
1

Mutually Authenticated Key Exchange with
Physical Unclonable Functions

Cyrus Minwalla∗, Eirini Eleni Tsiropoulou†, Jim Plusquellic†
∗Financial Technology Research, Bank of Canada, Ottawa, ON, Canada K1A 0G9

†Dept. of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131-0001

Abstract—Authenticated key exchange is desired in scenarios
where two participants must exchange sensitive information over
an untrusted channel and do not trust each other at the outset
of the exchange. As a unique hardware-based random oracle,
PUFs can embed cryptographic hardness and binding properties
desired for an interactive authentication system. Building on PUF
technology, a light-weight end-to-end mutual authentication and
session key generation protocol is proposed that simultaneously
provides high levels of trust between authenticating parties and
culminates in a shared session key that the parties can use to
communicate over an untrusted network. A strong PUF called
the Shift-register, Reconvergent, Fanout (SiRF) PUF is utilized
and a Key Encryption Key (KEK) primitive implemented by
this PUF is presented. The PUF’s underlying entropy hardness
characteristics and the KEK primitive are leveraged in the
construction of a MAKE protocol (termed PUF-MAKE). Key
properties of the protocol are a one-time enrollment for unlimited
authentication instances, asynchronous connectivity between the
issuing authority and the authentication server, and a key refresh
mechanism that replaces both the lock (challenge) and the
key (response) on every successful authentication. The protocol
was experimentally verified using multiple realized FPGA PUF
instances, with space and run time performance characterized
across multiple configurations. A detailed attack analysis captures
the robustness of the protocol. In particular theft and imperson-
ation of credentials are eliminated as risks, which is a distinct
improvement over traditional key authentication via asymmetric
cryptography.

Index Terms—Physical Unclonable Functions, Light-Weight
Mutual Authentication and Key Exchange Protocol.

I. INTRODUCTION

Consumer devices are increasingly represented as embedded
systems connected wirelessly to Internet of Things (IoT)
infrastructure [1]. The parties must first be mutually au-
thenticated before cooperating to generate a shared secret to
encrypt subsequent communications over the network. Mutual
authentication protocols that embed a binding property where
the shared secret is tied to the authentication process ensures
that fraud and malfeasance during the exchange can be traced
back to the malicious participant, a crucial component for
high-value, private and time sensitive applications such as dig-
ital money and identity. Strong physical unclonable functions
(PUF) rely on an exponential challenge-response search space
while embedding a local source of entropy. Moreover, secrets
of a specific instantiation are inextricably tied to the silicon,
ergo, credentials cannot be stolen and impersonating a device
requires modeling the device itself. Such PUFs can play an
important role as a hardware root of trust that is impervious
to a variety of typical attack vectors, including supply-side

threats, to mitigate large-scale system-wide risks in mission-
critical applications.

The twin properties of a hardware random oracle coupled
with true random number generation can be leveraged to craft
an authentication scheme that captures the property of a one-
time pad in an extended-use authentication scheme that is
centered around the PUF itself as a local root of trust and
the enrollment as a central root of trust, wherein both must
be compromised simultaneously to defeat the authentication
mechanism.

A. Contributions

In this work, we propose a PUF-based mutual authentication
and key exchange (PUF-MAKE) protocol that utilizes a set
of hardware-based security primitives derived from a strong
physical unclonable function (PUF). The proposed protocol
establishes explicit authentication for both parties facilitated
by a trusted authority, and constructs a shared session key
for the partnered parties in a single round. The system can
replace a traditional certificate authority scheme such that fixed
long-lived credentials are replaced by a device with mutable
credentials.

In addition, the authentication challenge and response are
updated on every authentication cycle, to achieve greater levels
of security over a traditional certificate-based credential sys-
tem. Finally, the list of challenges per device can be refreshed
asynchronously at the server without requiring re-enrollment
or the physical availability of the PUF itself. The protocol is
light-weight and uses mature cryptography and deterministic
O(n) operations for all phases of the protocol. The scheme
is well-tailored for mobile and embedded devices, but it
can also be used in any type of client-server architecture to
implement a hardware-based root-of-trust and secure enclave
for communications. Security guarantees are preserved even if
one or both participants are compromised, provided the root
of trust (IA) remains intact.

II. RELEVANT RESEARCH

Authenticated key exchange (AKE) is a mechanism that
serves the dual purpose of (a) authenticating two parties with
respect to each other, and (b) building a secure communi-
cations channel between two parties over untrusted networks
(e.g., the Internet) where active adversaries can be expected.
In cases where (a) is satisfied for both parties, the protocol
is considered to be mutually authenticated key exchange



2

(MAKE). Most AKE and MAKE schemes in literature are
based on asymmetric cryptography. Early work by Diffie et al.
[2] explore authenticated key exchanges as part of a station-
to-station (STS) encryption protocol. The work is notable for
establishing design principles for a secure protocol, with later
work by Bellare and Rogaway [3] further formalizing this
approach, with the authors specifically noting that two partners
are not restricted to just sharing a session key, extending the
approach to arbitrary two-party protocols.

Bellare et al. [4], [5] later proposed an authenticated
key exchange protocol based on the standard model of an
asymmetric encryption algorithm coupled with a trap-door
function, but the scheme proved susceptible to chosen cipher-
text attacks. Okamoto [6] improved upon this approach by
introducing a pseudo-random function as a replacement for
the trap-door function, proving IND-CCA indistinguishability
under the standard model. In parallel, Law et al. [7] pro-
posed an efficient protocol titled MQV (the author’s initials
concatenated) combining Diffie Hellman for forward secrecy
and elliptic curve cryptography for efficient key generation.
Authentication, however, was implicit as entities were not
identified, leaving the scheme vulnerable to impersonation
attacks. Security of the protocol was later upgraded by
Krawczyk [8] by introducing a Schnorr signature scheme
which serves the dual purpose of including identities and a
building block to construct a challenge-response sequence for
a three-round protocol. LaMacchia et al. [9] improved upon
Krawczyk’s scheme with the NAXOS protocol by making
stronger adversarial assumptions. MAKE is also standardized
in TLS 1.3 as per RFC 8446 circa 2018. This standard
implements MAKE by relying on certificates from a public
key infrastructure for authentication and the Diffie-Hellman
protocol for session key generation.

More recent efforts around MAKE constructions utilize
PUFs as a local root of trust as a replacement for asymmetric
cryptography. An extensive literature review on previously
proposed light-weight PUF-based authentication protocols is
given in [10]. The authors of [11] propose a lightweight PUF-
based mutual authentication and secret message exchange pro-
tocol. The protocol only succeeds in authenticating the server,
and further, assumes that the router has a soft model of the
PUF and can generate a response to any randomly generated
challenge during the refresh phase. Mahalat et al. [12] propose
a scheme for secure WiFi authentication of IoT devices. This
approach was later expanded to a PUF-based authentication
and key sharing scheme that utilizes Pedersen’s commitment
scheme coupled with Shamir’s secret sharing [13]. The mutual
authentication and key sharing scheme proposed between user
(server) and sink nodes can be implemented more easily us-
ing challenge-response-pair (CRP) strong PUF-based schemes
without the mathematical complexity of the secret sharing
schemes [14]. This becomes possible since in both cases the
server stores a CRP database that is constructed in a secure
environment during provisioning.

A PUF-based authentication and key management protocol
for IoT is proposed in [15], improving upon on the attack
resilience and performance overhead of the previous method
[16]. Elliptic curve cryptography (ECC) is used to create

shared keys among IoT nodes with the assistance of a verifier.
The scheme requires a trusted setup and tamper-resistant
hardware to protect secret keys. Similarly, a controlled PUF
that utilizes ECC is proposed as a lightweight authentication
and key generation protocol for IoT nodes in [17], relying on
zero knowledge proofs for device authentication, however the
authentication is one-way, and the server is not authenticated.

