
1

PUF-Based Digital Money with Propagation-of-Provenance
and Offline Transfers Between Two Parties
BENJAMIN BEAN∗, University of New Mexico, United States
CYRUS MINWALLA∗, Bank of Canada, Canada
EIRINI ELENI TSIROPOULOU∗, University of New Mexico, United States
JIM PLUSQUELLIC∗, University of New Mexico, United States

Building on prior concepts of electronic money (eCash), we introduce a digital currency where a physical
unclonable function (PUF) engenders devices with the twin properties of being verifiably enrolled as a member
of a legitimate set of eCash devices and of possessing a hardware-based root-of-trust. A hardware-obfuscated
secure enclave (HOSE) is proposed as a means of enabling a PUF-based propagation-of-provenance (POP)
mechanism, which allows eCash tokens (eCt) to be securely signed and validated by recipients without
incurring any third party dependencies at transfer time. The POP scheme establishes a chain of custody
starting with token creation, extending through multiple bilateral in-field transactions, and culminating in
redemption at the token-issuing authority. A lightweight mutual-zero-trust (MZT) authentication protocol
establishes a secure channel between any two fielded devices. The POP and MZT protocols, in combination
with the HOSE, enables transitivity and anonymity of eCt transfers between online and offline devices.

CCS Concepts: • Security and privacy→ Hardware-based security protocols.

Additional Key Words and Phrases: electronic money, digital currency, physical unclonable functions

ACM Reference Format:
Benjamin Bean, Cyrus Minwalla, Eirini Eleni Tsiropoulou, and Jim Plusquellic. 2023. PUF-Based Digital
Money with Propagation-of-Provenance and Offline Transfers Between Two Parties. J. ACM 1, 1, Article 1
(January 2023), 25 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
An electronic money (eCash) ecosystem defines a set of protocols and security properties for
enabling the creation and validation of electronic cash tokens (eCt), as well as secure transfers
between end-users. A typical incarnation consists of a token-issuer (TI), e.g., a central bank, a set
of financial institutions (FI), e.g., commercial banks, and a consumer population. The TI defines the
root-of-trust for the entire ecosystem, while the FIs provide accounting services to subsets of the
consumer population.

Electronic money presents unique challenges not commonly associated with security protocols
providing, e.g., a secure communication channel. An inherent property of paper money is anonymity,
which hides the identity of the purchaser of goods and services. Although anonymity is a desirable
∗Authors contributed equally to this research.

Authors’ addresses: Benjamin Bean, bbean@unm.edu, University of New Mexico, P.O. Box 1212, Albuquerque, New Mexico,
43017-6221, United States; Cyrus Minwalla, cminwalla@bank-banque-canada.ca, Bank of Canada, 234Wellington St., Ottawa,
K1A0G9, Canada; Eirini Eleni Tsiropoulou, eirini@unm.edu, University of New Mexico, P.O. Box 1212, Albuquerque, New
Mexico, 43017-6221, United States; Jim Plusquellic, jplusq@unm.edu, University of New Mexico, P.O. Box 1212, Albuquerque,
New Mexico, 43017-6221, United States.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Association for Computing Machinery.
0004-5411/2023/1-ART1 $15.00
https://doi.org/XXXXXXX.XXXXXXX

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2023.

HTTPS://ORCID.ORG/
https://doi.org/XXXXXXX.XXXXXXX
https://orcid.org/
https://doi.org/XXXXXXX.XXXXXXX

1:2 Authors, et al.

feature in eCash, it also substantially reduces the barrier for adversaries to create counterfeits. By
contrast, fiat money is naturally resistant to counterfeiting, owing to the cost of the paper and inks,
but copying digital representations of eCt is trivial and nearly cost-free. Similarly, dishonest users
who engage in the double spending, i.e., use the same eCt to purchase goods and services from
different vendors, is difficult to prevent, particularly for offline value transfer operations where
users are not able to consult with a trusted-third party (TTP).

Supplemental to these primary goals of an eCash system is a mechanism for identifying malicious
actors, who might engage in attacks on other devices or who may collude to launder money. Yet
another desirable property is a mechanism to recover lost funds, which would occur if the device is
lost or stolen, or is destroyed. The implementation of these supplemental services requires disclosure
of the user’s identity, and therefore, eCash protocols must resolve these issues through coordination
across multiple TTPs, as a means of preventing abuse by the TTP themselves. Although our protocol
stores information that the TI and FI could use for handling malicious actors and fund recovery, we
do not describe the message exchanges and actions required to implement them in the protocol
diagrams.

In this paper, we propose PUF-Cash, which possesses the following characteristics:
• A token-issuer (TI) provides a PUF-based root-of-trust for the entire system, and is able to
extend the root-of-trust to trusted intermediaries and in-field devices using a lightweight
mutual-zero-trust (MZT) protocol.

• End-user (in-field) devices incorporate a strong PUF hardware security primitive, encapsulated
in hardware-obfuscated secure enclave (HOSE). The HOSE enables the device to perform
security functions related to the management and validation of eCt. The HOSE is completely
independent of the untrusted microprocessor environment which is typically co-located on
the same SoC device.

• A propagation-of-provenance (POP) scheme is proposed which enables transactions between
entities receiving eCt to authenticate the eCt of the issuing parties. Moreover, the receiving
parties can perform this authenticationwithout the involvement of a TTP. The entire sequence
of such authentications establishes provenance back to the TI which created the eCt.

• The proposed PUF-Cash system supports unlimited transistivity where Alice can pay Bob,
and Bob can pay Charlie without the need for any party to interact with a TTP.

Note that the strong PUF and HOSE provide unique capabilities, and in fact, define orthogonal
security components of the system. The strong PUF protects keys and data at rest by eliminating the
need to store keys in an NVM, and by encrypting protocol artifacts, i.e., those stored in databases
on user devices. The HOSE, on the other hand, leverages the PUF-based keys to protect secrets in
motion and in use, namely, payment information, customer credentials and the eCt themselves.
The remainder of this paper is organized as follows. Section 2 describes previous related work,

and Section 3 summarizes relevant features of the shift-register reconvergent-fanout (SiRF) PUF.
Section 4 describes the proposed mutual-zero-trust authentication and key exchange protocol,
while Section 5 presents the details of the PUF-Cash message exchange protocol. The experiment
setup is described in Section 6, with experimental results given in Section 7. A security analysis is
presented in Section 8, and our conclusions in Section 9.

