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Abstract: Autonomous trust mechanisms enable Internet of Things (IoT) devices to function coop-
eratively in a wide range of ecosystems, from vehicle-to-vehicle communications to mesh sensor
networks. A common property desired in such networks is a mechanism to construct a secure,
authenticated channel between any two participating nodes to share sensitive information, nominally
a challenging proposition for a large, heterogeneous network where node participation is constantly
in flux. This work explores a contract-theoretic framework that exploits the principles of network
economics to crowd-source trust between two arbitrary nodes based on the efforts of their neighbors.
Each node in the network possesses a trust score, which is updated based on useful effort contributed
to the authentication step. The scheme functions autonomously on locally adjacent nodes and is
proven to converge onto an optimal solution based on the available nodes and their trust scores.
Core building blocks include the use of Stochastic Learning Automata to select the participating
nodes based on network and social metrics, and the formulation of a Bayesian trust belief distribution
from the past behavior of the selected nodes. An effort-reward model incentivizes selected nodes to
accurately report their trust scores and contribute their effort to the authentication process. Detailed
numerical results obtained via simulation highlight the proposed framework’s efficacy and perfor-
mance. The performance achieved near-optimal results despite incomplete information regarding the
IoT nodes’ trust scores and the presence of malicious or misbehaving nodes. Comparison metrics
demonstrate that the proposed approach maximized the overall social welfare and achieved better
performance compared to the state of the art in the domain.

Keywords: Bayesian model; Contract Theory; crowdsourcing; Internet of Things; PeerTrust;
Reinforcement Learning

1. Introduction

The convergence of ubiquitous networking, cloud computing, and embedded intelli-
gence has led to the rise of edge computing and the Internet of Things (IoT). Applications
for IoT range from home to industrial automation, from local sensor network to vehicle-
to-vehicle (V2V) communications. New challenges emerge as these networks evolve from
local, constrained environments to large, heterogeneous ecosystems, where the cardinality
and capability of individual nodes is always in flux.

Maximum utility is derived if such ecosystems become capable of sharing sensitive
information, such as healthcare or payments data. To achieve this, the nodes must be
able to participate in a trust framework that enables secure communication channels.
While centralized approaches, such as standards and certificates, solve the problem, they
require an established infrastructure to function effectively. A centralized authority is
needed to issue and disseminate certificates, prior registration of all participating devices
is required, and all nodes must agree on a common communications protocol. Such an
approach is unsuited for large, heterogeneous networks where nodes vary greatly in
compute power, communications protocols and standards compliance, as certain nodes
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may not be registered or may be incapable of participating due to missing hardware or
insufficient compute power.

Decentralized approaches are far more effective in this regard, the most promising of
which is the crowd-sourced trust model, where trust between two IoT devices is derived
from transient neighbouring nodes available at that point in time, despite their hardware
configuration, compute power and protocol support.

Each device needs only to store a trust score, a normalized floating point value.
The score can be bootstrapped to a default value for new devices. No special hardware or
compute function is required to maintain or update the score, as integrity in the score is
established through the crowd-sourcing mechanism. Robustness of the method is enhanced
if differences in configuration and capability contribute to the derivation of the final trust
score.

Presented in this work is a contract-theoretic mechanism based on incentives for build-
ing trust between two devices (termed Alice and Bob) operating in a large, heterogeneous
network of IoT nodes. The proposed approach introduces a novel trust model and trust-
based management features at the protocol level. The model derives trust in an ad-hoc
fashion by crowd-sourcing locally adjacent nodes while maintaining robustness against
malicious behavior. There is no reliance on cryptographic primitives or connection to a
central authority.

The approach is distinct from traditional blockchain solutions in that the final outcome
(consensus) is local to Alice and Bob and not a common state shared with all nodes in
the system. Furthermore, by relying on simple metrics that all nodes possess, the model
establishes independence from the underlying hardware and communications architecture,
and is therefore compatible with a wide variety of applications. Crucially, the approach is
compatible across network boundaries and can bind cross-network devices in a common
trust framework, a property not commonly seen in other approaches. Highlights of the
scheme are as follows:

1. Use of Stochastic Learning Automata (SLA), to select crowd-sourced nodes in an
autonomous and distributed manner. In particular, the selection at every iteration
of the utilized Reinforcement Learning (RL) algorithm is probabilistically reinforced
with respect to the network characteristics, such as delay and congestion, and social
characteristics, such as trust scores.

2. Introduction of a Bayesian trust model to probabilistically estimate the nodes’ trust scores
in the absence of complete information in a realistic Internet of Things environment.

3. Formulation of a novel PeerTrust protocol coupled with Bayesian adverse selection
to model Alice’s personalized belief of node trust levels despite the nodes’ potential
false individual reports of trustworthiness.

4. Introduction of a novel contract-theoretic scheme based on the theory of labor eco-
nomics that operates under the scenario of information asymmetry, yet incentivizes
nodes to contribute effort and receive rewards corresponding to actual trust levels.
Ergo, the trust model operates with incomplete information, where the optimal pairing
of effort and reward represents the contract.

5. Formulation of payoff functions for Alice, Bob and all participating nodes, which are
maximized under certain constraints that hold true within the IoT network. The non-
convex optimization problem is transformed into a convex form, with the optimal
efforts-reward pairs determined accordingly. An extensive numerical and comparative
evaluation to demonstrate the operation and efficiency of the proposed framework.

Related Work

Decentralized trust models are an emerging topic of interest in IoT environments.
In [1], the authors present a novel framework based on the evolutionary game theory and
Lyapunov optimization to qualitatively study and prove the stability and validity of the
proposed IoT trust management scheme. A similar approach is followed in [2], where
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blockchain technology along with the Evolutionary Combination game-theoretic rule [3]
are adopted.

Specifically, the authors formulate a robust decentralized trust management scheme
is introduced that mitigates the impact of malicious nodes that send false trust scores.
In [4,5], the authors adopt a blockchain data structure to enhance the IoT capabilities and a
decentralized trust management framework is introduced to enable dynamic access control
policies. A K-means-based approach is proposed in [6], which assesses the trustworthiness
of the IoT nodes by sharing certain information among them.

In [7,8], the authors propose a fuzzy security protocol for trust management and a Beta
distribution-based trust technique for information-centric-networks aiming at detecting
on-off attacks or malicious nodes. The CTRUST model is proposed in [9] to study the effects
of trust decay and maturity in a decentralized collaborative download application.