A PUF-based El-Gamal algorithm is proposed for message
encryption as well as a PUF-based digital signature scheme.
In parallel, Yu et al. [18] propose a scheme that is designed
to prevent an adversary from obtaining sufficient CRPs to
carry out model-building attacks. However, the number of
authentications is constrained by the number of CRPs stored in
the database, requiring either reuse of entries or re-enrollment
of the PUF, a caveat we avoid in our scheme. In [19],
the authors propose a crossover ring oscillator (R)O PUF
cloning technique that enables a group of IoT devices to
all generate the same (shared) key, thereby eliminating the
key distribution problem for devices engaging in multi-party
shared key encrypted communication.

III. HARDWARE SECURITY PRIMITIVES

The proposed protocol utilizes a novel strong phys-
ical unclonable function (PUF) called the Shift-register,
Reconvergent-Fanout (SiRF) PUF and a PUF-based protocol
primitive called key-encryption-key (KEK) [20]. KEK was
first described in [21] and later expanded on in [22], in a
protocol for PUF-based authentication in resource constrained
environments (PARCE). In this paper, we implement and
evaluate the SiRF PUF and KEK security primitive in FPGAs
experiments and extend their usage in the protocol to mutual,
privacy-preserving authentication and ephemeral session key
generation.

A. Overview of SiRF PUF

The SiRF PUF [20] is a delay-based, strong PUF that
digitizes delay values (DV ) into response bitstrings and keys
using the SiRF algorithm and a specialized key-encryption-
key (KEK) security function. SiRF is capable of providing an
exponential number of reproducible, long-lived keys (LLK).
SiRF is implemented entirely within the programmable logic
of a SoC-based FPGA as a secure enclave, thus, it is hardened
against software-based attacks carried out on the embedded
SoC microprocessor. The LLK produced by the SiRF PUF
(before hashing) are evaluated against the standard statistical
quality metrics. The protocol uses SiRF as a strong PUF, and is
compatible with any strong PUF possessing similar hardware
qualities.

The architecture utilizes a complex network of shift reg-
isters, logic gates and MUXs as the source of entropy (left
side of Fig. 1). Challenge bits configure the network to create
signal paths that pass through the layered structure. The logic
gate network is distributed across a 20x20 CLB region of the
FPGA as a means of eliminating localized bias that exists
within FPGA LUTs and switches.

The application of a challenge involves driving a set of
rising or falling input transitions into the logic gate network



3

using Launch FFs shown along the top left in Fig. 1. Sig-
nals propagate through the network and emerge as output
transitions on the MUX inputs. The MUX selects and routes
one of the output signal paths to a time-to-digital (TDC)
converter (center of Fig. 1). The TDC is used to measure
and digitize the delay of the signal path at high resolution,
approximately 20 ps. The digitized path delays are stored in a
Block RAM (BRAM) and post-processed by set of modules,
defined collectively as the SiRF algorithm, to produce ran-
dom, unique and reliable encryption keys or authentication
bitstrings. Important characteristics of the DVDiff, GPEV
and Spread Factors modules are captured as follows, with
additional details provided in a technical report [20].

B. Key-Encryption-Key (KEK) SiRF PUF algorithm

Key-encryption-key or KEK is traditionally used in refer-
ence to a master key that a device stores and uses to decrypt
boot images at start-up, and to generate other keys, e.g.,
ephemeral session keys and authentication bitstrings during
system operation. Given its central role, it defines the root-of-
trust in most systems. KEKs also need to be reproducible at
any instance in time, potentially over the lifetime of the device,
and are therefore also referred to as long-lived keys (LLK).
The role of KEK as the root-of-trust also imposes strong
security constraints on the system to maintain its secrecy
because an attack that is able to extract the KEK compromises
the entire system.

A strong PUF is hardened against KEK extraction attacks
as it stores only the challenges and helper data needed to
reproduce the KEK, not the KEK itself, and can go a step
further by harnessing the ability to generate an exponential
number of LLKs. The SiRF PUF leverages these benefits to
enable Alice and Bob to authenticate and generate a shared
session key. In particular, the SiRF long-lived key generation
function provides an exponential number of unique KEKs as a
means of meeting the one-time use constraint associated with
authentication, while simultaneously providing the ability to
reliably regenerate any one of its KEKs on-demand.

C. Thresholding and XMR

The SiRF PUF leverages variations in path delays as a
source of entropy. As indicated earlier, high resolution mea-
surements of path delays are obtained using a time-to-digital
converer or TDC. The digitized representations of path delays
produced by the TDC are referred to as delay values or DV .
DV capture small delay variations that occur uniquely within
each device, and therefore, represent the source of entropy
for the PUF. The SiRF algorithm shown along the right side
of Fig. 1 processes DV into DVDcr, which represent the
input to the BitGen component of the algorithm. The DVDcr

are compensated and randomized delay difference values
which significantly improve on the reliability, uniqueness and
randomness characteristics of the original DV [20]. Two
components of the SiRF algorithm, called thresholding and
XMR, are tasked with converting the DVDcr into bitstrings
and keys for use in the MAKE protocol.

Fig. 2 illustrates the thresholding and XMR processes
carried out by the KEK algorithm. We use the term first-
strong-bit (FSB) to refer to this operational mode of the KEK
algorithm (in contrast to the secure-key-encoding (SKE) mode
described in [22]). A set of DVDcr measured and processed
by an instance of the SiRF PUF are plotted along the x-axis.
The output during enrollment is a XMR helper data bitstring
and response bitstring. The algorithm used to generate the
response bitstring is described in the following.

A thresholding scheme is used to increase the reliability of
the SiRF PUF’s bitstring generation process. The threshold
is tunable with larger values providing greater certainty that
the KEK will be reproduced without bit-flip errors during
regeneration. From Fig. 2, the DVDcr are partitioned into two
regions by the horizontal line at 0, with values above the line
assigned a bit value of 1 and values below the line assigned
0. The threshold further partitions each group of DVDcr into
strong and weak classes. The two horizontal dotted lines in
Fig. 2 represent the threshold, which are placed at equal-
distance positive and negative displacements around 0.

The DVDcr within the threshold region are classified as
weak because they are closer to 0 and are less reliable, i.e.,
they have a higher probability of flipping between 0 and 1
and vise versa during regeneration. This is true because of the
uncompensated noise and drift that occurs in the measurement
and processing of the DVDcr, especially when the device is
operated in hot or cold temperature environments and/or when
the supply voltage is above or below nominal. In other words,
the DVDcr vary (within a limit) during regenerations when
the paths are remeasured, making it possible for DVDcr close
to 0 to flip to the opposite bit value when compared against
the bit value generated during enrollment. Weak DVDcr are
excluded from the bitstring generation process by labeling
them with a 0 in the helper data bitstring. Strong DVDcr,
on the other hand, are located above the upper threshold or
below the lower threshold, and are labeled with a 1 in the
helper data bitstring. Thresholding improves the reliability of
the bitstring regeneration process by creating a buffer against
environmental disturbances, such as power supply noise or
temperature changes.

The XMR algorithm adds a second layer of resiliency to the
KEK regeneration process. The annotations in Fig. 2 show
the response bitstring generated using TMR (triple modular
redundancy or 3MR), although any odd number is suitable for
the XMR redundancy scheme with higher levels, e.g. 5MR,
providing higher levels of protection against bit flip errors.
TMR uses 3 consecutive strong bits to encode one super-
strong KEK bit. The XMR algorithm scans the DVDcr from
left to right searching for the first strong bit indicated by the
helper data bitstring. For example, from the figure, the leftmost
DVDcr produces a strong 1. A 1 is added to both the response
bitstring and the TMR1 block of bits (which are shown for
illustration purposes only). The algorithm continues to scan
the DVDcr searching for two more instances of strong 1’s,
skipping strong 0’s and DVDcr previously labeled as weak.
Bits in the XMR helper data bitstring corresponding to strong
0’s are changed from 1 to 0 during this scan, i.e., they are also
labeled as weak. Once three strong 1’s are located, a super-



4

Fig. 1: SiRF PUF architecture illustrating shift register and layered logic gate network which serve as the source of entropy.

