique described by Liu et
al. [7], who extended FIRES [6], a sequential stuck-at re-
dundant fault detection technique, towards application to
transition faults.

Using the functionally untestable transition fault list,
we can use existing ATPG tools to generate LOC patterns
for each fault in the list without filling don’t-care bits. The
advantage of using LOC as the basis for pattern generation
is that any fault that cannot be detected during LOC can
be assumed to be functionally untestable due to the func-
tional constraint LOC inherently applies to all test pat-
terns. This pattern generation for functionally untestable
faults will result in two lists (see Figure 1:LOC detectable
functionally untestable test patterns (DFUTP) andLOC
undetectable functionally untestable fault list (UDFUFL).
Any faults that LOC ATPG can successfully generate a
pattern for are LOC detectable and any fault that does
not have a corresponding pattern are LOC undetectable.
The UDFUFL are the existing 15–20% (according to our
experimental results on ISCAS’89 benchmarks) of faults
undetectable by LOC due to the inability to functionally

FU − Functionally Untestable
FL − Fault List
UD − Undetectable
D − Detectable
FT − Functionally Testable
TP − Test Patterns

Netlist
Modified

ATPG

ATPG
FTFL = FL − FUFL

Step 2

Step 4

UDFUFL

FTTP

FUFL

Step 1

Step 3 DFUTP

Constraint

& Realization

Minimization,

Generation,

FUFL Generation

Netlist

Figure 1. Flow of the proposed framework for functionally untestable
fault avoidance.

stimulate and propagate the appropriate transition to an
observable output. The remaining LOC detectable faults
are a result of initializing the CUT with a pattern that is not
a functional response during normal operation and cause
chip overtesting.

The patterns generated for the LOC detectable faults
(DFUTP) are then used in the next step, Constraint Gener-
ation, Minimization, and Realization, which will be used
for ATPG. This step is done to make sure that running
ATPG on functionally testable faults will not incidentally
detect functionally untestable ones when filling in don’t-
care bits in the final patterns. Unlike previous techniques,
we apply the constraints to the design netlist instead of
modifying the ATPG tool to handle an entirely new set of
constraints. For each care-bit of a LOC detectable fault
pattern, there is a corresponding reachable input. A sim-
ple combinational logic tree can be added to the design on
each of these reachable inputs for each pattern, which can
then be ORed together with the trees of the other LOC de-
tectable patterns. The single OR gate will be constrained
by the ATPG to prevent generation of a pattern that will
detect any faults in the FUFL. Most ATPG tools (e.g. Syn-
opsys TetraMax [10]) can easily constrain a single net to
a zero or a one. This will be further discussed in Section
IV.

For designs that have a large number of DFUTPs, a
form of constraint minimization must be used to reduce
some of the burden that may be placed on the ATPG tool.



To alleviate this problem, in this framework, we reduce
the size of constraints such that if many of the patterns
have similar bit combinations, one logic tree is used to
apply many of the constraints.

The modified netlist will then be used for ATPG. The
fault list input into the ATPG tool consists of the function-
ally testable faults only, i.e. the original fault list minus
those faults determined to be functionally untestable gen-
erated in Step 1 (FTFL = FL-FUFL). By constraining the
output of the OR gate that was mentioned above to a logic
zero, we prevent the ATPG tool from generating a pattern
that will detect any faults in the FUFL since the don’t-care
bits of the final patterns are only filled with values that will
not incidentally detect a functionally untestable transition
fault.

III. FUNCTIONALLY UNTESTABLE FAULT

IDENTIFICATION

The first step of our framework is based on the func-
tionally untestable transition fault identification technique
in [7]. This technique uses static logic implication (static
learning) to expand on the work in [5], which developed a
technique called FIRE.

The efficiency of the identification technique is deter-
mined by the number of implications performed for each
circuit. As was done in [7], we limit our program to direct,
indirect, and extended backward implications. These im-
plications are stored as a graph for efficient searching and
easy traversal through the circuit. Direct implication is
straight forward and can be learned based on the function
of the gate. If we are given a simple circuit as in Figure 2,
we can immediately connect the implications forC = 1

as shown in Figure 3(a). Indirect implications are derived
based on the direct implications. For example, if we again
imply a 1 on netC, the direct implications imply nets
A andB are both 1, which each directly implyD = 1.
So an indirect implication can be made withC = 1 and
D = 1, implying E = 0, which itself has a set of direct
implications and becomes part of the implication graph of
C = 1. Extended backward implication is used in cases
where the output of a gate is known, but the inputs can-
not be directly implied based on the current output. One
example of this is when the output of an AND gate is 0,
since it is not directly implied as to whether one input is
0 or both are 0. Extended backward implication will de-
termine whether there are any common implications when
implying the dominant value on each of the inputs of the
current gate. After direct, indirect and backward implica-
tions are completed, the final implication graph for netD

implied to 0 for the circuit shown in Figure 2 will be as
shown in Figure 3(b).