Moreover, the authors in [10] introduce a quantifiable trust assessment model for IoT
services based on the K-means and Support Vector Machine (SVM) algorithms to efficiently
extract trust features from raw data and perform trustworthiness-based decision-making.
The role of Artificial Social Intelligence (ASI) in the management of the IoT-enabled social
relationships is discussed in [11], where the authors maintain that trust management is
vital among social IoT devices for social clustering and community detection.

Two blockchain-based trust management schemes for IoT nodes are adduced in [12,13].
The first one stores each node’s trust scores in the blockchain via hashed transactions
and shares them with other nodes within the network, while the latter one utilizes the
decentralized architecture to evaluate the process’s trustworthiness and guarantee the
satisfaction of IoT nodes’ energy constraints regarding trust computation. The integration
of a dynamic trust management model based on a hybrid environment consisting of
industrial communities is demonstrated in [14].

In [15], the cumulative trust concept models the trust management in IoT nodes by
measuring the packet drop and data rates among them. An alternative trust scheme is
introduced in [16], where a recommendation filtering algorithm is proposed based on the
Bayesian inference model to mitigate bad recommendations. In [17], a context-based trust
evaluation system is presented to mitigate service-oriented attacks based on the Naive
Bayesian method.

Literature is limited on efforts to model a trust management scheme that does not
have perfect knowledge of the IoT environment’s characteristics, where nodes may act in a
malicious manner by exploiting the incomplete information setting to lie about their own
trust levels or collude with other nodes. The problem difficulty increases dramatically in an
’offline’ setting, where an ad-hoc network has no connectivity to a remote back-end (source
or sink). A representative application example is a Wireless Mesh Network (WMN) that
reliably connects multiple heterogeneous IoT nodes to a centralized Bank for transactions
processing and verification.

The IoT nodes enable automated e-payments by adopting wearable e-payment meth-
ods, e.g., via smartwatches, rather than carrying traditional credit cards. However, a com-
mon real-world challenge is that the IoT nodes may not have Internet connectivity. As a
consequence, the respective IoT nodes form an offline ad-hoc network that is responsible for
transactions processing and verification by creating a secure channel between any pair of
nodes (termed Alice and Bob) based on offline trust management. Towards achieving this
goal, a scheme is required to incentivize IoT nodes in reporting their trust levels truthfully
and contributing effort to build trust between Alice and Bob.

The rest of the paper is organized as follows. Section 2 introduces the system model,
the Bayesian belief scheme, and the PeerTrust model, while Section 3 elaborates on the
contract-theoretic interactions among the IoT nodes. Section 4 presents the IoT nodes’
selection by Alice based on the SLA model. Finally, the numerical and comparative
evaluation is presented in Sections 5 and 6 concludes the paper.
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2. System Model

An offline IoT environment is considered, consisting of |C| IoT nodes that are willing to
participate in the crowd-sourcing process to facilitate the secure interaction between Alice
and Bob. Their corresponding set is denoted as C = {1, . . . , c, . . . , |C|}. Ct

A denotes the set
of nodes selected by Alice at time slot t by utilizing Reinforcement Learning (Section 4)
to provide to her identification information (effort) related to Bob. Alice’s distance from
each node c is dt

c[m] and the established communication link among them experiences a
normalised congestion crt

c ∈ [0, 1] due to the exchange of information in a peer-to-peer
manner. A summary of the used key notations is provided in Table 1.

2.1. The Concept of Contract

To establish a secure channel with Bob, Alice needs to initiate a mobile crowdsourcing
process, where each selected IoT node c ∈ Ct

A provides some effort et
A,c ∈ [0, 1] in time slot t.

In the trust model, this effort can be represented as the contribution of unique identification
information about Bob provided by the selected nodes. However, in order for Alice to
ensure the cooperation from the IoT nodes regarding Bob’s authentication, she utilizes an
incentivization mechanism by providing each node an appropriate personalized reward
rt

A,c ∈ [0, 1], such as a monetary payment or an increment to their recorded absolute trust
levels to compensate them for their effort.

In our analysis, the effort et
A,c ∈ [0, 1] invested by each selected IoT node c to facilitate

Alice’s interaction with Bob and the corresponding received reward rt
A,c ∈ [0, 1] are consid-

ered as normalized variables on the interval [0, 1]. In a real-life scenario, those variables
can be mapped to realistic metrics, e.g., the amount of unique identification information for
Bob that each selected IoT node offers to Alice as its effort, and respective changes in the
trust levels of the nodes made by Alice as a reward.

Intuitively, a labor economics-based relationship is formulated between Alice and
the selected IoT nodes, where the more identification data an IoT node provides to Alice,
the more its trust level will be increased as a reward for its effort. The provided reward from
Alice is used to update the node’s trust level (see Section 2.3). The pair of (effort, reward)
constitutes a contract among Alice and each selected IoT node, denoted as (et

A,c, rt
A,c).

Accordingly, payoff functions are formulated for both Alice and the selected IoT nodes
(see Section 2.4) and an optimization problem is formulated where the optimality for the
aforementioned payoff functions is guaranteed. The optimization problem is solved and
the optimal IoT nodes’ efforts are determined.

2.2. Bayesian Trust Belief

In a realistic offline IoT environment, Alice has incomplete information regarding the
quality of effort et

A,c that each selected node can contribute to help with Alice establishing
a secure channel with Bob. For instance, in the aforementioned WMN example, Alice
stores offline her own belief regarding the potential quality of unique identification data
about Bob that each IoT node can offer her, since she cannot be certain if the provided
information will help her to successfully authenticate Bob.

This belief is updated throughout the time horizon and exploited when Alice acts as
an RL agent and selects a subset of IoT nodes to verify her transaction with Bob. Thus, we
utilize the concept of Bayesian trust belief µt

A,c ∈ [0, 1], of Alice regarding another IoT node
c, c ∈ C, at a specific time slot t. Towards determining the trust belief of each IoT node,
we deploy a Bayesian model featuring the theory of adverse selection [18] and Bayesian
updating of belief [19].

Initially (t = 0), all IoT nodes have the same prior trust belief distribution, i.e.,
µ0

A,c = µ0, ∀c,∈ C, regarding the contribution that each node can provide to the estab-
lishment of secure interactions by others. Each node can either provide a high or low
contribution to the crowdsourcing process, with probabilities ah and al , respectively, where
0 < al < ah < 1. Given the selection of the set of IoT nodes Ct

A by Alice at a time slot t, each
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IoT node’s c ∈ Ct
A contribution is evaluated as satisfactory or not if it agrees to participate

in the crowdsourcing process or not, respectively.
History is constructed for every IoT node throughout the time horizon, where St

c and
Ft

c denote the number of times until time slot t that node c has contributed or not in the
crowdsourcing process in a satisfactory manner, respectively. Alice’s posterior trust belief
regarding every other IoT node c is given as follows.