2 PREVIOUS WORK
2.1 Mutual Authentication and Session Key Exchange
Recent efforts around authentication utilize PUFs as a local root of trust to augment or substitute
asymmetric key pairs. An extensive literature review on previously proposed lightweight PUF-based
authentication protocols is given in [7]. The authors of [12] propose a lightweight PUF-based mutual

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2023.

PUF-Based Digital Money with Propagation-of-Provenance and Offline Transfers Between Two Parties 1:3

authentication and secret message exchange protocol. The protocol only succeeds in authenticating
the server, and further, assumes that the router has a soft model of the PUF and can generate a
response to any randomly generated challenge during the refresh phase. Mahalat et al. [17] propose
a scheme for secure WiFi authentication of IoT devices. This approach was later expanded to a
PUF-based authentication and key sharing scheme that utilizes Pedersen’s commitment scheme
coupled with Shamir’s secret sharing [16]. The mutual authentication and key sharing scheme
proposed between user (server) and sink nodes can be implemented more easily using challenge-
response-pair (CRP) strong PUF-based schemes without the mathematical complexity of the secret
sharing schemes [6]. This becomes possible since in both cases the server stores a CRP database
that is constructed in a secure environment during provisioning.

A PUF-based authentication and key management protocol for IoT is proposed in [3], improving
upon on the attack resilience and performance overhead of the previous method [2]. Elliptic curve
cryptography (ECC) is used to create shared keys among IoT nodes with the assistance of a verifier.
The scheme requires a trusted setup and tamper-resistant hardware to protect secret keys. Similarly,
a controlled PUF that utilizes ECC is proposed as a lightweight authentication and key generation
protocol for IoT nodes in [23], relying on zero knowledge proofs for device authentication, however
the authentication is one-way, and the server is not authenticated. A PUF-based El-Gamal algorithm
is proposed for message encryption as well as a PUF-based digital signature scheme.

Yu et al. [25] propose a scheme that is designed to prevent an adversary from obtaining sufficient
CRPs to carry out model-building attacks. However, the number of authentications is constrained
by the number of CRPs stored in the database, requiring either reuse of entries or re-enrollment of
the PUF, a caveat we avoid in our scheme. In [27], the authors propose a crossover ring oscillator
(R)O PUF cloning technique that enables a group of IoT devices to all generate the same (shared) key,
thereby eliminating the key distribution problem for devices engaging in multi-party shared key
encrypted communication. The authors of [9], [18] propose a lightweight edge-device authentication
method which uses a weak SRAM PUF to generate a secret ID. A hamming distance-based ID
matching scheme is proposed as a lightweight reliability enhancement method. Although XOR and
secure hash are used in our protocol as well, their protocol requires the device to store a secret key
in an NVM, a vulnerability that we avoid.

2.2 Electronic Money
Electronic money and digital currency are synonymous concepts in the literature. Viable solutions
satisfy the properties of provenance, protection against double-spending attacks, and privacy in
payments. Chaum, Fiat, and Naor (CFN) explored anonymous payments through blind signatures
[4], [5]. CFN is unsuitable for offline transfers, as funds need to be validated at the time of transaction.
More recently, blind signatures are incorporated in the GNU Taler system as a privacy-preserving
primitive for electronic money [14].
Cash-like anonymity and privacy are defined in [10] as the ability to exchange money without

tracing the exchange and without revealing the identities of the payer or payee. In their 2021 paper,
they also note that there exist no token-based eCash systems that have all the same peer-to-peer
(P2P), offline, and anonymity capabilities as account-based systems, and that offline double-spending
cannot yet be prevented.
Up to this point, other offline eCash systems [26] [15] [1] [20] have tried to solve the double-

spending problem by tracing eCash in bank and wallet records. The authors of [24] address
double-spending by executing transactions in an ARM processor’s Trusted Execution Environment
(TEE) secured by an SRAM PUF. Similarly, the authors of [19] propose a P2P offline payment scheme
that prevents double-spending, preserves privacy and anonymity and is reasonably low-powered.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:4 Authors, et al.

Their scheme utilizes an mobile phone’s TEE to execute a one-time-program within a sandbox, that
executes on a single input and then self-destructs.

3 HARDWARE SECURITY PRIMITIVES
The authentication bitstrings, encryption keys and random nonces utilized within the proposed
MZT and PUF-Cash protocols are derived from a strong physical unclonable function (PUF) called
the shift-register reconvergent-fanout (SiRF) PUF [21]. The SiRF PUF is the physical root-of-trust
in the PUF-Cash ecosystem, across TI, the FI and end-user devices.

3.1 SiRF PUF Architecture
The SiRF PUF architecture and algorithm are shown on the left and right sides of Fig. 1, respectively.
The SiRF PUF utilizes within-die variations in a set of path delays as a source of entropy. Path
delays are measured through an engineered netlist of shift-registers and logic gates constructed
with fan-in and fan-out, referred to as reconvergent-fanout, to create an exponentially diverse
matrix of signal paths that traverse a rectangular region of the FPGA fabric (22x23 CLBs). The
architecture incorporates a mode switch to enable the entropy source and algorithm to be used as
a true-random number generator (TRNG), which is able to supply an exponentially large number
of random nonces for cryptographic operations [13].