Fig. 2: XMR illustration showing response bitstring generation using FSB mode during enrollment (top) and regeneration
(bottom).

strong KEK bit is considered fully encoded and the algorithm
searches for the next strong bit of either value to represent the
second KEK bit. This occurs at position 7 where a strong 0
is found and the process is repeated.

Regeneration reverses the process associated with the XMR
helper data bitstring, in particular, the helper data bitstring
generated during enrollment is treated as read-only during
regeneration. The 1’s in the helper data bitstring indicate which
DVDcr to use in the reconstruction of the TMRx sequences.
A KEK bit is generated from each TMRx sequence using
majority vote among the three TMRx bits. Therefore, the
TMRx sequences are able to correct any single bit-flip
error, adding resiliency to the KEK regeneration process. The
regeneration process is shown along the bottom of Fig. 2.

IV. THE PUF-MAKE PROTOCOL

The proposed protocol is implemented using a codesign
methodology, with both software (C code) and hardware
(Verilog) components. The SiRF PUF and KEK algorithm
are implemented entirely in Verilog, and synthesized to a
Xilinx Zynq system-on-chip (SoC) FPGA. The SiRF PUF uses

high-speed general-purpose input-output (GPIO) registers to
exchange challenges and KEK bitstrings with a C-version of
the protocol running on an ARM microprocessor, integrated
onto the Xilinx SoC. The linux operating system running on
the ARM microprocessor provides a TCP-IP network stack to
enable commmunications between protocol entities.

The protocol requires a minimum of four entities, namely
an issuing authority (IA), an authentication server(s) (AS), and
a pair of devices (Alice and Bob) who wish to establish a
secure channel with each other to exchange information. An
example application is one of digital currency, where the IA
is the central authority, AS is an intermediary and Alice and
Bob as devices that exchange electronic funds for goods and
services. For example, Alice can be a customer wishing to
buy something wirelessly from a brick-and-mortar or on-line
store (Bob), or Alice and Bob may be two customer devices
communicating through a Bluetooth or IR link to exchange
funds. The AS in this scenario can be a trusted intermediary
providing value-added services, ranging from a small embed-
ded system in a coffee shop to a bespoke enterprise server
installation tailored to high-traffic applications. Notably the



5

Fig. 3: The provisioning process showing the manufacturer of
the customer devices supplying vectors vecsx to an instance
A of the SiRF PUF on a newly manufactured device and
recording delay values DVA into the DVDB .

scale and scope of deployment is not restricted by protocol
primitives. The root of trust resides in the IA and is extended
to the field via the AS and ultimately to fielded devices.

The implementation presented here consists of the minimum
set of entities, namely Alice and Bob’s devices, AS and IA.
In our implementation, the PUF devices and AS run on Xilinx
FPGAs and authenticate and encrypt communications to each
other. A small embedded-system version of the AS is cost-
effective in scenarios where it may be preferred to distribute
multiple independent copies of AS; configuration options are
discussed in a later section.

The IA stores meta-data collected during PUF provisioning
in two separate databases, labeled DVDB and V ecDB in Figs.
3 and 4. The IA is responsible for carrying out the enrollment
process and for providing a fresh supply of Authentication
Tokens (AT ) in a refresh process with AS during fielded
operations. IA is typically a multi-threaded application that
runs on a multi-core server in a central, secure facility.

The AS can also run as a multi-threaded application (C
program), and is initialized and periodically refreshed with a
compact representation of the AT , a core component of PUF-
MAKE’s CRP-based authentication and session key generation
process. The left side of Fig. 4 shows the format of the
database called AuTkDB that stores AT . An AT is defined as
including a customer device ID, e.g., IDA, a hashed version of
a KEK response, HKA, a SiRF PUF challenge ChlngA and
helper data HDA. This information enables AS to validate
Alice and Bob’s devices as enrolled, PUF-instantiated devices
via an interactive protocol.

The protocol encapsulates three core properties: First, phys-
ical access to the PUF is required to participate in au-
thentication, second challenge-response pairs, in the form of
ChlngAx-HKAx, stored in the AtTkDB are used only once
in a single authentication, and third, that each element AT
in AS’s AtTkDB relies on a successful authentication of the
previous pair, with the first pair originating from the IA. The
last property employs a sequencing methodology that extends
the root-of-trust from IA to AS and then to Alice and Bob.

A. MAKE Provisioning

The provisioning process for MAKE is shown in Fig. 3,
where the manufacturer of the device (or IA) is a trusted
authority that collects timing data DV and vectors {vec}
for storage in the DVDB and V ecDB databases. In contrast

to other proposed PUF-based authentication schemes, which
store response bitstrings instead, the DV enable IA to expand
the challenge-response space exponentially. For example, the
SiRF algorithm operations shown on the right side of Fig. 1
expand the challenge-KEK CRP space defined by a stored set
of n DV to at least n2. A further combinatorial expansion
is realized by selecting x DV from the larger set of n DV
during authentication. A more thorough analysis of the SiRF
CRP space is provided in the Security Analysis section of this
paper. In our experiments, we provision each device and store
approximately 8,000 DV in the DVDB database (approx. 3.5
MByte/device) and approximately 1500 challenge vectors in
the V ecDB (approx. 1 MByte in size).

B. MAKE Enrollment

The enrollment process is performed after a new customer
device is provisioned, and involves three entities including the
device, IA and AS. A close variant is performed periodically
between only the IA and AS after the customer device is
deployed but only after the number of AT stored by the AS
drops below a threshold. We describe the differences between
this refresh operation and the initial three-party version in the
following.

The message exchange diagram for the three-party version
is shown in Fig. 4. IA stores provisioning DV data for the
device in its DVDB database and interacts directly with the
device to create a set of AT . The requirement for the device to
be involved in this three-party version prevents certain attacks
that are discussed in the Section VI.

The ordered sequence of message exchanges and operations
that comprise the enrollment process are described below, in
correspondence with the number annotations shown in Fig. 4.

1) The Issuing Authority (IA) and Authentication Server
(AS) mutually authenticate (MA) using a privacy-
preserving PUF-based protocol and then generate a
session key (SKG), called SKI . The process utilizes the
KEK algorithm and is similar to the PARCE authentica-
tion protocol described in [22], and therefore, the details
are omitted for brevity.

2) The same MA and SKG process is carried out between
Alice and the IA to authenticate and generate a shared
session key SKA.

3) The IA runs a TRNG to generate a random seed vAx

which is used to seed a pseudo-random number genera-
tor (PRNG). The output of the PRNG is used to select a
set of challenge vectors {vecs} from the V ecDB . The IA
runs a TRNG again to generate a random set of Spread
Factors, SFAx, that are used by the SiRF PUF Spread
Factors module (see right side of Fig. 1) as a means of
randomizing the KEK response, thereby expanding the
CRP space. The vAx and SFAx are encrypted using the
AES-256 and the ciphertext C1 is transmitted to Alice.

4) Alice decrypts C1 to obtain vAx and SFAx. She uses
vAx as a seed to a PRNG to select the same set of
challenge vectors {vecs} (as IA) from her copy of
V ecDB . IA sends Alice a TRNG-generated Authentica-
tion Nonce, ANIx, that she XORs with her own SiRF



6

Fig. 4: Message exchange diagram for MAKE Enrollment.

PUF TRNG-generated nonce to create ANAx, that she
then transmits back to IA. ANAx also expands the CRP
space of the SiRF algorithm and is used later in an in-
field AT validation step. Alice applies the challenge
tuple [{vecs}, ANAx, SFAx] to her hardware HPUF
in enrollment mode to generate an authentication key,
KKAx and helper data HDAx. She hashes KKAx

using a SHA-3 hashing function to produce HKAx,
and encrypts HKAx and HDAx with SKA to produce
ciphertext C2.