µt
A,c =

µ0aSt
c

h (1− ah)
Ft

c

µ0aSt
c

h (1− ah)Ft
c + (1− µ0)aSt

c
l (1− al)Ft

c
. (1)
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Table 1. Summary of Key Notations.

Notation Description

t time slot

C Set of IoT nodes

c IoT node

A Alice

Ct
A Set of IoT nodes selected by Alice

dt
c Alice’s distance from an IoT node c

crt
c Normalised congestion of the communication link between Alice and

an IoT node c

et
A,c Effort that Alice collects from the IoT node c

et∗
A,c Optimal effort

rt
A,c Personalized reward that Alice provides to an IoT node c

rt∗
A,c Optimal reward

µt
A,c Bayesian trust belief of Alice regarding an IoT node c

µ0 Initial belief distribution

ah Probability that an IoT node provides high contribution

al Probability that an IoT node provides low contribution

St
c Number of times that an IoT node c contributed in a satisfactory manner

up to time slot t

Ft
c Number of times that an IoT node c contributed in a unsatisfactory

manner up to time slot t

pt
c Score of an IoT node c

T(c) Trustworthiness of an IoT node c

I(A, c) Number of interactions that an IoT node c has with Alice

TFA,c Interaction context factor

α Normalized weighting factor

Ut
c(et

A,c) Payoff function of an IoT node c

q(rt
A,c) Evaluation function of the received reward rt

A,c

Ut
A(e) Alice’s payoff function o

λ Alice’s cost to provide rewards to the IoT nodes

ρt
c Alice’s probabilistic estimation of an IoT node’s c score

SW(e) Social Welfare

At
s Alice’s discrete action space

St Set of subsets of the |C| IoT nodes with cardinality |Ct
A|

ite RL iteration

F(ite,t)
A,At

s
Alice’s RL personalized feedback

F̂(ite,t)
A,At

s
Alice’s RL normalized personalized feedback

Pr(ite,t)
A Alice’s action probability vector

b RL learning parameter
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Theorem 1. The posterior trust belief µt
A,c is an increasing function with respect to the positive St

c
and a decreasing function with respect to the negative evaluations Ft

c .

Proof of Theorem 1. We denote γ = µ0aSt
c

h (1− ah)
Ft

c and δ = (1− µ0)aSt
c

l (1− al)
Ft

c . It holds
true that γ, δ > 0, as µ0, ah, al ∈ (0, 1) and St

c, Ft
c > 0, ∀c ∈ C, ∀t. The first order partial

derivatives of µt
A,c with respect to St

c and Ft
c are considered to examine the monotonicity of

the posterior trust belief. Initially, we have
∂µt

A,c
∂St

c
=

γδ ln (
ah
al
)

(γ+δ)2 > 0, given that γ, δ > 0 and

0 < al < ah < 1. Thus, µt
A,c is a strictly increasing function with respect to St

c. Similarly,

we have
∂µt

A,c
∂Ft

c
=

γδ ln (
1−ah
1−al

)

(γ+δ)2 < 0. Thus, µt
A,c is a stricly decreasing function with respect to

Ft
c .

The physical meaning of Theorem 1 is that each IoT node gains an increasing posterior
trust belief, if its contribution to the crowdsourcing process is evaluated as satisfactory over
time, e.g., if each IoT node offers to Alice an adequate quality of unique identification data
for Bob in the WMN application scenario. The posterior trust belief will be further used to
enable the offline contract-theoretic interaction among Alice and the selected IoT nodes
(see Section 2.4).

2.3. IoT Node Score—A PeerTrust Modeling

Each IoT node is characterized by a score pt
c that captures its private information

regarding how frequently and how efficiently it has participated in the crowdsourcing
process throughout the time horizon. In the WMN application scenario mentioned in
Section 1, the score of an IoT node could reflect how often it assists in the creation of
a secure transaction channel between Alice and Bob and the offline verification of the
transactions by providing high-quality identification data for Bob to Alice. The score of an
IoT node is based on the theory of score within PeerTrust [20], which is a peer-to-peer (P2P)
reputation-based trust supporting framework.

Each IoT node’s score pt
c ∈ [0, 1] is defined as follows:

pt
c =

Tc

∑∀c′∈C Tc′
(2)

where T(c) denotes the node’s trustworthiness. Note that in a real setting, the set C may be
limited to nodes available locally as part of the ad-hoc network. Considering that each IoT
node stores locally its own absolute trust score pt

c, the system is bootstrapped by having
each node transmit Wi-Fi beacon frames advertising its own absolute score. Therefore,
other IoT nodes, e.g., Alice, is able to use those to compute the transmitting nodes’ relative
scores, i.e., her personalized belief regarding the quality of the identification data coupled
with the transmitted absolute scores.

Based on the PeerTrust model [20], four important factors are utilized to define the
node’s trustworthiness: (a) the reward rt

A,c that an IoT node c receives from Alice at a
certain time slot t, (b) the overall number of interactions that the IoT node has with Alice
denoted as I(A, c), (c) the credibility factor of Alice expressed via its posterior Bayesian
trust belief µt

c,A, and (d) the interaction context factor TFt
A,c ∈ R+

0 , which can be used
to characterize the criticality and importance of interaction among Alice and Bob. Thus,
the trustworthiness of each IoT node is defined as the weighted sum of the amount of
satisfaction that IoT node c receives in each crowdsourcing interaction with Alice:

Tc = α ·
I(A,c)

∑
i=1

ri
A,c · µi

c,A · TFi
A,c (3)

where α ∈ [0, 1] is a normalized weighting factor. Equation (3) can be interpreted as the
prediction of IoT node’s c likelihood of a satisfactory contribution in the crowdsourcing.
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For presentation purposes, we sort the nodes’ scores in an ascending order at a specific
time slot t, i.e., pt

1 < · · · < pt
|C|.