A

B

C

D

E
F

G

H

Figure 2. A simple combinational circuit used to demonstrate static
logic implication.

A = 1

C = 1

B = 1

D = 1

(a)

A = 1

H = 0

C = 1

B = 1

D = 1

E = 0

G = 1 F = 0

(b)

Figure 3. (a) Direct implications graph for C = 1. (b) Graph after
direct, indirect, and backward implications have been performed.

There are many additional implications that can be per-
formed to more fully describe the circuit [11], which re-
sult in a more complete description of the circuit and
potentially yield a larger set of identified functionally
untestable faults. However, this increases the complex-
ity of the program and the time required to perform the
implications. Since the fault identification process is not
the direct focus of this work we limited the number of im-
plications to reduce the time requirement of the program.

The implication graphs learned from static learning
help to easily identify functionally untestable faults,
which will become the FUFL. In order to identify these
faults, a single-line conflict technique similar to FIRE is
used to identify any functionally untestable faults. How-
ever, the original FIRE must first be extended to include
static learning [12]. Extending FIRE basically results in
the intersection of the implication graphs of a net implied
to 0 and 1. If the intersection yields a non-empty set,
any implications in this non-empty set can be identified
as functionally untestable faults. This technique deter-
mines the faults that are sequentially uninitializable and
sequentially uncapturable faults. Sequentially uninitializ-
able faults cannot be detected due to redundancies in the
design that prevent nets from being set to a logic one or
zero. Sequentially uncapturable faults are due to an in-
ability to propagate a transition to an observable output.

In order to extend FIRE further for application towards
functionally untestable transition faults, sequentiallycon-
strained faults must also be considered. Sequentially con-
strained faults can be individually initialized and captured,



but are functionally constrained by LOC such that the two
faults cannot occur sequentially. Similar to the sequen-
tially uninitializable and sequentially uncapturable faults,
this relation is dependent on an intersection operation.
This set considers the union of the initializable set with
the capturable set of a net implied to 0 intersected by the
union of the initializable set with the capturable set of the
same net implied to 1. Any implications in the non-empty
set are considered sequentially constrained and function-
ally untestable.

IV. CONSTRAINT GENERATION, M INIMIZATION , AND

REALIZATION

Constraint generation is based on the faults that were
identified in the first step of the functionally untestable
fault avoidance framework described in Section III. To
determine these constraints, a commercial ATPG tool is
used to generate LOC transition fault patterns for the
FUFL, which is then minimized and then transformed into
constraints that are temporarily added to the final design
solely for the purpose of transition fault pattern generation
in the final step of the framework.

Under the assumption that the faults identified by Step
1 of the framework are functionally untestable transition
faults, we also assume that those faults will never be sen-
sitized during normal operation and are only sensitizable
due to states that are initialized during test mode through
the scan chain. So, it is only during the initialization phase
of LOC that functionally untestable fault patterns must be
avoided since the launch pattern is a functional response
of the circuit and is based on the initialization pattern.
In other words, we make sure the initialization pattern is
a valid, reachable states, which makes the functional re-
sponse state valid.

A. Constraint Generation

In order to prevent the detection of these faults during
LOC ATPG, the scan cells must be constrained from any
state that would place an LOC initialization pattern for
any faults in the FUFL into the scan chain. To realize these
constraints, LOC ATPG is performed on the FUFL (Step
2 of framework). During this ATPG step, don’t-care bits
must remain unfilled in order to isolate only those cells
that are necessary for detection of functionally untestable
faults. This is easily done in Synopsys’ TetraMax by re-
moving the random fill option during ATPG.

LOC ATPG will determine test patterns for a fraction
of all faults in the FUFL, leaving the remaining faults
as undetectable functionally untestable faults (UDFUF).
Since LOC in general leaves approximately 20% of the
total faults of a design undetected, the set of faults de-
clared as UDFUF should be the same faults as the 20% of
total faults that are LOC undetectable.