5) Alice transmits ciphertext C2 to IA. On the first iteration
of the MAKE Enrollment process, Alice also stores the
tuple [ChlngA1, HDA1] to persistent memory. She will
use this challenge and helper data to reproduce HKAx

during her first in-field authentication, discussed below.
6) IA decrypts C2, constructs Chlng′Ax, matching Alice’s

challenge, and applies it to its soft PUF algorithm,
SPUFR along with the helper data HDAx supplied
by Alice. The SPUFR algorithm reads a set of DV
corresponding to the Challenge vectors {vecs} from
the DVDB and runs the KEK algorithm in regenera-
tion mode to produce KK ′Ax. IS hashes KK ′Ax and
compares the output HK ′Ax with the decrypted HKAx

received from Alice. If they match then Alice’s HKAx

is validated. IA then encrypts packet C3 with SKI ,
containing Alice’s ID, IDA, and Authentication Token
components, namely HKAx, ChlngAx and HDAx.

7) IA transmits the C3 to AS.
8) AS decrypts the C3 and stores IDA, HKAx, ChlngAx

and HDAx in its AuTkDB database. The AT elements
in this table will be used by AS for in-field authentica-

tion operations carried out on behalf of Alice (and Bob)
and to enable Alice and Bob to generate a shared session
key.

A two-party version of the enrollment is used to refresh the
AuTkDB database maintained by AS. The absence of Alice
in the two-party version requires IA to act as a surrogate for
Alice. Since IA stores a subset of Alice’s DV , it too can
generate KKAx and helper data HDAx by running SPUFE ,
the enrollment version of the KEK algorithm. This change
constitutes the primary difference between the two versions.
The ANAx nonce exchange in Step 3 is also omitted, with
IA generating the ANAx nonce by itself, as is the validation
operation in Step 6. AS receives new AT for its database in
Steps 7 and 8, as shown by the three-party version of the
protocol.

C. MAKE In-Field Interactive Authentication Protocol

At the end of enrollment, Alice and Bob each store a
challenge that they will use to generate a response, HKA1, for
the first authentication request with AS. The in-field version
of the protocol is sequenced such that Alice and Bob must
first authenticate to AS with their existing challenge, and
as part of a successful authentication, receive and store a
new challenge for the next authentication cycle, guaranteeing
forward secrecy. The AuTkDB maintained by AS is designed
to make the protocol light-weight and fast but secure against
many types of attacks. Each authentication uses a one-time
credential that is replaced at the end of the authentication
cycle. The session key is jointly derived by both participants,
creating a binding partnership between devices for the duration
of the session.



7

The Interactive Authentication message exchange diagram
for MAKE is shown in Fig. 7. The diagram shows the sequence
of operations that occur when Alice and Bob wish to establish
an authenticated and encrypted channel with each other, e.g.,
to exchange electronic cash for goods and services.

1) The protocol begins with Alice and Bob sending a
request to communicate to each other. Bob responds
with an acknowledgement of Alice’s request. Both the
request and the response embed device IDs (IDA, IDB)
and nonces (nT , n′T ). These nonces will later be used
to XOR-decrypt a shared session key between Alice and
Bob while ensuring the session key remains hidden from
AS. In order to accomplish this goal, AS is excluded as
a participant in this nonce exchange.

2) Using a stored PRNG seed vA1, Alice extracts the set
of vectors {vecs} associated with this seed from her
V ecDB . The {vecs} along with the stored challenge
nonces nA1 and SFA1 are used as the input challenge to
SiRF PUF. She runs her hardware instance of the SiRF
PUF, HPUFR in regeneration mode to regenerate the
response KKA1. She then calculates a hash HKA1 of
KKA1 using a suitable hash function, for convenience
we assume SHA-3.

3) Shared Session Key Generation: Alice and Bob generate
session key shards, SKT and SK ′T , using their PUF-
based TRNGs. Alice and Bob then encrypt their session
key shards with the nonces they generated in Step 1, nT
and n′T to form CT and C ′T , respectively.

4) Once Alice constructs CT , the packet C1 is assembled
by concatenating authentication artifacts (ANA1), Bob’s
device ID, IDB and the session shard CT , which are
then AES-encrypted with HKA1 as the key. Alice sends
the authentication request to AS, along with IDA and
C1 as metadata. The server matches IDA to the list
of known devices in the database AuTkDB populated
by the Issuing Authority (IA) during enrollment. Upon
match, the server uses the associated HKA1 to de-
crypt C1 and disassembles the ANA1, IDB and CT

fields. Authentication is a success if the extracted ANA1

matches the one stored for IDA in the database, other-
wise this process repeats using each of the remaining
IDA elements. If no matches are found, the protocol
aborts. Note that both HKA1 and ANA1 must be correct
for authentication to succeed. If HKA1 does not match
any of those stored in the AuTk database, the packet
will not be decrypted correctly and ANA1 will be
random, causing a mismatch. Alternatively, if HKA1

is correct and ANA1 is not, the packet will decrypt
correctly but ANA1 will fail to match. In either case,
authentication fails and the server aborts the connection.
Bob performs this same set of operations with AS.

5) If Alice’s authentication succeeds, AS adds IDA and
CT to a SESSIONDB database. Similarly, if Bob’s
authentication succeeds, AS adds IDB and C ′T to the
SESSIONDB . In both cases, AS first searches for a
match to IDB and IDA supplied by Alice and Bob,
respectively, to determine if a row already exists, and,

if so, adds Alice or Bob’s information to matching row
element instead of creating a new row. Once Alice and
Bob’s ID and CT are both present, AS proceeds to the
next step, otherwise it stalls the thread waiting for Alice
or Bob to complete the transaction.

6) AS can now complete the exchange with Alice and Bob
to enable them to derive a shared session key SK in
the final step of the protocol. However, AS must ensure
that Alice and Bob use a new challenge in their next
authentication request. AS first deletes the current AT
from its AuTkDB database and then selects two new
AT elements. The key update mechanism ensures that
Alice and Bob are protected against both impersonation
and replay attacks.

7) AS constructs a packet CA for Alice by encrypting
Bob’s authentication artifacts IDB , C ′T and Alice’s next
challenge ChlngA2 and HDA2 with Alice’s HKA1

AES key. AS constructs a packet CB for Bob in a
similar fashion and transmit the packets to Alice and
Bob along with an ACK. This completes Alice and
Bob’s interactive authentication with AS. Note that the
Alice’s CT and Bob’s C ′T embed their session key
shards SKT and SK ′T , respectively. AS is, however,
prevented from learning the shards because they are
XOR-encrypted with Alice and Bob’s nT and n′T .

8) Alice decrypts her CA with HKA1 to obtain Bob’s
ID IDB , Bob’s C ′T and her next authentication chal-
lenge. She replaces the current challenge ChlngA1 and
helper data HDA1 with ChlngA2 and HDA2. She
extracts Bob’s shared session key shard SK ′T by XOR-
decrypting C ′T with his n′T nonce. Bob carries out the
same operations. They both XOR the SKT and SK ′T
shards to obtain a shared session key SK, which they
can use to encrypt communications between them.

V. EXPERIMENTAL RESULTS

The MAKE Enrollment and Interactive Authentication (In-
Field) protocols were implemented and tested on a set of
Digilent ZYBO boards [23] and a Dell PowerEdge T440
Server with 32 1.8 GHz processors and 128 GB of main
memory. The implementation testbed possesses the following
characteristics:
• The programmable logic (PL) component of the Xilinx

Zynq 7010 FPGA on the ZYBO Z7 board is programmed
with an instance of the SiRF PUF and KEK key gener-
ation algorithms. A C program running under the Linux
operating system implements the network communication
protocol and communicates with the SiRF PUF and
KEK hardware instantiations through GPIO registers. A
micro-SD card provides persistent storage for sqlite3
database tables, which implement the V ecDB and store
Alice/Bob’s authentication challenge and helper data.