2.4. Alice’s and Selected IoT Nodes’ Payoff

Each IoT node c ∈ Ct
A is characterized by a payoff function Ut

c(et
A,c) at a specific time

slot t, which represents its benefit from the reward rt
A,c offered by Alice, while considering

its personal cost to provide the effort et
A,c to Alice. The node’s payoff is defined as follows

Ut
c(e

t
A,c) = pt

c · q(rt
A,c)− et

A,c (4)

where q(rt
A,c) is the evaluation function of the received reward rt

A,c. The evaluation func-
tion is continuous, strictly increasing, and concave with respect to the received reward,
i.e., q(0) = 0, q′(rt

A,c) > 0, q′′(rt
A,c) < 0. For demonstration purposes and without loss of

generality, we consider q(rt
A,c) =

√
rt

A,c.
Alice’s payoff is defined as the overall satisfaction received by the selected IoT nodes’

invested effort while considering her personal cost to provide the corresponding rewards
to the selected nodes, and it is formulated as follows

Ut
A(e) =

|Ct
A |

∑
c=1

[ρt
c(e

t
A,c − λ · rt

A,c)] (5)

where λ ∈ R+ denotes Alice’s cost to provide rewards, and e = [et
A,1, . . . , et

A,|Ct
A |
] is the

nodes’ effort vector. In a scenario where Alice is unaware of the selected nodes’ scores
and their potential to provide effort in the crowdsourcing process, Alice probabilistically

estimates each node’s score with probability ρt
c, where ∑

|Ct
A |

c=1 ρt
c = 1. We exploit the Bayesian

trust belief µt
A,c to determine the probability ρt

c, as follows.

ρt
c =

µt
A,c

∑
Ct

A
c=1 µt

A,c

(6)

Based on Equations (4) and (5), we define the social welfare as the net gain of all
participants in the process.

SW(e) = Ut
A(e) +

|Ct
A |

∑
c=1

Ut
c(e

t
A,c). (7)

3. Contract-Theoretic Crowdsourcing

The interactions among Alice and the selected IoT nodes are captured via a contract-
theoretic trust-based crowdsourcing model aiming at determining the optimal contracts that
facilitate the crowdsourcing process. Initially, the complete information scenario regarding
the nodes’ scores (i.e., trustworthiness) is considered for benchmarking purposes. Then,
the realistic scenario of incomplete information is presented, where Alice probabilistically
estimates the nodes’ scores based on the probability ρt

c. The probability distribution is
updated, while Alice interacts with the nodes.

Based on the proposed contract-theoretic model [21] Alice can deal with the infor-
mation incompleteness and efficiently incentivize the selected nodes to contribute to the
crowdsourcing process. Specifically, an optimization problem is solved by Alice (see
Section 3.3), where she determines the optimal contracts {et∗

A,c, rt∗
A,c} towards her overall

satisfaction (Equation (5)) as well as the selected IoT nodes’ (Equation (4)) payoff joint
maximization. Thus, the contract-theoretic efforts of the IoT nodes are estimated based on
the rewards provided by Alice, the reported trustworthiness scores pt

c, and the probability
distribution ρt

c in order for their perceived payoff to be maximized. In the following analy-
sis, we assume that Alice has already selected the IoT nodes Ct

A that will participate in the
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crowdsourcing process, while the detailed analysis of nodes’ selection based on the theory
of Stochastic Learning Automata (SLA) is shown in Section 4.

3.1. Complete Information Scenario

In this section, we examine the ideal benchmarking scenario, where Alice has complete
information of the selected IoT nodes’ trustworthiness scores, i.e., pt

c, ∀c ∈ C is known. Alice
can fully exploit the nodes’ invested efforts and maximize her payoff while guaranteeing
that their achieved benefits (Equation (4)) are optimized. The condition of individual
rationality should hold true in the offered contract such that the nodes are incentivized to
participate in the crowdsourcing.

Definition 1. (Individual Rationality (IR)) A contract {et
A,c, rt

A,c} satisfies the IR condition if
every node experiences a non-negative payoff, i.e., Ut

c(et
A,c) ≥ 0, ∀c ∈ Ct

A.

The following optimization problem is introduced to determine the optimal contracts
among Alice and each selected node.

max
{et

A,c ,rt
A,c}∀c∈Ct

A

[et
A,c − λ · rt

A,c] (8)

s.t. pt
c · q(rt

A,c)− et
A,c ≥ 0, ∀c ∈ Ct

A (9)

Alice aims at maximizing her payoff by providing the minimum acceptable payoff
to each IoT node c, c ∈ Ct

A. Thus, As a result, the constraint (9) is reduced to an equality
as follows.

pt
c · q(rt

A,c)− et
A,c = 0, ∀c ∈ Ct

A (10)

Theorem 2. In the complete information scenario, the optimal contract among Alice and each IoT

node c, c ∈ Ct
A is {et∗

A,c, rt∗
A,c} = {

(pt
c)

2

2λ , ( pt
c

2λ )
2}.

Proof of Theorem 2. Based on the reduced constraint in Equation (10) we have:

pt
c ·

√
rt

A,c − et
A,c = 0

rt
A,c∈[0,1]
←→ rt

A,c = (
et

A,c

pt
c
)2

(11)

Thus, from Equation (5) we have that the following holds true:

Ut
A,c = et

A,c − λ · (
et

A,c

pt
c
)2 (12)

As a result, in order to find the optimal contract that Alice offers to each IoT device,
we consider the first order derivative of Ut

A,c with respect to the effort et
A,c and we set it

equal to 0, as follows.

∂Ut
A,c

∂(et
A,c)

= 0

⇐⇒ 1− 2λ
et

A,c

(pt
c)

2 = 0

⇐⇒ et
A,c =

(pt
c)

2

2λ

(13)
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Based on Equations (11) and (13) we have that the following holds true:

rt
A,c = (

pt
c

2λ
)2 (14)

Thus, the optimal contract under the complete information setting is given by

{et
A,c, rt

A,c} = {
(pt

c)
2

2λ , ( pt
c

2λ )
2}.

3.2. Feasible Contract Under Incomplete Information

In this section, we study the realistic scenario of incomplete information regarding
the IoT nodes’ scores. In a real-life IoT crowdsourcing scenario, the IoT nodes may not
reveal their level of trustworthiness, or even worse, they may maliciously advertise fake
information regarding their scores. Thus, Alice probabilistically estimates the IoT nodes’
scores by interacting with them over time and updating her probability ρt

c regarding
each node’s c score via updating her posterior trust belief µt

A,c. Alice aims to maximize
her benefit (Equation (5)) by interacting with the selected nodes, while guaranteeing
their payoff maximization (Equation (4)) via determining the optimal contract {et∗

A,c, rt∗
A,c}.