Fig. 1. SiRF PUF Architecture and Algorithm.
AT𝐷𝐵 : Anonymous timing DB NAT𝐷𝐵 : Non-anon. timing DB DV: Delay values
DVD: DV differences DVDc: Calibrated DV DVDco: Entropy optimized DV

p: LFSR seed, range, threshold SF: SpreadFactors 2048 bytes HD: helper data 2048 bits
v: seed specifying Chlng vecs Chlnga{v}: Set of challenge vectors Chlngb{p, SF}: One set of p and SF

ID𝑥 : Device ID SK: Session key LLK: Long-lived key

3.2 Challenge and Response Construction
The challenge for the SiRF PUF consists of two components, labeled Chlnga and Chlngb in Fig. 1.
The Chlnga component controls the configuration of the paths through the netlist of shift-registers
and logic gates [21]. The v argument is an 32-bit LFSR seed, that is used to select a sequence of
binary vectors from a Vecs𝐷𝐵 database stored locally on the device (not shown here but included
in the message exchange diagrams in this paper). Paths are timed by the TDC Control module,
which launches a set of rising transitions into the SiRF netlist using the Launch FFs. A path
output is selected using theMUX shown along the bottom left in the figure, which routes emerging
signal transitions to a time-to-digital converter (TDC). The TDC creates high resolution digitized
representations (delay values or DVs) of the path delays. The Control module carries out a sequence
of path timing operations using a sequence of v vectors to produce a set of 2048 rising delay values

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2023.

PUF-Based Digital Money with Propagation-of-Provenance and Offline Transfers Between Two Parties 1:5

(DVR) and a set of 2048 falling delay values (DVF). The DV are stored in a BRAM located within
the programmable logic and are used as inputs to a post-processing algorithm for authentication
bitstring and encryption key generation.

The remaining components of the challenge specified in Chlngb are given as p, SF and HD. The
p component specifies parameters to the SiRF PUF algorithm, which are used as input to a sequence
of mathematical operations applied to the 4096 DV values stored in the BRAM. The first operation,
carried out by the DVDiff module, creates 2048 differences (DVD) by subtracting unique pairings of
DVF from DVR. Note that there are 222 or 4 million unique DVD that can be generated from the
sets of rise and fall DV. The LFSR seed parameter component of p specifies a single unique set of
2048 DVD to use in subsequent steps, described in detail in [21].
The DVD are then calibrated using the GPEVCal module to remove variations in delay intro-

duced by global performance differences, as well as non-nominal temperature and supply voltage
environmental conditions, and are designated as DVDc. The SpreadFactors module applies SF to
remove delay bias introduced by differences in the length of the tested paths, to produce DVDco.
The DVDco are then converted into an authentication bitstring or key by the BitGen module. The
HD component refers to helper data that is needed by the BitGen module for regeneration. The
components of the challenge, including the SF and the helper data HD produced during enrollment,
are stored in a database to enable the device to regenerate the bitstring or key at any point in the
future and potentially under adverse environmental conditions.

3.3 Strong Timing-Based Authentication and Key Generation Protocol Primitives
Mutual authentication (MA) and session key generation (SKG) is accomplished using one of two
low-level PUF-based protocols. The timing-based (TB) version requires AT𝐷𝐵 and NAT𝐷𝐵 timing
databases stored on the Token Issuer (TI) (see Fig. 1). The timing databases encapsulate and compress
a subset of the challenge-response space of each device, and are used exclusively by the Token
Issuer (TI) to carry out MA and SKA with other entities in PUF-Cash ecosystem.

The TB functions utilized by the TI are annotated in the diagrams as MA𝑁𝐴, MA𝐴, SKG𝑁𝐴 and
SKG𝐴. The subscript NA refers to non-anonymous mutual authentication, where the authenticating
device ID, e.g., ID𝑥 , is derived privately by the TI using the NAT𝐷𝐵 . The subscript 𝐴 refers to
an anonymous mutual authentication, where the TI is able to confirm that the device has been
provisioned, but is not able to identify the end-user’s identity.
The AT𝐷𝐵 and NAT𝐷𝐵 are built with distinct DV, and the ordering of the device timing data

sets in the two databases is scrambled to generate anonymity. The SiRF PUF has 16 million unique
paths that can be timed, making it possible to select large numbers of unique DV per database. For
the current experiments, the number of DV per device stored in the databases is limited to 10,144
(5072 DVR and 5072 DVF). Lighter-weight versions of MA and SKG (referred to as mutual-zero-trust
or MZT) are annotated in the diagrams as MA𝑀𝑍𝑇 and SKG𝑀𝑍𝑇 . The MZT versions are based on
authentication tokens, and are used between pairs of devices and between a device and a FI.

Additional PUF-based security functions leveraged in the proposed MZT and PUF-Cash protocols
include true-random-number-generation (TRNG) and long-lived key (LLK) generation. As key
generation requires reliable reproduction of bitstrings, the functions leverage three reliability
enhancing techniques integrated into the SiRF PUF algorithm, namely GPEVCal, thresholding
and XMR, details of which are available in [21]. To summarize, the cummulative benefits of these
lightweight reliability-enhancement techniques reduce the probability of a bit-flip error to < 1𝑒−6.

4 MUTUAL-ZERO-TRUST PROTOCOL
An eCash payment system should support trusted payment transactions in any type of environment,
including scenarios in which the payer and payee cannot consult with a trusted third party (TTP)

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:6 Authors, et al.

to assist with authentication i.e. offline mode. In such cases, trust within the two-party system must
be derived from the devices themselves. We use the term mutual-zero-trust (MZT) to describe this
scenario, in contrast to environments in which peers (other customers) can be consulted to build a
trusted relationship, or a TTP is available to provide authentication credentials for the two entities.
Supporting transactions which might occur between arbitrary pairs of customer devices in an

offline context, where neither device has connectivity to a remote service, means that each device
must store MZT data about other customer devices. The data composition must be compact to
be practical for an embedded system, while simultaneously providing each device with sufficient
confidence that the established channel and the counter-party device can be trusted. In this section,
we describe a MZT system that meets these requirements.

4.1 MZT Enrollment Operations
The security properties of the MZT protocol are derived from the SiRF PUF primitive, a secure
hash function and a symmetric encryption algorithm. The PUF serves as the root-of-trust and is
the source of entropy, secure hash provides obfuscation and data integrity while the symmetric
encryption algorithm provides confidentiality. The integration of the three primitives provides a
highly secure and lightweight mechanism for enabling Alice and Bob to exchange sensitive data.
The protocol requires the SiRF PUF to generate a 256-bit long-lived key (LLK) and a 256-bit

nonce n. These bitstrings are used as input to a hash function to create an authentication token
(AT), referred to as ZHK, with Z referring to zero-trust, H for secure hash and K for LLK. In our
implementation, SHA-3 is used as the secure hash function. The ZHK authentication tokens are
created using the relation given by Eq. 1.