• The Authentication Server (AS) is also implemented on
a ZYBO Z7 board, with PL component programmed
with an instance of the SiRF PUF. The C program
implementation of AS is a multi-threaded application
enabling concurrent communication through sockets with



8

Fig. 5: Dual-sided MAKE message exchange diagram for authentication and session key generation between Alice and Bob.

multiple customer devices, and with the Issuing authority
(IA) server. The AS also utilizes a sqlite3 database to
implement the AuTkDB and SESSIONDB components
of the MAKE protocol.

• The Issuing authority (IA) is implemented as a multi-
threaded application with socket communication channels
to customer devices and to AS. It also utilizes a sqlite3
database to implement the V ecDB and DVDB compo-
nents of the MAKE Enrollment protocol.

• An openSSL implementation of the AES encryption algo-
rithm with a 256-bit key configured in CBC mode is used
for all protocol encryption and decryption operations.

• An openSSL implementation of the SHA-3 256-bit hash-
ing algorithm is used for all protocol hashing operations.

A series of experiments were carried out to evaluate the
scalability of the MAKE protocol in which Enrollment and
InField protocol operations were run with different numbers
of Authentication Tokens (AT ). The time required to carry
out the various steps of the authentication protocol were
measured by having Alice and Bob’s device perform repeated
authentications. Four experiments were performed with the AS
AuTkDB database configured with 10, 100, 1000 and 10,000

AT . The SiRF PUF KEK bitstrings were collected over the
duration of the run and analyzed to determine the statistical
quality of the bitstrings.

The Entropy and MinEntropy statistics associated with the
KEK bitstrings produced during the execution of the ’10,000
AuTk experiment’ are plotted as a function of time in Fig.
6. The results for the 10,000 KEK bitstrings generated by
Alice and Bob are plotted as two superimposed curves, and are
analyzed in groups according to the number generated during
each 1 minute time interval (x-axis) over the duration of the
run. The duration of the protocol run is approx. 270 minutes.
Therefore, each group includes approx. 37 KEK bitstrings.
The equations for Entropy and MinEntropy are given by Eq.
1 and Eq. 2, where NB = 256, the number of bits in the KEK
bitstrings.

H(X) =

NB∑
i=1

1∑
j=0

pi,j log2(pi,j) (1)

H∞(X) =

NB∑
i=1

−log2(max(pi,j)) (2)



9

Fig. 6: Entropy and MinEntropy of the Authentication Tokens,
KKA, that are generated over a 4.5 hour run of the MAKE
protocol, which produced 10,000 KKA.

The ideal value for Entropy and MinEntropy is 1.00, which
is nearly achieved for Entropy with an average value of 0.997,
computed using all 10,000 256-bit bitstrings concatenated as
a 2,560,000-bit bitstring. MinEntropy varies over the range of
0.92 to 0.95, which indicates that in the worst case, each KEK
bit generates on average 0.93 bits of Entropy. According to the
literature, the Entropy and MinEntropy statistics obtained in
these experiments indicate the KEK bitstrings are of crypto-
graphic quality.

The Interactive Authentication Bitstring Hamming Distance
(HDIAB) of the KEK bitstrings are plotted in Fig. 7, also as a
function of one minute time intervals. The sequences of LLKs
produced by Alice and Bob are analyzed separately. HDIAB is
computed by pairing the bitstrings within each group from the
same device under all combinations. The number of bit-wise
differences are summed across all pairing combinations and
then divided by the total number of bits in the bitstrings from
the group. Eq. 3 gives the expression for HDIAB , converted to
a percentage as shown in the figure. Here, NBS represents the
number of bitstrings (approx. 37 per group), NB the number
of bits per bitstring (256), TNB the total number of bits in
each bitstring group and BS the bitstrings themselves.

HDIAB =

NBS∑
i=1

NBS∑
j=i+1

NB∑
k=1

(BSi,k ⊕BSj,k)

TNB
∗ 100 (3)

The HDIAB values are very close to the ideal value of
50%, with the overall mean value across all bitstring pairing
combinations (10,000*9,999/2 pairings) given as 49.997%.
The 3σIAB values for each group are also depicted in the
lower portion of the graph. The expected value is given by the
binomial expression in Eq. 4. With NB = 256, the expected
value is 9.375%. The data plotted in the figure is a very good
match to the expected value. Alice and Bob’s 256-bit bitstrings
are concatenated to form bitstrings of length larger than 50,000
bits and evaluated using the NIST statistical test suite. All
applicable NIST tests for bitstrings of this size passed as well
as the p-value-of-the-p-value tests.

3σIAB =
3×
√
NB ∗ 0.25
NB

∗ 100 (4)

Fig. 7: Intra-chip Hamming Distance statistics for 10,000
Authentication Tokens and KKA, produced in one minute
time intervals over a 4.5 hour duration.

A separate set of experiments was conducted on a set of
120 SiRF instances on FPGAs in which the KEK regeneration
was evaluated across extended industrial range temperatures,
from -40°C to 100°C. The results obtained indicate that the
probability of a bit-flip error is less than 1e−8, i.e, one chance
in 100 million, using XMR with X set to 5.

The MAKE enrollment operations take approx. 1.75 sec-
onds per AT generation. For example, the total amount of
time to generate 10,000 AT for both Alice and Bob, and for
the AT to be transmitted and stored in the AuTkDB on the
AS is 4.87 hours.

The run times for the MAKE In-Field protocol operations
are given in 8, partitioned into the 7 steps as given by the
legend and plotted along the x-axis. The ordering of the steps
given here is not identical, but is consistent with the sequence
of operations described earlier in reference to Fig. 5. A set
of bars gives the run times in seconds for each of the 4 ex-
periments, with each carrying out different numbers of Alice-
Bob authentications as shown along the y-axis. The run times
are nearly constant at approx. 1.8 seconds per authentication
for the first three experiments, with the AuTkDB database
enrolled with 10 through 1000 ATs respectively. The run
time increases to approx. 2.2 seconds for the 10,000 AT
experiment. From the bar graph, the increase is attributed to
operations carried out in Step 4. Alice and Bob are waiting for
AS to return the CA/CB package in Step 4, so the additional
time is introduced by AS, and in particular, to the database
search that AS carries out during this step in the protocol. With
the AuTkDB database populated with 10,000 AT , the search
process adds to approx. 0.4 seconds to the overall runtime.
In summary, the SiRF PUF meets all cryptographic bitstring
quality standards with run times that enable Alice and Bob
to mutually authenticate and generate a shared session key in
approximately 2 seconds.

VI. SECURITY ANALYSIS

The protocol can be shown to be secure under strong
adversarial conditions. We assume a powerful adversary with
computationally infinite resources that is fully aware of the
protocol and capable of spying on every channel in the system.



10

Fig. 8: Transaction times associated with various steps in
the PUF-MAKE protocol: 1) n1 exchange, generate session
keys, read-out AT from DB, 2) SiRF PUF KKA generation,
hash KKA to HKA, 3) Create/transmit authentication packet
for AS, 4) Wait for CA/CB from AS, 5) Decrypt CA/CB ,
XOR-decrypt C ′T , create SK, 6) Encrypt-transmit-decrypt test
message with SK, and 7) Total authentication time.

A wide range of attack scenarios are considered here as well
as the countermeasure defenses provided by the SiRF PUF
and the proposed approach.

A. Core Properties

1) Challenge Response Search-Space: The underlying
guarantees of the protocol stem from the position that the
PUF is a physical random oracle [24], such that the entropy
pool of the challenge-response space is vast, yet the response
is reproducible at the bit level irrespective of the number of
times a challenge is presented.