To determine the optimal efforts and rewards, the criteria of individual rationality (IR),
incentive compatibility (IC), fairness, monotonicity, and rationality should hold true, as
analyzed below.

Definition 2. (Incentive Compatibility (IC)) Each IoT node must select the contract {et
A,c, rt

A,c}
designed for its own score pt

c, i.e., pt
c · q(rt

A,c)− et
A,c ≥ pt

c · q(rt
A,c′)− et

A,c′ , ∀c, c′ ∈ Ct
A, c ̸= c′.

The physical meaning of the IC condition is that each node should select its personal-
ized contract in order to optimize its benefit from participating in crowdsourcing.

Proposition 1. (Fairness) A contract must be fair: rt
A,c > rt

A,c′ ⇔ pt
c > pt

c′ , rt
A,c = rt

A,c′ ⇔ pt
c =

pt
c′ , ∀c ̸= c′ ∈ Ct

A.

Proof of Proposition 1. We prove that pt
c > pt

c′ ⇒ rt
A,c > rt

A,c′ , by utilizing the IC condi-
tion: pt

c · q(rt
A,c)− et

A,c ≥ pt
c · q(rt

A,c′)− et
A,c′ and pt

c′ · q(r
t
A,c′)− et

A,c′ ≥ pt
c′ · q(r

t
A,c)− et

A,c.
By adding those inequalities, we have: pt

c · q(rt
A,c) + pt

c′ · q(r
t
A,c′) ≥ pt

c · q(rt
A,c′) + pt

c′ ·
q(rt

A,c) ⇔ (pt
c − pt

c′) · [q(r
t
A,c) − q(rt

A,c′)] ≥ 0. Given that pt
c > pt

c′ and q(rt
A,c) is a

strictly increasing function with respect to rt
A,c, we conclude that rt

A,c > rt
A,c′ . Then,

we prove that rt
A,c > rt

A,c′ ⇒ pt
c > pt

c′ . It holds true that rt
A,c > rt

A,c′ and q(rt
A,c) is

a strictly increasing function with respect to rt
A,c, thus, q(rt

A,c) − q(rt
A,c′) > 0. Thus,

from (pt
c − pt

c′) · [q(r
t
A,c) − q(rt

A,c′)] ≥ 0, we conclude that pt
c > pt

c′ . Similarly, we can
also show that rt

A,c = rt
A,c′ ⇔ pt

c = pt
c′ .

The physical meaning of Proposition 1 is that a contract should be fair in order to
incentivize the nodes to participate in the crowdsourcing by providing higher rewards
to the IoT nodes of higher scores, which have the potential to contribute more in the
crowdsourcing process.

Proposition 2. (Monotonicity) An IoT node of higher score, i.e., pt
1 < · · · < pt

c < · · · < pt
|Ct

A |
,

will receive a greater reward, i.e., rt
A,1 < · · · < rt

A,c < · · · < rt
A,|Ct

A |
by providing a higher effort,

i.e., et
A,1 < · · · < et

A,c < · · · < et
A,|Ct

A |
.

Proof of Proposition 2. We have sorted the IoT nodes as pt
1 < · · · < pt

c < · · · < pt
Ct

A |
.

Thus, the first part of the proof stems from Proposition 1. Based on the IC condition
for pt

c > pt
c′ , ∀c ̸= c′ ∈ Ct

A and assuming et
A,c > et

A,c′ , we have that pt
c · q(rt

A,c)− et
A,c ≥
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pt
c · q(rt

A,c′)− et
A,c′ ⇔ pt

c · (q(rt
A,c)− q(rt

A,c′)) ≥ et
A,c − et

A,c′ . Given that q(rt
A,c) is a strictly

increasing function with respect to rt
A,c, we conclude that rt

A,c > rt
A,c′ . Then, assuming that

rt
A,c > rt

A,c′ and based on the IC condition, we have that pt
c′ · q(r

t
A,c′)− et

A,c′ ≥ pt
c′ · q(r

t
A,c)−

et
A,c ⇔ et

A,c − et
A,c′ ≥ pt

c′ · (q(r
t
A,c)− q(rt

A,c′)). Since rt
A,c > rt

A,c′ and given that q(rt
A,c) is a

strictly increasing function with respect to rt
A,c, we conclude that et

A,c > et
A,c′ .

The physical meaning of the monotonicity condition is that a node of a higher score,
i.e., trustworthiness, should receive a higher reward, as it will eventually invest a higher effort.

In the following proposition, we analyze the perceived payoff of devices that are
characterized by different scores.

Proposition 3. (Rationality) An IoT node of a higher score, i.e., pt
1 < · · · < pt

c < · · · < pt
|Ct

A |
,

will experience a higher payoff, i.e., Ut
1(e

t
A,1) < · · · < Ut

c(et
A,c) < · · · < Ut

Ct
A |
(et

A,|Ct
A |
).

Proof of Proposition 3. We examine two indicative nodes c, c′ ∈ Ct
A, c ̸= c′, with with

pt
c > pt

c′ . By utilizing the IC condition, we have pt
c · q(rt

A,c)− et
A,c ≥ pt

c · q(rt
A,c′)− et

A,c′ ≥
pt

c′ · q(r
t
A,c′)− et

A,c′ . Thus, Ut
c(et

A,c) > Ut
c′(e

t
A,c′).

The physical meaning of the rationality condition is that an IoT node of a higher score,
given that it invests greater effort in the crowdsourcing process by receiving a greater
reward, will ultimately achieve a greater payoff.

Following the above analysis, our goal is to determine the optimal contract between
Alice and each selected IoT node aiming at maximizing Alice’s achieved payoff and jointly
optimizing each IoT node’s payoff, while accounting for the incomplete information.
The corresponding optimization problem is defined as follows

P1: max
(et

A,c ,rt
A,c)∀c∈Ct

A

Ut
A(e) =

|Ct
A |

∑
c=1

[ρt
c(e

t
A,c − λ · rt

A,c)] (15a)

s.t. pt
c · q(rt

A,c)− et
A,c ≥ 0, ∀c ∈ Ct

A (15b)

pt
c · q(rt

A,c)− et
A,c ≥ pt

c · q(rt
A,c′)− et

A,c′ , ∀c ̸= c′ ∈ Ct
A (15c)

0 ≤ rt
A,1 < · · · < rt

A,c < · · · < rt
A,|Ct

A |
(15d)

where Equations (15b) and (15c) capture the IR and IC conditions, respectively, and
Equation (15d) jointly represents the fairness, monotonicity, and rationality conditions.
The optimization problem P1 is non-convex. In the following section, we present an
analysis to reduce its constraints and determine its solution.