ZHK := Hash(LLK ⊕ n) (1)

The MZT protocol requires Alice and Bob to carry out an enrollment operation with the Token
Issuer (TI). Although shown together here, enrollment is carried out separately and usually at
different times by Alice and Bob. The following sequence of operations, corresponding to the
message exchange diagram of Fig. 2, defines MZT enrollment.
(1) Alice and Bob authenticate non-anonymously via MA𝑁𝐴 and generate session keys SKTA

and SKTB using SKG𝑁𝐴 with the TI. As discussed in Section 3.3, Alice and Bob use the TB
versions of these security functions since they are interacting with the TI. Non-anonymous
authentication allows the TI to identify Alice and Bob as ID𝐴 and ID𝐵 , respectively. Note that
the MA𝑁𝐴 protocol is privacy-preserving, i.e., the TI derives the IDs based on the responses
provided by Alice and Bob without the need to transmit their IDs openly.

(2) The TI encrypts and then transmits unique challenges to Alice and Bob, labeled ChlngZTa/b.
(3) Alice and Bob decrypt and apply their respective challenges to their hardware PUFs, HPUF𝐸 ,

in enrollment mode, to generate a long-lived key, LLKMZT, and helper data HD. Alice and
Bob store the challenge information in the MZT_LLK𝐷𝐵 under challenge number CN1, which
includes the components discussed earlier in reference to Fig. 1, i.e., v1, p1, SF1 and HD1, to
enable regeneration of LLKMZT later in the field. As noted above, v1 is a 32-bit LFSR seed
used to select binary vectors from the Vec𝐷𝐵 stored locally on Alice and Bob’s devices.

(4) Once the LLKMZT is generated, the TI sends a request to Alice and Bob to generate x ZHKs.
(5) Alice and Bob construct a set of tuples {ZHKi, ni} by running their PUFs’ TRNGs to generate

a sequence of nonces, ni, which are XORed with LLKMZT and used as the input to the AT
creation function given by Eq. 1.

(6) The tuples are encrypted using SK𝑇𝐴/𝐵 and transmitted to the TI. The TI decrypts and stores
them along with the field device’s identifier ID𝐴/𝐵 in its MZT_AT𝐷𝐵 .

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2023.

PUF-Based Digital Money with Propagation-of-Provenance and Offline Transfers Between Two Parties 1:7

Fig. 2. MZT enrollment and authentication process between Token Issuer, Alice and Bob.
MA𝑁𝐴 : Non-anon. mutual authen. SKG𝑁𝐴 : Session key generation IDA/B: Alice/Bob ID
SKTA: TI-Alice 256-bit key ChlngZT: Chlng components {v, p, SF} LLKMZT: 256-bit long-lived-key

ni: nonce bit vector ZTni: 256-bit intermediary Cx: Cipher text packet
ZHKi: Authen. token MZT_LLK𝐷𝐵 : Long-lived key DB MZT_AT𝐷𝐵 : Authen. token DB
CN1/2: Challenge number

The TI collects ZHKi from all field devices to build the MZT_AT𝐷𝐵 . Each entry consumes only
72 bytes, consisting of a 4-byte integer for the ID𝑥 and CN𝑥 fields, and 32 bytes for each of the
ZHKi and ni fields. Alice and Bob will retrieve one unique ZHKi tuple from the TI for each device
during the distribution operations, labeled as steps 7 through 10 along the bottom of Fig. 2, which
they store in their MZT_AT𝐷𝐵 databases. Note that the protocol and database structure support
multiple challenges, e.g., Bob stores ZHKi for a second challenge number, CN2, in his ZHKi. The
MZT_AT𝐷𝐵 database can be stored in a standard off-the-shelf NVM, e.g., SD card, where storage
capacities of 4 GB or larger are common. Elements within the MZT_AT𝐷𝐵 can be encrypted for
additional security, and processing may be carried out in the HOSE on the device.

4.2 MZT In-Field Operations
The MZT in-field process is carried out when Alice contacts Bob for goods or services in an
environment where a direct communication channel is established between the two parties. The
message exchange protocol is shown in Fig. 3, and is described as follows:

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:8 Authors, et al.

Fig. 3. Mutual-zero-trust in-field authentication and session key generation between Alice and Bob.

(1) The transaction begins with Alice sending Bob a request to authenticate and to generate a
shared session key.

(2) Alice sends Bob an identifier, ID𝐴, that allows Bob to locate the her AT in his MZT_AT𝐷𝐵 .
(3) Bob responds to Alice with an ACK or NAK (labeled status) on whether or not he possesses

an AT for Alice. He also transmits his own identifier, ID𝐵 .
(4) Alice determines if she has an AT for Bob in her MZT_AT𝐷𝐵 using Bob’s ID𝐵 , and transmits

a corresponding ACK or NAK to Bob in the status message.
(5) Assuming both Alice and Bob have ATs for each other (otherwise the transaction is cancelled),

Alice and Bob retrieve the AT for the other party from their MZT_AT𝐷𝐵 , which is represented
by the tuple ZHKx, nx with 𝑥 := 𝑏 or 𝑎, respectively.

(6) Shared Key Generation: Alice and Bob exchange the nonce components, nx, of the ATs.
Both parties regenerate their long-lived keys LLKMZTx using challenge information stored
in their MZT_LLK𝐷𝐵 (not shown), and then compute a local version of the ZHK′

x using
Hash(LLKMZTx ⊕ nx). Alice and Bob create a shared key SKAB by XOR’ing the local copy of
ZHK′

x with the ZHKx that they store for the other party in their MZT_AT𝐷𝐵 .
(7) Authentication: Authentication begins with Alice and Bob encrypting the nx they received

from the other party with the newly created shared key SKAB to create enx. Alice and Bob
exchange the encrypted nonces enx, decrypt them using the shared key and then compare
the nx with the ones they store in their MZT_AT𝐷𝐵 . The status of the comparison is shared
with the other party via an ACK or NAK. At this point, they have authenticated and posses a
shared key assuming both have acknowledged that the nx match their own local copies.