B. Constraint Minimization

Although the UDFUFs make up a majority of the func-
tionally untestable faults, for larger designs, the number
of patterns generated during the second step of the frame-
work (DFUTP) can become rather large. If constraints
were based solely from this large set of patterns, it could
unnecessarily constrain the ATPG tool too much and re-
quire significantly more effort and time to avoid the faults
in the FUFL. Therefore, a constraint minimization strat-
egy is used to minimize the time the ATPG tool spends on
constraints.

The method used to minimize the number of constraints
is based onpattern dominance. For example, assume
there is a design with 8 scan cells and with four patterns
in the formatb7b8b6b5b4b3b2b1b0 that detect some func-
tionally untestable faults: XXX1X0XX, XX11X0XX,
XX0XXX0X, XXX100XX. There are clearly similarities
in the first, second, and fourth pattern. Assuming each of
these patterns detect different, but intersecting fault sets,
the pattern with the fewest number of care bits can be used
to determine whether the other patterns can be eliminated
from constraint consideration. In this example, the first
and third patterns have the fewest number of care bits.
Starting with the first pattern, searching for all other pat-
terns that also contain the same care bits yield the second
and fourth patterns, so these two patterns can then be elim-
inated from constraint consideration. Since the third pat-
tern does not have the same care bits in the same positions
as the first pattern, it cannot be removed from considera-
tion. As a result only XXX1X0XX and XX0XXX0X are
used as constraints during ATPG.

The reason the second and fourth patterns could be
eliminated from the pattern set is due to pattern domi-
nance. The first pattern will detect at least one function-
ally untestable fault with the given care bits. The second
pattern will also detect that same faults as the first pattern
plus those detected due to the additional care bits in the
pattern. However, a necessary condition to detect those
additional faults are the care bits of the first pattern. So, if
the first pattern is constrained from occurring, then those
faults detected by the second and fourth patterns will not
be detected either. Because of this constraint, the ATPG
tool will not generate a pattern that contains a 1 atb4 and
a 0 atb2.

C. Constraint Realization

After constraint minimization, the constraints are fi-
nally realized into a netlist that will be used for the fi-
nal design. Since the position of the care bit in the pattern
stream and the scan cell order is known, a one to one map-
ping between care bit and scan cell can be made. For every
pattern that remains after generation and minimization, a



single behavioral equation can be formulated based on the
sequence of care bits.

Using the first pattern from the example above,
XXX1X0XX, the constraint created by the pattern can be
realized aspattern1 = cell4 · cell2, where the dot rep-
resents the logical AND operation. The equation repre-
sents the case whenb4 andb2 are 1 and 0, respectively, ex-
cluding the remaining bits since they are don’t-care states.
Equation 1 is a generalized form of the constraints created
from the DFUTP, wheren is the total number of scan cells
in the design.

patternj =

∏

i<n

ci, ci =

{

celli if bi = 1

celli if bi = 0
(1)

constraint =

∑

j<k

patternj (2)

To ease the application of the ATPG constraints, rather
than constraining each of thepattern signals to 0, if all
the signals are ORed together, a single net will have to
be constrained to a 0 to ensure the ATPG will not gener-
ate patterns that contain a state that will incidentally de-
tect a functionally untestable fault. Equation 2 shows the
general form for performing the logical OR operation be-
tween all of thepattern signals, wherek is the total num-
ber of patterns after minimization.

Once constraint generation, minimization, and realiza-
tion is performed, there is now a functional description
of states to avoid during LOC ATPG. It must now be in-
tegrated into the current design in order to be effective.
A more detailed implementation of constraint integration
with the targeted design is described in the following sec-
tion.

V. FRAMEWORK IMPLEMENTATION

We implemented our framework to easily wrap around
existing commercial synthesis and test tools. The frame-
work was implemented using a C program to fully in-
tegrate each of the four steps together. Synopsys DFT
Compiler and TetraMax [10] were the commercial tools
used to synthesize and generate patterns. We have listed
the framework implementation below in an easy to follow
flow.

Functionally Untestable Fault Avoidance Flow

1) Synthesize design and insert scan chains using DFT
Compiler.

2) Run functionally untestable fault identification pro-
gram on synthesized netlist. (Framework Step 1)
• Functionally untestable fault list (FUFL) is

generated by the program.

3) Use FUFL as fault list in TetraMax and perform
LOC ATPG on synthesized design. (Framework
Step 2)
• TetraMax generates patterns to detect faults that

are LOC detectable but functionally untestable
(DFUTP).

4) DFUTP are extracted and minimized
• Behavioral model of constraints is generated.

(Framework Step 3)
5) Constraint model is synthesized and optimized us-

ing DFT Compiler and connected to already synthe-
sized design.