The SiRF PUF is synthesized with 8 million paths, each
of which can be tested with a rising or falling transition, of
which the algorithm selects and measures 2048 rise delays
and fall delays to create 2048 differences, DVD. Therefore,
the total number of such differences is (107)2, for a total of
1014 = 247 raw bits. The GPEV component of the algorithm
further expands the CRP space, increasing the number of raw
bits to 257. However, it is neither practical nor necessary to
store 20 million DV in the DVDB on IA. Instead, a smaller
set of approximately 8,000 DV are stored for each device,
primarily for efficiency. For each unique 256-bit KEK key,
4096 valid paths are selected from the set of 10,000 in each
enrollment/regeneration cycle, which are processed by two
iterations of the SiRF algorithm to generate a unique 4096-
bit challenge. Note that we define the challenge as DV for
convenience, which are in fact the timing values measured
during the application of challenge vectors.

The response search space in terms of bits is governed
by the duration of the SiRF algorithm, which is dominated
by the path timing operation and as such is unbounded.
Longer duration generates more bits but at the expense of
time duration, representing a trade-off between security and
performance. For present purposes, the path-timing operation
is restricted to a duration of 1 sec. Recall that not all bits
generated during enrollment will be strong bits and the number
will fluctuate with each enrollment, which are corrected to a

reproducible set of bits by the thresholding and XMR schemes
(Fig. 2).

A probability distribution constructed from 100,000 runs
of the PUF CRP results in a mean value of 152 bits and a 3-
sigma deviation of 17 bits per iteration. Batch mode processing
implemented by the SiRF algorithm requires two iterations to
generate the required 256-bits, with 48 bits of the total 304
bits discarded on average. As such, the PUF will consume
two 2048-bit challenges (sets of DV ) to produce two 128-bit
responses which will form a 256-bit KEK in 1 second. Note
that 4096-to-304 bits represents a 13.5-to-1 mapping from the
challenge search space to the response search space, and that
the the key is perfectly reproducible regardless of the number
of regenerations performed. Larger key sizes are possible with
the same challenges at the cost of increased regeneration time.
From this analysis, we conclude that the number of possible
challenges is 24096 and the number of possible responses is
2304, of which only 2256 are used during authentication.

2) Model-Building: The authors of [25] have shown that
a strong PUF can have its responses modeled and predicted
using machine learning techniques. While a variety of designs
have been compromised with this approach, a strong PUF with
similar design principles to the SiRF PUF (called HELP) has
been shown to be resistant to such attempts [14].

Nearly all model-building attacks to date require access to
both the challenge and response bitstrings. The PUF- protocol
as described herein reveals only the hash HKA. The actual
response KKA is not revealed and discarded once the hash
is generated. This processing step can be further hardened by
computing the hash in a trusted environment (ARM Trust-
Zone) or in hardware, eliminating all possibility of recovery. In
addition, the input challenges are hidden within the construc-
tion, as challenges are specified using a 32-bit random PRNG
seed vA in PUF-MAKE. Finally, the determination of which of
the 4096 measured DV are weak (and discarded) and which
are strong is probabilistic, based not only on uncompensated
temperature-voltage variation in the measured DV but also on
the randomly-selected Spread Factors (SF ). The combination
of these individual factors results in the production of different
KKA even when the exact same input challenge is used.
Collectively, these attributes of the protocol and the underlying
hardware will make it exceedingly difficult, if not impossible,
to conduct model-building attacks.

3) Unlinkability and Quantum Hardness: Building on the
assumption that the PUF is a physical random oracle, key
generation is a random oracle input-response operation, guar-
anteeing that the key is completely independent of every
other key. The extremely large number of possible challenges
(24096) and response (2304) bitstrings ensure that Alice can
generate a unique key for every authentication cycle without
repetition and without collision with any other device in the
system for the lifecycle of the protocol. A combination of
the PUF’s physical properties, the cryptographic properties
of AES and SHA-3, and one-time XOR based encryption to
provide operational security in the proposed approach. All of
the functional blocks and cryptographic primitives in use are
considered to be resistant to quantum attacks at the time of
publication. Furthermore, AES is not integral to the protocol



11

and can be substituted for any symmetric encryption scheme,
similarly SHA-3 can be replaced by any cryptographic one-
way function with suitable properties, guaranteeing crypto-
graphic agility in the proposed approach.

B. Physical Attacks

1) Fault Injection: An attacker could attempt to flip one
or more bits during sensitive computations to affect the
outcome of the protocol. The microprocessor component of
System-on-Chip (SoC) FPGAs is synthesized onto standard
silicon processes and lacks specific tamper-resistant features.
In the present approach, single bit-flip faults are thwarted
by implementing protocol steps at the FPGA synthesis level
as Verilog state machines. In doing so, the attacker would
be forced to inject faults at multiple sites simultaneously to
perform the attack, with a high probability risk of the attack
causing the hardware to lock up. Execution of cryptographic
primitives (AES, SHA-3) can be ported to hardware as well,
and other necessary software functions (e.g. database query)
can be transferred to a secure processing environment such as
ARM TrustZone.

In terms of the core PUF primitives, fault injection is
mitigated by the natural tamper-evident property of the PUF
itself. Unlike cryptographic primitives, in which fault injection
can be used to weaken the security, for instance by reducing
the number of rounds in an AES encryption operation, fault
injection performed during the SiRF PUF’s delay-based timing
operations would only prevent the key material from being
correctly generated or reproduced. Similarly, fault injection on
the state machine implementations of the SiRF algorithm post-
processing operations may also result in preventing correct key
reproduction. In both cases the impact is limited to a failed
authentication attempt. Furthermore, the reliability enhancing
techniques employed within the SiRF PUF algorithm, such
as environment compensation, thresholding and XMR, protect
against a portion of purposely introduced bit-flips.

2) Cloning: An adversary could attempt to create a func-
tional clone of a PUF device. Although some types of memory-
based weak PUFs have been shown to be susceptible to
cloning, the same is not true of strong PUFs to date. The
entropy source within the SiRF PUF is a complex network
of wires and logic gates, with ∼ 20 million distinct paths,
each producing a unique delay value (DV ). Moreover, the
FPGA bitstream used for provisioning is distinct from enroll-
ment/interactive operations and therefore, it is not possible
to read out the DV even in cases where the adversary has
possession of the device for a short period of time. As noted
previously, the AS is also a device with an instance of the
SiRF PUF and is therefore afforded the same protections. It is,
however, noted that the IA stores sufficient timing information
that if compromised, would allow any PUF in the system to
be cloned, at least until it is discovered that such an attack
occurred and before the DVDB is replenished with new sets
of DV . For this reason, the IA would be kept in a highly
secure environment with explicit network segmentation and
permission controls to restrict access.

3) Exfiltration of Secrets: An attacker could attempt to
extract sensitive information stored on the PUF either at rest
or during execution of the protocol. Timing and side-channel
attacks have been exploited effectively against PUFs in the
past [26]. All devices in the system (AS, Alice and Bob)
except for the IA are PUF devices. Each PUF device must be
powered, activated and presented an explicit challenge to elicit
a corresponding response. Given the size of the path selection
space, it is impossible to ascertain the response by examining
the silicon. Information stored in local non-volatile memory is
encrypted at rest via the KEK key, which is an encryption key
derived from the response to a challenge, ergo the key itself
is derived from the same device. An attacker could attempt
to exfiltrate the AES secret key during encryption/decryption
operations via single or differential power analysis (SPA/DPA)
techniques. While this is possible, it is noted that the window
of opportunity to exfiltrate the key and make use of it in a
single transaction is small, and the entire process will need to
be repeated for the next authentication cycle, since each key
is only used once before replacement.

An attacker could manipulate the communications channel
to force Alice to make repeated authentication attempts with
the same HKA. For the present work, we used the AES
version implemented in the OpenSSL library, which is suscep-
tible to side-channel attacks such as differential power analysis
[27] on common processors including ARM platforms. This
attack can be mitigated by switching to a hardened hardware
implementation of AES, although care must be taken during
implementation to prevent leakage [28]. Note that the overall
impact of revealing a key is limited to a single authentication
cycle, as the AS responds with a new challenge, which does
not reveal the new key to the attacker unless they manage to
model the PUF itself.