3.3. Optimal Contract Under Incomplete Information

Towards solving the optimization problem (15a)–(15d), initially, we reduce the IR
constraint in Equation (15b). Given that pt

1 < · · · < pt
c < · · · < pt

|Ct
A |

and based on the

IC condition, we have pt
c · q(rt

A,c)− et
A,c ≥ pt

c · q(rt
A,c′)− et

A,c′ ≥ pt
c · q(rt

A,1)− et
A,1 ≥(IR)

0. Thus, if the IR constraint of the IoT node with the lowest score pt
1 is satisfied, then

pt
c · q(rt

A,c)− et
A,c ≥ 0 holds true for each IoT node c ∈ Ct

A. Given that Alice will try to
exploit the maximum benefit from the nodes’ invested effort, the reduced IR constraint can
be further reduced to equality, i.e., pt

1 · q(rt
A,1)− et

A,1 = 0.
Focusing on the reduction of the IC constraints in Equation (15c), we introduce

the following terminology: (a) Downward IC (DIC) constraints between the nodes c, c′,
c′ ∈ {1, . . . , c − 1}, (b) Upward IC (UIC) constraints between the nodes c, c′, c′ ∈ {c +
1, . . . , |Ct

A|}, (c) Local Downward IC (LDIC) constraints between the adjacent nodes
c, c− 1 ∈ Ct

A, and (d) Local Upward IC (LUIC) constraints between the adjacent nodes
c, c + 1 ∈ Ct

A.
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Proposition 4. All the DIC constraints can be represented by the LDIC constraints.

Proof of Proposition 4. We consider three adjacent scores of nodes, i.e., pt
c−1 < pt

c <
pt

c+1 and we can write the IC constraints as: pt
c+1 · q(rt

A,c+1)− et
A,c+1 ≥ pt

c+1 · q(rt
A,c)−

et
A,c and pt

c · q(rt
A,c) − et

A,c ≥ pt
c · q(rt

A,c−1) − et
A,c−1. We know that rt

A,c > rt
A,c−1

q↗⇐=⇒
q(rt

A,c)− q(rt
A,c−1) > 0. Thus, for pt

c+1 > pt
c, we have pt

c+1 · [q(rt
A,c)− q(rt

A,c−1)] > pt
c ·

[q(rt
A,c)− q(rt

A,c−1)]. Given that pt
c · q(rt

A,c)− et
A,c ≥ pt

c · q(rt
A,c−1)− et

A,c−1, we conclude
that pt

c+1 · [q(rt
A,c)− q(rt

A,c−1)] > pt
c · [q(rt

A,c)− q(rt
A,c−1)] ≥ et

A,c − et
A,c−1. By recursively

applying the latter outcome, we have that pt
c+1 · q(rt

A,c+1)− et
A,c+1 ≥ pt

c+1 · q(rt
A,c)− et

A,c ≥
pt

c+1 · q(rt
A,c−1)− et

A,c−1 ≥ · · · ≥ pt
c+1 · q(rt

A,1)− et
A,1. Thus, all the DIC constraints can be

equivalently captured by the LDIC constraint pt
c · q(rt

A,c)− et
A,c ≥ pt

c · q(rt
A,c−1)− et

A,c−1.

Proposition 5. All the UIC constraints can be represented by the LDIC constraints.

Proof of Proposition 5. We consider three adjacent scores of nodes, i.e., pt
c−1 < pt

c < pt
c+1

and we write the IC constraints as: pt
c−1 · q(rt

A,c−1)− et
A,c−1 ≥ pt

c−1 · q(rt
A,c)− et

A,c and pt
c ·

q(rt
A,c)− et

A,c ≥ pt
c · q(rt

A,c+1)− et
A,c+1. From Proposition 1, we have rt

A,c > rt
A,c−1 ⇔ pt

c >

pt
c−1, thus, from the latter inequality we derive: et

A,c+1 − et
A,c ≥ pt

c · [q(rt
A,c+1)− q(rt

A,c)] ≥
pt

c−1 · [q(rt
A,c+1)− q(rt

A,c)]. Based on the latter outcome, we have: pt
c−1 · q(rt

A,c−1)− et
A,c−1 ≥

pt
c−1 · q(rt

A,c)− et
A,c ≥ pt

c−1 · q(rt
A,c+1)− et

A,c+1 ≥ · · · ≥ pt
c−1 · q(rt

A,|Ct
A |
)− et

A,|Ct
A |

.

Based on Propositions 4 and 5, we observe that the |Ct
A| · (|Ct

A|−1) IC constraints defined
in the original optimization problem P1 are efficiently reduced to |Ct

A| − 1 constraints.
Based on the reduced IR and IC constraints, the optimization problem P1 can be

rewritten as follows.

P2: max
(et

A,c ,rt
A,c)∀c∈Ct

A

Ut
A(e) =

|Ct
A |

∑
c=1

[ρt
c(e

t
A,c − λ · rt

A,c)] (16a)

s.t. pt
1 · q(rt

A,1)− et
A,1 = 0 (16b)

pt
c · q(rt

A,c)− et
A,c ≥ pt

c · q(rt
A,c−1)− et

A,c−1, ∀c ∈ Ct
A (16c)

0 ≤ rt
A,1 < · · · < rt

A,c < · · · < rt
A,|Ct

A |
(16d)

The optimization problem P2 is convex and can be solved with standard optimization
tools to determine the optimal nodes’ effort vector e∗ = [e∗tA,1, . . . , e∗tA,c, . . . , e∗tA,Ct

A
] and Alice’s

reward vector r∗ = [r∗tA,1, . . . , r∗tA,c, . . . , r∗tA,Ct
A
].