6) The final netlist is used for LOC ATPG in TetraMax
with a functionally testable fault list. (Framework
Step 4)

The functionally untestable fault identification program
was implemented in C and followed the techniques ex-
plained in Section III. A Perl script was also used to ex-
tract the DFUTP from the STIL file, minimize the number
of patterns, and generate the behavioral model.

DFT Compiler was used to incorporate the generated
constraints into the synthesized design. By passing the
constraints netlist through the synthesis tool as a separate
module, many redundancies in the constraint netlist were
removed and the constraints were reduced to a structural
netlist that maintained the original function of the behav-
ioral model. Adding the constraint module to the design
was straightforward and maps the the output net of all
the scan cells to the input ports of the constraint module.
Since the STIL file that extracted the patterns contained
the order of the scan cells, the constraint module inputs
were placed in the same order as the scan cells. The out-
put signal of the constraint module is tied to the output of
the final logical OR operation of all thepattern signals to
simply searching for the signal when applying the single
constraint during ATPG.

When using this final netlist with the included con-
straints with TetraMax, the ATPG is constrained to always
hold the single output of the constraint logic to 0. Al-
though this is functionally equivalent to constraining the
scan chain to individually prevent the generation of func-
tionally untestable fault states, it is significantly easier to
apply the constraint on a single net as opposed to con-
straining the scan cell values individually or on a per pat-
tern basis.

VI. A NALYSIS

The framework was run on the ISCAS’89 benchmarks
using a 3.2 GHz Pentium 4 with 1 GB of memory running
the Linux Operating System. In Table I, we have listed the



TABLE I
IDENTIFIED FUNCTIONALLY UNTESTABLE FAULTS.

Bench Total # FUFL based on
Name of Faults [7]
s1423 3028 5
s5378 6822 118
s13207 15534 25
s15850 18240 324
s38417 56490 3010

number of functionally untestable faults that were identi-
fied by the first step of our framework. The first column
lists the benchmark name and the second column lists to-
tal number of faults identified by TetraMax. Finally, in
the third column, we list the number of faults identified
as functionally untestable by the technique referenced in
Section III.

The number of functionally untestable faults found by
our implementation of the technique have found signifi-
cantly fewer faults than those discovered in [7]. We be-
lieve this is due to a combination of circuit optimizations
performed by DFT Compiler and the possibility of our
own tool performing fewer implications than what was
done in [7]. We intend to study this matter further in fu-
ture work in order ensure all functionally untestable faults
are correctly being identified by this tool.

We show the results of the proposed framework in Table
II. Columns 2 and 3 show the results of the ATPG using
TetraMax for conventional LOC and the coverage when
applying the framework. For both LOC ATPG and ATPG
with our framework, we included the entire fault list of the
design to show the constraints filtering out those faults in
the FUFL. Column 4 shows the number of patterns used
after minimization to generate the constraints for the final
ATPG. Finally, column 5 is the overall time of the frame-
work, which does not include the time taken to identify the
functionally untestable faults since that is only performed
once for each design.

The number of constraints listed in Column 4 of Ta-
ble II correlates closely with the number of functionally
untestable faults identified in Column 3 of Table I. Since
the FUFL identification program did not identify as many
functionally untestable faults for each of the benchmarks
as desired, the number of constraints were quite limited.
The number of constraints grows linearly with the number
faults in the FUFL and, for the cases we have provided, re-
mains roughly half the number of faults identified as func-
tionally untestable.

As can be compared between Columns 2 and 3, the fault
coverage between LOC and our framework is directly re-
lated to the number of constraints used. For s1423 and
s13207, since our program was not able to identify many
functionally untestable faults, the number of constraints

were few, and very few functionally untestable faults were
filtered out during pattern generation.

For the remaining three cases, there was a sufficient
number of constraints to clearly show a substantial drop in
fault coverage. For s5378 and s15840, there was almost
a 20% drop in coverage. In each case, the fault identi-
fication tool only indicated approximately 2% of the to-
tal faults as functionally untestable. However, if the per-
centages are compared with the percentage of functionally
untestable faults for those two benchmarks in [7], we can
assume the additional faults excluded during the frame-
work ATPG are also functionally untestable.

Since we are essentially determining in-
valid/unreachable states using the framework, we
assume any fault that requires initialization with an
invalid state is functionally untestable. Due to this, by
first finding a subset of functionally untestable faults and
the invalid states that would detect them, additional faults
will also potentially be filtered out by this process since
these additional faults also require the same functionally
unreachable states to be detected. So, with a greater num-
ber of constraints, the more states that can be concluded
as invalid.