4) Bitstream Manipulation: An attacker could steal the
device and attempt to read out all the DV by repeating the
provisioning process. This attack is prevented by disabling the
provisioning operation in the bitstream of fielded devices. An
adversary can attempt to reverse engineer the in-field bitstream
and re-enable the read-out functionality. However, the FPGA
bitstream is encrypted in persistent storage on the device and
therefore the adversary would need to extract the bitstream
decryption key from the FPGA to obtain an unencrypted
bitstream and then go through a reverse engineering process
to make changes to enable provisioning. Although possible,
the process is designed to be very difficult by the FPGA
manufacturer.

C. Man-in-the-Middle (MITM) Attacks

A powerful adversary may decide to intercept and modify
information in the message exchange of the protocol. We can
consider various points where the adversary could make such
an attack and highlight how the system thwarts such attacks.

1) Enrollment: A local adversary could spy on the MAKE
enrollment process. During initial enrollment, the customer de-
vice and AS carry out a PUF-based CRP mutual authentication
and session key generation process with IA that is similar to
the process described between the customer device and AS



12

in the MAKE protocol. Therefore, it is not possible for an
adversary to collect and manipulate plaintext information, or
insert new information, between the customer device and IA.
The same process is carried out between IA and AS during the
refresh operation, and the same protections afforded against
MITM.

2) One-time nonce: In Step 1, the attacker could intercept
and replace the one-time nonces nT and n′T with locally
generated versions, with the goal to manipulate the selection
of Alice and Bob’s shared session key SK. It is noted that nT
and n′T only represent half of the secrets used to derive SK,
and since both SKT and SK ′T are shared over an AES-256
encrypted channel in Step 4, the attacker would have to break
AES-256-CBC to uncover or manipulate the final session
key. This is not considered possible at this time as AES-
256-CBC is impervious to classical and quantum computing
attacks. Ergo, replacing nonces in Step 1 constitutes at best a
denial-of-service attack, where Alice and Bob receive incorrect
information and cannot derive a common shared session key.

3) In-field authentication: In Step 4, Alice and Bob trans-
mit an initial in-field authentication packet to the AS. An
attacker intercepting packets on either channel could attempt to
replace Alice or Bob’s initial transmission with a custom pay-
load. Note that the AS relies on a unique ID,AN,HK tuple
for each PUF. If the PUF ID does not match the appropriate
AN and HKA in the database, the decryption will fail for
C1, subsequently prompting AS to abort the authentication. C1

itself cannot be duplicated or manipulated as it is encrypted by
a 256 bit AES key. Similarly, the AS’s response to both Alice
and Bob is also encrypted, preventing manipulation. Replacing
the packet CA in Step 7 by anything other than one encrypted
by HKA will result in Alice receiving an incomprehensible
packet, forcing her to stop the protocol, with the same being
true for Bob. Since neither HKA nor HKB appear on the
channel at any point, it is impossible for the MITM attacker
to derive either secret.

4) AS Spoofing and Impersonation: An adversary could
attempt to spoof the AS to manipulate Alice and Bob transac-
tions. This attack will fail at Step 4, as without the right key,
the AS would not be able to decrypt CT or C ′T . Furthermore,
if the attacker transmits a fake CA packet, Alice would know
instantly as it would not be encrypted by the correct key.
The AS itself is a standard infrastructure component and
would be protected by standard approaches such as network
segmentation and access control. To properly impersonate AS
would require the adversary to break into the infrastructure
and extract the AT from the database, this is considered
unlikely for a suitably configured installation. Furthermore,
the AtTkDB database is encrypted in persistent storage by a
long-lived-key (LLK) produced by the SiRF PUF at boot-up.
Therefore, the adversary would need to extract an in-memory
copy of the LLK encryption key to obtain a plaintext copy of
AtTkDB as PUFs do not store keys in persistent storage.

5) Interception: An attacker could deliberately attempt to
disrupt the ordered sequence of AT usage during in-field
operations, which could result in Alice and AS agreeing on
different challenge material for the next authentication cycle.
One practical attack is interception of AS’s response to Alice,

such that Alice does not receive the challenge information
needed to generate HKA2. This can also be upgraded to a
known-key attack if coupled with a key exfiltration attack.
Alice and the AS are now out of synchronization, since Alice
will generate HKA1 at the next authentication whereas the AS
expects HKA2. It is noted that a loss of synchronization is
also possible for entirely non-malicious reasons, for example
if connectivity is lost between Alice and AS, or either the
Alice or AS suffers a loss of power.

A common failure mode can capture both malice and
connection loss, ensuring that (a) Alice and AS can resume
when connectivity is restored and (b) A malicious adversary
cannot take advantage of this event. At a low level, this failure
mode is dealt with by relying exclusively on TCP connections,
where an acknowledgement packet is received for every sent
packet, such that when the AS sends the CA to Alice in Step
6, it will wait for an return acknowledgement before deleting
the preceding entry in AuTkDB . If Alice fails to store the
authentication information for some reason, due to a power
loss or non-volatile memory failure on Alice’s device, the AS
will supply past challenges to Alice in reverse order leading
back to the very first challenge supplied by the IA. If Alice
can successfully authenticate against any one of the previous
entries, the AS will supply the latest challenge again for
authentication. Forcing the device to use the latest challenge to
successfully authenticate prevents impersonating devices from
performing a replay attack on the system.

D. Channel Attacks

1) Information Leakage: A passive observer could attempt
to gather secret information by observing multiple rounds
of the protocol. If the protocol leaks sufficient information,
a passive attacker could attempt to impersonate Alice, Bob
or the Authentication Server. Steps 2-8 in the protocol are
encrypted, therefore the attacker learns zero information about
the devices. In step 1, the attacker could keep track of nonces
related to Alice and Bob, however, since these are one-time
nonces generated by relying on the TRNG properties of the
PUF, the attacker learns minimal information about Alice and
Bob.

2) Replay: The key update mechanism relies on a unique
(AN,HK,Chlng) tuple, which is used only once per au-
thentication and renewed on every authentication, mitigating
all replay attacks. This use-only-once implementation practice
is also utilized during enrollment (MA and SKG operations),
and one-time nonces are used at critical points throughout the
protocol to ensure that all aspects of the in-field authentication
are impervious to replay attacks.

VII. CONCLUSIONS

In this paper, we propose and evaluate a PUF-based light-
weight, mutual authentication and key exchange (MAKE)
protocol. The protocol is composed of three distinct processes,
namely provisioning, enrollment and in-field interactive au-
thentication. The evaluation is performed on a set of three
FPGAs that incorporate programmable logic instantiations of
the SiRF PUF and KEK algorithms, and a desktop server.



13

The KEK response bitstrings collected over runs of the en-
rollment protocol are shown to be of cryptographic quality.
Run times of the interactive in-field authentication operations
are upper bounded at 2.2 seconds with an authentication
token database constructed with up to 20,000 authentication
tokens. A wide range of attack scenarios are considered, from
physical attacks, e.g., side-channel, probing etc. through many
types of network-based attacks. The PUF-MAKE protocol
is constructed with built-in mitigations for nearly all attacks
considered, and is light-weight, making the PUF-MAKE pro-
tocol a good candidate for resource-constrained devices and
applications that require elevated levels of security and trust,
including those that involve the exchange of digital currency
for goods and services.

REFERENCES

[1] J. Wurm, K. Hoang, O. Arias, A.-R. Sadeghi, and Y. Jin, “Security
analysis on consumer and industrial iot devices,” in 2016 21st Asia and
South Pacific Design Automation Conference, 2016, pp. 519–524.

[2] W. Diffie, P. C. Van Oorschot, and M. J. Wiener, “Authentication and
authenticated key exchanges,” Designs, Codes and Cryptography, vol. 2,
pp. 107–125, 1992.