4. Autonomous Reinforcement Learning-based Contributors Selection

In this section, we propose a distributed reinforcement learning (RL) model based
on the theory of Stochastic Learning Automata (SLA) that enables Alice to select |Ct

A|
nodes to facilitate her interaction with Bob. Alice’s discrete action space consists of vectors
At

s = [c, c′, . . . , c|Ct
A |
], where c, c′, c|Ct

A |
∈ C, and s ∈ St = {1, . . . , s, . . . , |St|} where |St|

is the total number of subsets of the |C| nodes with cardinality |Ct
A| [22]. Alice aims at

minimizing her communication delay with the selected nodes, thus, she prefers to select
nodes with small physical distance and low congestion crt

c [23,24]. Moreover, she considers
the nodes’ scores, as they are reported by them by transmitting respective wireless beacons
(Section 2.3), while also weighing the reported values based on her probabilistic trust belief.
This process leads Alice to formulate the relative scores of the IoT nodes. Thus, Alice
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determines the personalized feedback F(ite,t)
A,At

s
at the ite iteration of the SLA algorithm at

time slot t by choosing the action vector At
s as:

F(ite,t)
A,At

s
= ∑

c∈At
s

[
pt

c · ρt
c

crt
c ·

dt
c

∑
c∈C

dt
c

]. (17)

The personalized feedback is engineered in such a way that enables Alice to act as an au-
tonomous RL agent within the IoT network. Specifically, if F(ite,t)

A,At
s

is high then her action At
s at

the iteration ite of time instance t is good since the chosen subset s ∈ St of the IoT nodes is char-
acterized by a good cumulative trust profile and satisfactory cumulative network characteris-
tics. Thus, Alice chooses trustworthy IoT nodes for the crowdsourcing process in order for the
interaction with Bob to be secure and successful, and at the same time not further congest the

IoT network. F(ite,t)
A,At

s
in Equation (17) is normalized as F̂(ite,t)

A,At
s
= ∑

c∈At
s

[ pt
c·ρt

c

crt
c·

dt
c

∑
c∈C

dt
c

]/ ∑
c∈C

[ pt
c·ρt

c

crt
c·

dt
c

∑
c∈C

dt
c

],

thus, 0 ≤ F̂(ite,t)
A,At

s
≤ 1,∀ite, t. Given the personalized feedback, Alice determines her action

probability vector Pr(ite,t)
A = [Pr(ite,t)

A,1 , . . . , Pr(ite,t)
A,At

s
, . . . , Pr(ite,t)

A,At
|S|
], which is updated based on the

SLA gradient ascent rule as follows:

Pr(ite+1,t)
A,At

|S|
= Pr(ite,t)

A,At
|S|

+ bF̂(ite,t)
A,At

s
(1− Pr(ite,t)

A,At
|S|
),

(ite+1,t)
A|S| =

(ite,t)
A|S| (18a)

Pr(ite+1,t)
A,At

|S|
= Pr(ite,t)

A,At
|S|
− bF̂(ite,t)

A,At
s

Pr(ite,t)
A,At

|S|
,
(ite+1,t)
A|S| ̸=

(ite,t)
A|S| (18b)

where 0 < b ≤ 1 is the learning parameter. For higher values of b, Alice explores less her
action space, which may lead her to inefficient but faster decisions. Equation (18a) expresses
the probability of Alice selecting the same action At

|S| in iteration ite, while Equation (18b)
depicts the probability of choosing a different action. It is noted that at ite = 0, Alice
selects an action with equal probability. The SLA algorithm enables Alice to converge to the
optimal selection of |Ct

A| nodes in an iterative manner. In Figure 1, we present the overall
architecture of the proposed model.

Figure 1. General Architecture.

5. Numerical Results

In this section, we provide a detailed performance evaluation of the proposed offline
contract-theoretic crowdsourcing framework via modeling and simulation. The operation
of the stochastic learning automata-based nodes’ selection by Alice and the evaluation
of the introduced Bayesian trust belief model, are presented in Section 5.1. A thorough
evaluation of the proposed offline contract-theoretic crowdsourcing framework is discussed
in Section 5.2, and a comparative analysis is provided in Section 5.3.

The simulation parameters’ values are presented in Table 2, unless otherwise explicitly
stated. The proposed framework’s evaluation was conducted in a MacBook Pro Laptop,
2.5GHz Intel Core i7 with 16GB LPDDR3 available RAM.
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Table 2. Simulation parameters.

Parameter Value Parameter Value

|C| 10 |Ct
A|, ∀t 4

b 0.15 µ0 0.2
ah 0.51 al 0.49

S0
c∀c ∈ C 1 α 0.8

F0
c , ∀c ∈ C 1 λ 0.7

dt
c, ∀c ∈ C, ∀t [10 m, 400 m] TFt

A,c, ∀t 0.5

5.1. Stochastic Learning Automata Operation & Bayesian Trust Belief Evaluation

Figure 2 illustrates the performance characteristics of the SLA algorithm. Each data
point represents an aggregate of multiple simulations where congestion values for each
selected IoT node are generated in a Monte Carlo fashion. Figure 2a indicates the conver-
gence of Alice’s action probabilities to the set of |Ct

A| nodes that will participate in the
crowdsourcing process at a specific time instance. Specifically, the probability of selecting
the IoT nodes 3, 4, 5, 8 converges to 1, while the probabilities of selecting any other subset
of IoT nodes, i.e., a different IoT nodes combination of cardinality |Ct

A|, converges to 0.
The results reveal that the SLA algorithm converges fast (less than 400 SLA iterations,
equivalent to 0.8 sec).

Figure 2b presents the convergence of Alice’s achieved average trustworthiness Tc and
network overhead with respect to the number of selected nodes, where the latter is captured
as dt

c · crt
c. The results reveal that Alice, by acting as a Stochastic Learning Automaton, is

able to autonomously select nodes that are characterized by high trustworthiness, while si-
multaneously possessing a low congestion rate, resulting in low average network overhead.
Thus, Alice receives a high personalized feedback F̂(ite,t)

A,At
s

(Figure 2c). Figure 2d, presents
the convergence time and the corresponding average received personalized feedback as
a function of the learning parameter b. The results show that for increasing values of b,
the convergence efficiency increases, however, the average received personalized feedback
for the selected action decreases, due to under-exploration of the action space leading to
sub-optimal exploitation of resources.
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Figure 2. Stochastic Learning Automata operation and performance evaluation. (a) Action Proba-
bility vs. Iterations, (b) Average Trustworthiness & Network Overhead vs. Iterations, (c) Average
Personalized Feedback vs. Iterations, (d) Average Personalized Feedback and Convergence Time vs. b.

In Figure 3, we study the operation of the proposed framework in terms of modeling
the Bayesian trust belief µt

A,c for two indicative nodes with IDs 8 and 5 throughout the
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time horizon (i.e., for 250 examined interactions). Figure 3a shows that Alice has obtained
higher Bayesian trust belief for IoT node 8, given that this node receives a higher number of
positive evaluations, i.e., St

8 > St
5, ∀t, and a lower number of negative evaluations over the

examined time horizon (Figure 3b). Thus, as proven in Theorem 1, Alice trusts IoT node 8
more for her interactions within the offline environment.