However, as can be seen with s38417, since there are so
many constraints that still remain after minimization, the
ATPG tool cannot effectively reach a high fault coverage
and is obviously impaired. This problem most likely can
be alleviated with a better constraint minimization tech-
nique, which will be pursued further in future work. An
appropriate balance obviously must be reached between
constraining the ATPG to effectively prevent detection of
functionally untestable faults and the ATPG effort load.

Overall, the framework did not increase the amount
of time to complete pattern generation by an exorbitant
amount, even on s38417. The increase in time was mainly
due to the ATPG accounting for over 1000 constraints.
Reducing the number of constraints will potentially re-
duce the pattern generation time in addition to restoring
the fault coverage to an acceptable level. Even with al-
most 100 constraint for s15850, the entire framework flow
took less than one minute with the majority of the time
spent on constraint generation, minimization, and real-
ization instead of pattern generation with the constrained
ATPG.

VII. CONCLUSION

We have presented a novel framework for avoiding
functionally untestable faults during pattern generation
that can be used in conjunction with a commercial ATPG
tool. Rather than altering a custom tool as previous im-
plementations have done, the netlist is modified to include
additional logic that is constrained during ATPG. The ad-
ditional constraint ensures the ATPG does not generate an



TABLE II
FUNCTIONALLY UNTESTABLE FAULT AVOIDANCE FRAMEWORK RESULTS

Benchmark LOC Fault Framework Fault # of Framework
Name Coverage(%) Coverage(%) Constraints Time(s)
s1423 95.72 95.55 2 6.5
s5378 89.06 70.62 41 9.5
s13207 89.99 88.04 10 34.5
s15850 89.46 71.50 94 29.1
s38417 96.80 49.14 1105 539

LOC test pattern that will detect a functionally untestable
fault. Application of the framework is straightforward and
does not significantly increase pattern generation time nor
hinder the ATPG from reaching reasonable coverage lev-
els if there are a manageable number of constraints that
are applied. Initial results show that a current commercial
ATPG tool without significant modification can be used to
avoid incidental detection of faults that have already been
identified as functionally untestable and potentially iden-
tify additional faults.

REFERENCES

[1] J. Rearick, “Too Much Delay Fault Coverage Is a Bad Thing,” in
Proc. of International Test Conference (ITC), 2001, pp. 624–633.

[2] J. Savir, “Skewed-Load Transition Test: Part I, Calculus,” pp.
705–713, 1992.

[3] J. Savir and S. Patil, “On Broad-Side Delay Test,” pp. 284–290,
1994.

[4] B. Dervisoglu and G. Stong, “Design for Testability: Using
Scanpath Techniques for Path-Delay Test and Measurement,”pp.
365–374, 1991.

[5] M. A. Iyer and M. Abramovici, “FIRE: A Fault-Independent
Combinational Redundancy Identification Algorithm,”IEEE
Transactions on VLSI Systems, vol. 4, no. 2, pp. 295–301, June
1996.

[6] M. A. Iyer, D. E. Long, and M. Abramovici, “Identifying Se-
quential Redundancies Without Search,” inProc. of Design Au-
tomation Conf. (DAC), 1996, pp. 457–462.

[7] X. Liu and M. S. Hsiao, “On Identifying Functionally Untestable
Transition Faults,” inIEEE Intl. High-Level Design Validation
and Test Workshop, 2004, pp. 121–126.

[8] ——, “A Novel Transition Fault ATPG That Reduces Yield
Loss,”IEEE Design & Test of Computers, pp. 576–584, 2005.

[9] Z. Zhang, S. M. Reddy, and I. Pomeranz, “On Generating
Pseudo-Functional Delay Fault Tests for Scan Designs,” inIEEE
Intl. Symposium on Defect and Fault Tolerance in VLSI Systems,
2005, pp. 398–405.

[10] Synopsys Inc., “User Manuals for Synopsys Toolset Version
2005.09,” Synopsys Inc., 2005.

[11] M. Syal, R. Arora, and M. S. Hsiao, “Extended Forward Impli-
cations and Dual Recurrence Relations to Identify Sequentially
Untestable Faults,” inIntl. Conf. on Computer Design, 2005.

[12] J.-K. Zhao, J. A. Newquist, and J. H. Patel, “A Graph Traversal
Based Framework for Sequential Logic Implication with an Ap-
plication to C-Cycle Redundancy Identification,” inProc. of Intl.
Conf. on VLSI Design, 2001, pp. 163–169.