[3] M. Bellare and P. Rogaway, “Entity authentication and key distribution,”
in Advances in Cryptology - CRYPTO’ 93. Springer, 1993, pp. 232–249.

[4] ——, “Provably secure session key distribution: The three party case,” in
Twenty-Seventh Annual ACM Symposium on Theory of Computing, ser.
STOC ’95. Association for Computing Machinery, 1995, pp. 57—-66.

[5] M. Bellare, D. Pointcheval, and P. Rogaway, “Authenticated key ex-
change secure against dictionary attacks,” in Advances in Cryptology —
EUROCRYPT 2000. Springerg, 2000, pp. 232–249.

[6] T. Okamoto, “Authenticated key exchange and key encapsulation in
the standard model,” in Advances in Cryptology – ASIACRYPT 2007.
Springer, 2007, pp. 474–484.

[7] L. Law, A. Menezes, M. Qu, J. Solinas, and S. Vanstone, “An efficient
protocol for authenticated key agreement,” Designs, Codes and Cryp-
tography, vol. 28, pp. 119–134, 1995.

[8] H. Krawczyk, “Hmqv: A high performance secure diffie-hellman proto-
col,” in Advances in Cryptology – CRYPTO 2005. Springer, 2005, pp.
546–566.

[9] B. LaMacchia, K. Lauter, and A. Mityagin, “Stronger security of
authenticated key exchange,” in International Conference on Provable
Security. Springer, 2007, pp. 1–16.

[10] J. Delvaux, R. Peeters, D. Gu, and I. Verbauwhede, “A survey on
lightweight entity authentication with strong pufs,” ACM Comput. Surv.,
vol. 48, no. 2, oct 2015. [Online]. Available: https://doi.org/10.1145/
2818186

[11] T. Idriss and M. Bayoumi, “Lightweight highly secure puf protocol for
mutual authentication and secret message exchange,” in 2017 IEEE Int.
Conf. on RFID Technology Application, 2017, pp. 214–219.

[12] M. H. Mahalat, S. Saha, A. Mondal, and B. Sen, “A puf based light
weight protocol for secure wifi authentication of iot devices,” in 2018
8th Int. Symp. on Embed. Comp. and System Design, 2018, pp. 183–187.

[13] M. H. Mahalat, D. Karmakar, A. Mondal, and B. Sen, “Puf based secure
and lightweight authentication and key-sharing scheme for wireless sen-
sor network,” Journal of Emerging Technologies in Computer Systems,
vol. 18, no. 1, Sep 2021.

[14] W. Che, M. Martin, G. Pocklassery, V. K. Kajuluri, F. Saqib, and
J. Plusquellic, “A privacy-preserving, mutual puf-based authentication
protocol,” Cryptography, vol. 1, no. 1, 2017.

[15] U. Chatterjee, V. Govindan, R. Sadhukhan, D. Mukhopadhyay, R. S.
Chakraborty, D. Mahata, and M. M. Prabhu, “Building puf based
authentication and key exchange protocol for iot without explicit crps
in verifier database,” IEEE Transactions on Dependable and Secure
Computing, vol. 16, no. 3, pp. 424–437, 2019.

[16] U. Chatterjee, R. S. Chakraborty, and D. Mukhopadhyay, “A puf-
based secure communication protocol for iot,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 16, no. 3, pp. 1–25, 2017.

[17] J. R. Wallrabenstein, “Practical and secure iot device authentication
using physical unclonable functions,” in 2016 IEEE 4th Int. Conference
on Future Internet of Things and Cloud, 2016, pp. 99–106.

[18] M.-D. Yu, M. Hiller, J. Delvaux, R. Sowell, S. Devadas, and I. Ver-
bauwhede, “A lockdown technique to prevent machine learning on
pufs for lightweight authentication,” IEEE Transactions on Multi-Scale
Computing Systems, vol. 2, no. 3, pp. 146–159, 2016.

[19] J. Zhang and G. Qu, “Physical unclonable function-based key sharing
via machine learning for iot security,” IEEE Transactions on Industrial
Electronics, vol. 67, no. 8, pp. 7025–7033, 2020.

[20] (2021) Ic-safety, llc. [Online]. Available: http://ic-safety.com
[21] J. Ju, R. Chakraborty, C. Lamech, and J. Plusquellic, “Stability analysis

of a physical unclonable function based on metal resistance variations,”
in 2013 IEEE International Symposium on Hardware-Oriented Security
and Trust (HOST), 2013, pp. 143–150.

[22] D. Heeger and J. Plusquellic, “Analysis of iot authentication over lora,”
in 2020 16th International Conference on Distributed Computing in
Sensor Systems (DCOSS), 2020, pp. 458–465.

[23] ZYBO-Z7 Reference Manual, Digilent Corporation, Pull-
man, WA. [Online]. Available: https://digilent.com/shop/
zybo-z7-zynq-7000-arm-fpga-soc-development-board/

[24] M. van Dijk and U. Rührmair, “Physical unclonable functions in crypto-
graphic protocols: Security proofs and impossibility results,” Cryptology
ePrint Archive, Report 2012/228, 2012, https://ia.cr/2012/228.

[25] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and J. Schmidhu-
ber, “Modeling attacks on physical unclonable functions,” in Proc. ACM
Conf. on Computer and Communications Security, 2010, pp. 237–249.

[26] U. Rührmair, X. Xu, J. Sölter, A. Mahmoud, M. Majzoobi, F. Koushan-
far, and W. Burleson, “Efficient power and timing side channels for
physical unclonable functions,” in Cryptographic Hardware and Em-
bedded Systems. Springer Berlin Heidelberg, 2014, pp. 476–492.

[27] C. Ramsay and J. Lohuis, “TEMPEST Attacks against AES,”
Hardwear.IO, 2017. Accessed Nov 16, 2021. [Online]. Available:
https://hardwear.io/document/slides-craig-ramsay.pdf

[28] D. Das and S. Sen, “Electromagnetic and power side-channel analysis:
Advanced attacks and low-overhead generic countermeasures through
white-box approach,” Cryptography, vol. 4, no. 4, 2020.

Cyrus Minwalla is a Technical Researcher and
Security Lead within the Financial Technology Re-
search group at the Bank of Canada. His research in-
terests include digital currencies, cryptography, em-
bedded devices, and Internet-of-Things. He received
his Ph.D. degree in Computer Engineering from
York University in Canada. Cyrus was selected as
NRC’s Top Scientist Under 40 in 2017 and received
the Bank of Canada’s Award of Excellence in 2020.

Eirini Eleni Tsiropoulou is currently an Assis-
tant Professor at the Department of Electrical and
Computer Engineering, University of New Mexico.
Her main research interests lie in the area of cyber-
physical social systems and wireless heterogeneous
networks, with emphasis on network modeling and
optimization, resource orchestration in interdepen-
dent systems, reinforcement learning, game theory,
network economics, and Internet of Things. Five of
her papers received the Best Paper Award at IEEE
WCNC in 2012, ADHOCNETS in 2015, IEEE/IFIP

WMNC 2019, INFOCOM 2019 by the IEEE ComSoc Technical Committee
on Communications Systems Integration and Modeling, and IEEE/ACM
BRAINS 2020. She was selected by the IEEE Communication Society -
N2Women - as one of the top ten Rising Stars of 2017 in the communications
and networking field. She received the NSF CRII Award in 2019 and the
Early Career Award by the IEEE Communications Society Internet Technical
Committee in 2019.

Jim Plusquellic is a Professor in Electrical and
Computer Engineering at the University of New
Mexico. He received both his M.S. and Ph.D. de-
grees in Computer Science from the University of
Pittsburgh. Professor Plusquellic received an ”Out-
standing Contribution Award” from IEEE Computer
Society in 2012 and 2017 for co-founding and for
his contributions to the Symposium on Hardware-
Oriented Security and Trust (HOST).