(8) Refresh ZHKs: Alice and Bob generate new nonces nx_n by running their TRNGs, and then
compute new AT by hashing (LLKMZTx ⊕ nx_n). They encrypt the new AT as Cx with their
shared session keys SKAB. They exchange the Cx, and then decrypt the Cx to recover the
new AT. They store the new AT in their MZT_AT𝐷𝐵 , replacing the existing AT just used.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2023.

PUF-Based Digital Money with Propagation-of-Provenance and Offline Transfers Between Two Parties 1:9

The MZT in-field operations are lightweight using only the PUF, secure hash, and symmetric
encryption functions. The refresh operation ensures that future transactions can occur between
the two parties without either party needing to return to the TI to obtain additional AT. The new
AT are generated by Alice and Bob’s PUFs and therefore have the same strong security properties
as the original AT that are replaced. The protocol is not subject to desynchronization attacks in
which an adversary prevents, e.g., Alice from receiving C2, because Bob does not record state
information that Alice stores in her MZT_AT𝐷𝐵 . If C2 is not received, then the refresh operation is
not performed. Section 8 expounds further on the protocol’s security properties.

5 PUF-CASH PROTOCOL
The operating environment used in the PUF-Cash protocol described here is characterized as offline,
requiring Alice and Bob to authenticate using the MZT model. By assuming a bilateral, peer-to-peer
trust model, we ensure that two parties can transact regardless of the underlying communications
medium. Additionally, transitivity of eCt tokens across multiple parties is supported, where
transitivity means that a token can be transferred to a new party without requiring synchronization
with the token issuer (TI) or any other back-end system. PUF-Cash introduces a novel security
primitive called propagation-of-provenance (POP) and a hardware-obfuscated secure enclave
(HOSE) as a means of ensuring transitivity in a secure manner. The HOSE prevents Alice from
double-spending her own eCt. POP and HOSE together enable each party in a chain of eCt transfers
to authenticate the eCt that they receive, and to validate provenance back to the point of origin,
namely the TI. Note that POP is a form of remote attestation, where Alice will prove the authenticity
of her eCt to a remote party, i.e. Bob, and eventually, to the TI.
The HOSE is implemented as a set of state machines embedded in a hard-wired portion of the

device, or, in the case of FPGAs, in the programmable logic. The HOSE limits interactions and po-
tential attacks from malicious software applications, including the PUF-Cash software components,
through an interface consisting of two 32-bit hardware registers. The HOSE incorporates the SiRF
PUF for generating keys on-the-fly as needed. Similarly, all sensitive cryptographic operations,
specifically AES encryption/decryption and the SHA-3 hash function, are instantiated in the HOSE.

5.1 PUF-Cash Overview
A high-level model of the PUF-Cash protocol is presented in Fig. 4 to highlight the basic operations.
The sequence of numbered operations are described as follows:

(1) The bootstrap operation within the PUF-Cash protocol generates and distributes a set of
anonymous POP cryptographic tuples (POPx) to customer devices, Alice, Bob, Charlie, etc.
The set of POPx are generated as customer long-lived keys using the TI’s AT𝐷𝐵 , and are
therefore anonymous to the TI.

(2) Alice contacts her FI and requests a withdrawal from her account, sending the tuple {Amt,
ID𝐴, AID𝐴}, which includes both her non-anonymous ID for the FI and her anonymous AID
for the TI. The FI checks her balance and responds with an ACK (not shown) if she has
sufficient funds or a NAK if she does not.

(3) Assuming Alice has sufficient funds, the FI forwards the Amt and AID𝐴 to the TI to generate
the eCash tokens (eCtA). The TI fetches Alice’s anonymous POPA from the POP𝐷𝐵 using her
AID𝐴, and adds a withdrawal record to its eCt𝐷𝐵 database.

(4) The TI generates the eCtA using a TRNG, and creates signed versions, heCtA, using Alice’s
POPA in a XOR-secure-hash operation similar to Eq. 1. The TI then encrypts both of the
eCtA and heCtA as ECtA using a shared session key that is created between Alice and the

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:10 Authors, et al.

Fig. 4. High level overview of PUF-Cash

TI anonymously (not shown here but included in message exchange diagrams below), and
transmits the ECtA to the FI.

(5) The FI simply forwards the ECtA to Alice. The FI, acting as an intermediary, keeps Alice and
her eCtA anonymous to the TI. Moreover, her ECtA are also anonymous to the FI because
they are encrypted with the Alice-TI session key.

(6) Alice contacts Bob for a payment transaction, and then both run the MZT protocol.
(7) Assuming authentication succeeds, Alice pays Bob with (a subset of) her ECtA by encrypting

them with the Alice-Bob MZT session key. Although not shown here, Alice and Bob use their
POPx to authenticate and propagate the provenance of the eCt. The MZT security functions
and ECtX transfer operation can be repeated between other pairs of customers, shown here
between Bob and Charlie.

(8) At some point in the future, Charlie regains internet connectivity and deposits the ECtC to his
FI. Note that although Alice and Charlie use the same FI as shown, this is not a requirement.

(9) The FI contacts the TI and asks the TI to validate the ECtC, as a precursor to the FI accepting
the ECtC as a valid deposit.

(10) Assuming validation succeeds, the FI credits Charlie’s account, and although not shown, the
ECtB are marked as ’redeemed’ in the TI’s eCt𝐷𝐵 .

5.2 Propagation of Provenance (POP)Qualities

Fig. 5. Propagation-of-provenance (POP) database storage and challenge vector generation scheme.

The TI uses a specialized process to create the entire set of POPx for each of the customers’
POP𝐷𝐵 (distributed in Step 1 of Fig. 4) that significantly reduces the storage requirements for the
challenges. The POPx transmitted to Alice and Bob’s device is composed of two components, a
population-based component (PBC) and a device-specific component (DSC), each stored in two
different databases labeled POPA𝐷𝐵 and POPB𝐷𝐵 in Fig. 5. The PBC component is used for all
devices in Alice’s POPB𝐷𝐵 , and is defined as the tuple (vx, SFx). The vx component is a 32-bit

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2023.