(a) (b)

Figure 3. Bayesian trust belief evaluation (S: positive, F: negative evaluations). (a) Trust Belief vs.
Interactions, (b) Evaluations vs. Interactions.

5.2. Contract-theoretic Crowdsourcing Evaluation

In this section, we evaluate the contract-theoretic crowdsourcing model, considering
an indicative time slot t = 300, where Alice has already selected the set of nodes C300

A that
will participate in the crowdsourcing process. Figure 4a,b present the evolution of the nodes’
scores and Alice’s Bayesian trust belief throughout the time horizon of 200 interactions.
Regarding the latter ones, different distributions have been adopted for the values of St

c
and Ft

c to capture the stochasticity of the IoT nodes’ contribution to the crowdsourcing.
The results reveal that Alice gains knowledge from her interactions with the nodes and

builds a Bayesian trust belief that follows the same trend as the nodes’ scores, even if she
operates under the incomplete information scenario. Figure 4c–e show the nodes’ efforts,
their provided rewards by Alice, and their payoffs under both the complete and incomplete
information scenarios. Figure 4f demonstrates the nodes’ payoff by receiving any contract
designed for each IoT node. Figure 4g,h illustrates Alice’s payoff and the overall examined
system’s social welfare (Equation (7)) in an aggregated manner at t = 300.

The results reveal that when Alice is fully aware of the nodes’ scores (complete
information), she fully exploits the nodes’ efforts (Figure 4c), by providing high rewards to
them (Figure 4d). Thus, she experiences high payoffs (Figure 4g). Figure 4e shows that the
experienced payoff by each node is equal to 0, as Alice knows the nodes’ exact scores and
the rewards are enough to optimally satisfy their IR conditions (Definition 1). Focusing
on the incomplete information scenario, the nodes experience a higher payoff (Figure 4e)
given that Alice cannot precisely predict their scores.

Correspondingly, Alice experiences a lower payoff compared to the complete infor-
mation scenario (Figure 4g). Based on Figure 4f, we observe that the nodes achieve their
highest personal payoff under the incomplete information scenario, only when they are
offered a personalized contract aligned with their scores, as follows from the IC condition
(Definition 2).

Additionally, it is highlighted that the proposed model achieves almost the exact
same social welfare for the overall examined system under the complete and incomplete
information scenarios, where the incomplete information scenario concludes to a social
welfare reduced only by 1% compared to the complete information scenario. To the best
of our knowledge, this is the best achieved social welfare compared to the complete
information scenario in the current bibliography. This novelty stems from the introduction
of the Bayesian trust belief in the overall designed framework.
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Figure 4. Offline contract-theoretic crowdsourcing—operation and performance evaluation. (a)
Nodes’ Scores vs. Interactions, (b) Alice’s Belief vs Interactions, (c) Effort vs. Nodes, (d) Reward vs
Nodes, (e) Nodes’ Payoff vs. Nodes, (f) Nodes’ Payoff vs. Nodes IDs, (g) Alice’s Payoff vs. Nodes,
(f) Social Welfare vs. Nodes.

In Figure 5, we present a scenario, where one IoT node (ID 4) starts behaving mali-
ciously in the crowdsourcing process (e.g., investing small effort) at a specific time slot
(t ≈ 150), in order to examine the sensitivity of the proposed framework. Figure 5a shows
that Alice senses the node’s change of behavior by experiencing a decreasing Bayesian
trust belief regarding this node. Thus, Alice provides a lower average reward over time to
this node compared to the scenario where the node presents normal behavior (Figure 5b),
i.e., invests an effort as derived from the optimization problem P2.
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Figure 5. Behavioral change evaluation. (a) Alice’s belief vs. interactions, (b) average reward
vs. behaviors.

5.3. Comparative Evaluation

In this section, we present a comparative evaluation for |Ct
A| = 20, considering six

comparative scenarios: (1) the proposed offline contract-theoretic (CT) crowdsourcing,
(2) Full Effort, (3) Min Effort and (4) Random Effort, where the nodes invest their maximum,
minimum, and random effort, respectively, (5) Guided Effort, where the nodes invest

pt
c ·

∑
t∈[1,300]

rt
A,c

300 , ∀c ∈ Ct
A effort, and (6) Guided Reward, where Alice provides a guided

ρt
A,c · et

A,c, ∀c ∈ Ct
A reward to each node. Figure 6 presents the cumulative social welfare as

a function of the node’s ID.
The results reveal that the proposed framework enables the overall examined system

to achieve the highest social welfare due to the joint exploitation of the Bayesian trust model
and contract-theoretic crowdsourcing, which facilitate the intelligent inference of the nodes’
trust levels and their personalized treatment to invest their efforts in the crowdsourcing,
respectively. The Guided Reward and Guided Effort scenarios present better social welfare
compared to the myopic decision-making scenarios of Full, Min, and Random Effort,
in terms of deciding the level of effort that the IoT nodes’ invest in the crowdsourcing
process.
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Figure 6. Offline contract-theoretic crowdsourcing—a comparative evaluation.

6. Conclusions

In this paper, an offline contract-theoretic crowdsourcing framework is introduced
to enable two IoT nodes, Alice and Bob, to build a secure channel based on supporting
information provided by selected nodes in the local ad-hoc network. Alice selects the IoT
nodes by following a stochastic learning automata approach via exploiting the network
characteristics and node trust levels. The trust is quantified by developing a PeerTrust
model and exploiting the concept of Bayesian trust belief. A contract-theoretic approach
is modeled among Alice and the selected IoT nodes, where Alice provides personalized
rewards to the nodes in order for the latter ones to invest their effort in the crowdsourcing
process and enable Alice to securely interact with Bob.
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A detailed set of numerical and comparative results is provided to illustrate the
operation, performance, and benefits of the proposed framework. The results suggest that
the proposed offline contract-theoretic crowdsourcing framework achieves similar social
welfare for the examined system under complete and incomplete information regarding
the IoT nodes’ trust levels. Part of our current and future work focuses on the deployment
of the model to a real-world scenario with practical IoT network data as well as on the
extension of the presented model based on the theory of Satisfaction Games to capture
the satisfaction-aware resource management in terms of collecting information from the
selected nodes towards facilitating the system’s resource-saving and latency improvement,
as envisioned with the Tactile Internet.
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