PUF-Based Digital Money with Propagation-of-Provenance and Offline Transfers Between Two Parties 1:11

LFSR seed that selects the actual vectors vecsx from a separate database called Vec𝐷𝐵 while SFx
represents a set of SpreadFactors for optimizing POP key generation (from Section 3).

The DSC components are stored in the POPB𝐷𝐵 , one element for each device, and are defined as
a tuple (AID𝑥 , px, ePOPx, HDx). The AID𝑥 is a 32-bit integer representing a device’s anonymous ID,
the px component is a 22-bit nonce used to specify the seeds to the LFSRs in the DVDiffs module
from Section 3, the ePOPx is the encrypted PUF’s response to the challenge for device 𝑥 (256-bits),
and HDx is the helper data (2048-bits). Therefore, the size of each POPB𝐷𝐵 element is 296 bytes,
and is larger than the MZT_AT𝐷𝐵 which requires only 74 bytes per device entry.
The primary benefit of the larger POP database is related to the strength of the authentication

process. The challenge information stored by Alice for, e.g., Bob’s device, requires Bob’s device
to generate the response to Alice’s stored challenge, and the challenge that Alice’s stores (at least
initially) has not been exposed a priori to Bob’s device. This is true because the TI provides Alice
with Bob’s response to this challenge (as the ePOPB component) by running a ’soft PUF’ version of
the SiRF PUF algorithm using the anonymous timing data stored in the AT𝐷𝐵 . The soft PUF is able
to produce the same response that Bob’s device generates for this challenge.
Moreover, Alice is able to refresh Bob’s entry in her DB after every engagement with Bob in

two different ways. In one scenario, Alice generates a new challenge for Bob’s device by changing
the pB component (LFSR seeds) in POPB𝐷𝐵 , and then asks Bob to generate a new response. She
then replaces the DSC component of Bob’s entry in her POPB𝐷𝐵 with the new information. In the
second scenario, Alice asks the TI to perform this operation. Although this requires Alice to be
online, it prevents Bob from seeing Alice’s next challenge for him.

5.3 PUF-Cash Protocol Details
The message exchange diagrams for the four PUF-Cash operations are described in this section.
The BootStrap operation is carried out after device manufacture, and at any point in the field under
the condition that Alice is online, i.e., has internet connectivity. Once Alice has engaged the TI
in a bootstrap operation, she can perform any one of the three primary PUF-Cash operations,
Withdrawal, Transfer and Deposit (note, her very first transaction must be a Withdrawal).

All transactions with TI are preceded with mutual authentication, e.g., MA𝑁𝐴, and session key
generation, e.g., SKG𝑁𝐴. Session key generation produces a shared key SKx, where 𝑥 is replaced
with the initials of the authenticating parties, e.g., SKTF refers to the shared session key between
the TI and FI. Although the details of TB security functions are presented in previous work [22],
the enrollment and regeneration functions for the POPB𝐷𝐵 are similar, and are outlined in Section
8.2 for completeness.

5.3.1 BootStrap. The message exchange diagram for Bootstrap is shown in Fig. 6. The sequence of
operations performed by Alice and the TI are numbered within circles in the figure. The shaded
regions identify operations carried out in the HOSE, i.e., the FPGA’s programmable logic region.
(1) Generate LLKhose: Alice and the Token Issuer (TI) mutually authenticate and generate a

shared session key, SKTA. Mutual authentication is done anonymously. Upon successful
authentication, the TI affirms that Alice’s device is a genuine SiRF-instantiated PUF device
with anonymous ID, AID𝐴.

(2) The TI generates random values for vhose and phose to enable the TI and Alice to enroll and
regenerate, respectively, a long-lived key, LLKhose. The LLKhose will be used by TI and Alice
to encrypt and decrypt POP data. The term vhose is used as the seed to pseudo-randomly
select vectors, e.g. vecsx from the Vec𝐷𝐵 , as shown in Fig. 5, and phose specifies the LFSR
seed for the SiRF PUF DVDiff module. The anonymous timing data, DV, for a random subset
of devices corresponding to paths timed by vecsx, is extracted from the AT𝐷𝐵 and used to

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:12 Authors, et al.

Fig. 6. PUF-Cash bootstrap operations between the Token Issuer and Alice.
MA𝐴 : Anonymous mutual authen. SKG𝐴 : Session key generation AIDx: Anonymous ID
SKTA: TI-Alice, etc. 256-bit session keys vx: 32-bit vector specifier vecsx: 771-bit Chlng vecs

px: 22-bit LFSR seed SFx: 2048 bytes of SpreadFactors DV: Set of 16-bit DV
LLKhose: HOSE 256-bit LLK POPx: POP LLK ePOPx: HOSE encrypted POP LLK

HDx: 2048-bit Helper data Cx: Cipher text packet

generate a set of SpreadFactors, SFhose. The TI runs a software version of the SiRF PUF in
enrollment mode, SPUF𝐸 , which produces the LLKhose key and the HDhose helper data.

(3) The TI encrypts the tuple (vhose, SFhose, phose, HDhose) with its session key SKTA as C1 and
transmits it to Alice. Alice decrypts C1 and inserts the challenge data into her HOSE𝐷𝐵 .

(4) Alice reads the challenge information from her HOSE𝐷𝐵 and runs her hardware PUF in
regeneration mode, HPUF𝑅 , to produce LLKhose.

(5) Generate POP: The TI generates a set of POP elements for a set of devices from the population
by first generating random values for vA and pA and extracting a set of vectors vecsA. It then
extracts the timing values, DV, for a random subset of devices from AT𝐷𝐵 corresponding
to vecsA. GenSF is called to generate the SpreadFactors, SF+A, for all possible DVD, that can
be created from the selected 2048 DV𝑅 and 2048 DV𝐹 . From the discussion in Section 3.2,
the DV𝑅 and DV𝐹 can be paired in 222 possible ways to create unique DVD. Therefore, the
size of SF+A is 4 million bytes. This enables Alice to refresh her POP challenge and response
information after a successful transfer operation with any device in her POP𝐷𝐵 .

(6) The TI generates a set of 256-bit POPi responses to the challenge for a set of devices 𝑛,
using the DVi corresponding to each of the devices 𝑖 . Alice’s response, POPA, is stored in the
verifier’s AT𝐷𝐵 for signing and validating eCt during withdrawals and deposits, respectively.

(7) The challenge components, vA and SF+A, and the tuple sets {AID𝑛 , pA, POPn, HDn} are en-
crypted with Alice’s LLKhose by the TI. The POPA component in Alice’s tuple is set to null.

(8) The TI sends the encrypted packet C2 to Alice, which she decrypts within her HOSE. She
stores the vA and SF+A in her POPA𝐷𝐵 . These components of the challenge are used for all
customers she interacts with.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2023.

PUF-Based Digital Money with Propagation-of-Provenance and Offline Transfers Between Two Parties 1:13

(9) She then creates separate records for each of the customers 𝑖 in the POPB𝐷𝐵 database and
stores the AID𝑖 andHDi components. The pA component is replicated in each database record
and will be used as the initial value during the first eCash transaction with a customer.

(10) The POPi are re-encrypted with Alice’s LLKhose and stored as ePOPi. This protects the
customer responses in the event an adversary gains access to Alice’s device and attempts to
extract information from the POPB𝐷𝐵 . Note that Alice’s ePOPi does not need to be stored (is
null) because she can regenerate it with her PUF.

The size of the subset of DV extracted from the AT𝐷𝐵 and used as input to GenSF in Step 5 needs
to be large enough to characterize the entire population. In our implementation, we use sets of DV
corresponding to 30 customers. The subset of the customer population for which the TI creates
POPi for Alice in Step 6 can be selected by Alice’s device from preferences she specifies in advance,
or they can be learned over time from online eCash transactions she engages in.

5.3.2 Withdrawal. The following series of message exchanges and cryptographic operations are
carried out between Alice, the FI and TI to enable Alice to obtain a set of anonymous eCt for
payment transactions with end-users or commercial vendors. The corresponding message exchange
diagram is shown in Fig. 7.
(1) The TI and FImutually authenticate and generate a session key, SKTF using the non-anonymous

TB protocol primitives.
(2) The FI and Alice mutually authenticate and generate, SKFA, using theMZT protocol primitives.
(3) Alice creates a ciphertext packet,C1, containing her anonymous ID called AID𝐴, and requested

withdrawal amount, Amt, and sends the packet to FI.
(4) FI decrypts C1 with SKFA, checks Alice’s balance and responds to Alice with a ACK if she

has enough funds in her account, or a NAK if she does not.
(5) If the response is ACK, the transaction continues (otherwise it is cancelled) with FI encrypting

AID𝐴 and Amt as C2 and transmitting the packet to TI. TI decrypts C2.
(6) TI and Alice generate a session key SKTA using procedure SKG𝐴 (which utilizes the anony-

mous timing database). The FI serves as a pass-through intermediary. The SKG𝐴 process
is nearly identical to the Generate LLKhose (Step 2 of BootStrap) where the TI generates a
challenge, runs SKTA := SPUF𝐸 and sends the challenge and helper data encrypted to FI (not
shown). The FI forwards the packet to Alice, and Alice decrypts and regenerates SKTA by
running her hardware PUF in regeneration mode. Note that Alice remains anonymous to TI
because the TI draws the challenge and DV from AT𝐷𝐵 using her AID𝐴.

(7) The TI extracts Alice’s POPA from the AT𝐷𝐵 using her AID𝐴.
(8) The TI generates a set of eCtA using its GenNonce function, equivalent to one 256-bit nonce

for each 1 cent token of Alice’s requested Amt, and records the eCtA in its eCt𝐷𝐵 along with
her AID𝐴 and POPA. The latter two components can be used for recovering lost funds and
tracking malicious actors, but are otherwise not needed.

(9) The TI creates signed versions of the eCtA, labeled as heCtA, by XORing each eCtA with
POPA, and then hashing the result. The eCtA and heCtA are then encrypted with POPA to
prevent observation or manipulation attacks from the processor-side. The encrypted versions,
ECtA, are encrypted again with the TI-Alice session key, SKTA, as C3. The double encryption
adds an additional layer of obscurity to the FI and to network packet eavesdropping.

(10) The TI transfers C3 to the FI. In order to ensure Alice acknowledges receipt of the ECtA
packet, the FI generates a nonce, nobs, and XOR encrypts C3 as C3o and transmits it to Alice.
Once Alice acknowledges receipt, the FI sends nobs and deducts Amt from her balance in
Acct𝐷𝐵 . Alice recovers C3 by XORing with nobs, decrypts C3 to recover the ECtA and passes
them to the HOSE for processing.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:14 Authors, et al.

Fig. 7. PUF-Cash message exchange for withdrawal operation between Alice, the Financial Institution and
the Token Issuer.

(11) Alice’s HOSE fetches challenge information from the POP DBs as ChlngAa, and runs Alice’s
hardware PUF in regeneration mode, HPUF𝑅 , to reproduce POPAa. The subscript Aa should
be read as "Challenge for Alice from Alice". The ECtA are then decrypted and validated by
the HOSE. Validation is accomplished by recreating the signatures, heCt′A, using the eCtA
and the locally generated POPAa, and comparing them with the received versions, heCtA.

(12) If any of the signature comparisons fail, then the process is aborted. Otherwise, Alice updates
her challenge to Chlng′Aa by incrementing the pA component, and then running HPUF𝐸 to
generate POP′Aa. She updates the POPB𝐷𝐵 with p′A and HD′

A, and creates new heCt∗A for
the eCtA. She encrypts the eCtA and heCt∗A and adds the new ECt′A to her eCt𝐷𝐵 . She also
re-encrypts any existing elements with the new POP′Aa. This type of key rolling scheme
reduces the likelihood of a successful differential power analysis attack on Alice’s device.

(13) If the previous step succeeds, Alice encrypts the new POP′Aa with the original POPAa as C4.
(14) Alice sends C4 to the FI, who forwards to TI. The TI decrypts C4 with POPA to recover POP′Aa.

The TI updates Alice’s POP in its AT𝐷𝐵 database with the new version and sends an ACK
through FI to Alice. Although not shown, if Alice does not receive the ACK, she retains the
previous parameters pA and HDA for recovery actions during the next withdrawal operation.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2023.

PUF-Based Digital Money with Propagation-of-Provenance and Offline Transfers Between Two Parties 1:15

Fig. 8. PUF-Cash transfer operation between Alice and Bob.

5.3.3 Transfer. The PUF-Cash protocol supports the transfer of eCt between offline entities, as
illustrated by the message exchange diagram for two devices labeled Alice and Bob in Fig. 8. The
transfer protocol is carried out exclusively between Alice and Bob, and is transitive i.e., Bob can
pay Charlie, etc.
(1) Alice sends Bob a request to transfer Amt to Bob. Bob accepts the transfer request. Alice and

Bob mutually authenticate and generate a session key, SKAB, using MZT protocol.
(2) Bob extracts a challenge from his POP DBs, with subscript Ab indicating "Challenge for

Alice from Bob". Bob encrypts the challenge Chlng𝐴𝑏 with his session key SKAB as C1 and
transmits it to Alice.

(3) Alice decrypts Chlng𝐴𝑏 and passes it into her HOSE. Alice’s HOSE fetches Chlng𝐴𝑎 and
regenerates both POPAa and POPAb by running HPUF𝑅 . Alice then fetches a subset of her
encrypted ECtA from her eCt𝐷𝐵 and decrypts it with her regenerated POPAa to recover the
tuple {eCtAs, heCtAs}. Following that, she validates the database stored eCtAs by creating
heCt′As with POPAa and compares them with the heCtAs extracted from the database. The
process is aborted if a mismatch is detected. If not, the eCtAs subset is signed with POPAb
as heCt∗As, and the tuple, ECt′As, is encrypted with AES using POPAb as the secret key. The
re-signing of Alice’s eCt with a key that Bob stores and only Alice can generate is a key
feature of the scheme.

(4) Alice encrypts the ECt′As with SKAB as C2 and transmits it to Bob, who decrypts and transfers
it to his HOSE.

(5) Bob regenerates his LLKhose and POPBb using challenges from the HOSE𝐷𝐵 and POP DBs,
respectively. He uses his LLKhose to decrypt Alice’s ePOPA as POPAb, and then uses POPAb
to decrypt ECt′As to recover Alice’s eCtAs and heCt∗As. He validates them by creating heCt′As
and comparing with the heCt∗As received from Alice.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:16 Authors, et al.

Fig. 9. PUF-Cash deposit operation between Charlie, the Financial Institution and the Token Issuer.

(6) Bob records the result of the validation process as Resp := ACK or NAK. Bob also updates
Alice’s challenge by randomly modifying the pA parameter in his POPB𝐷𝐵 to produce a new
challenge, Chlng′Ab. He encrypts the Resp and the new challenge with POPAb as C3 and
transmits it to Alice.

(7) Alice transfers C3 into her HOSE, decrypts and aborts if the Resp is NAK. Similarly, Bob
aborts if Resp is NAK. Otherwise, Alice removes the spent tuples {ECtAs, hECtAs} from ECtA
and stores the updated ECt∗A back to her eCt𝐷𝐵 .

(8) Alice generates a new response, POP′Ab, using the new challenge, Chlng′Ab, encrypts it along
with the new helper data HD′

A using the original POPAb as C4 and transmits it to Bob.
(9) Bob hashes Alice’s eCtAs as heCt”As and encrypts them with the eCtAs using his POPBb as

ECtB, which he stores to his eCt𝐷𝐵 . He then decrypts C4 to recover Alice’s POP′Ab and HD
′
A.

Bob encrypts POP′Ab with his LLKhose as ePOP′A, and updates his POPB𝐷𝐵 with the new
challenge (p′A), encrypted response ePOP′A and helper data HD′

A.

5.3.4 Deposit. The deposit operation involves the TI, FI and an end-user device, e.g., Charlie, where
anonymity is preserved between the TI and Charlie. The message exchange sequence is shown in
Fig. 9, and is described in the following numbered sequence.

(1) The TI and FI mutually authenticate and generate a session key, SKTF, using the TB protocol.
(2) The FI and Alice mutually authenticate and generate a session key, SKFA, using MZT protocol.
(3) Charlie fetches challenge information and runs his hardware PUF to regenerate LLKhose and

POPCc. Bob selects a subset of his ECtC and then decrypts them using his POPCc as eCtCs
and heCtCs. Charlie then validates his eCt and aborts if validation fails.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2023.

PUF-Based Digital Money with Propagation-of-Provenance and Offline Transfers Between Two Parties 1:17

(4) Charlie constructs a packet consisting of his AID𝐶 , Amt and ECtCs. The packet is encrypted
with SKFA as C1, and transmitted to the FI. The FI recovers the elements in C1, re-encrypts
them with SKTF as C2 and transmits them to the TI.

(5) The TI decrypts C2 to recover AID𝐶 , Amt, and the corresponding tokens ECtCs. It then reads
POPC from AT𝐷𝐵 using AID𝐶 , and decrypts the ECtCs using Charlie’s POPC.

(6) The TI searches for each of the eCtCs in the master eCt𝐷𝐵 and checks if they are marked valid,
i.e., still in circulation. If all eCtCs are valid, then signatures are created using Charlie’s POPC
as heCtAs. For convenience, it is assumed that some of the tokens in Charlie’s possession
were originally withdrawn by Alice (eCtA), to show the complete cycle for any given eCtA.

(7) The TI assigns Resp := ACK if all (Amt) of the eCt and heCt validation processes succeed,
and NAK otherwise. The TI encrypts Resp as C3 with SKTF and transmits it to the FI.

(8) FI decrypts C3, records Resp, re-encrypts Resp with SKFA as C4, and transmits it to Charlie.
(9) Charlie’s HOSE decrypts C4 and aborts if Resp is a NAK. Otherwise, he deducts the deposited

subset of eCt and heCt from his database and generates a new challenge and corresponding
POP′𝐶𝑐 . He encrypts and stores the new ECt′C element to his eCt𝐷𝐵 , and re-encrypts other
elements in his database with the new POP′𝐶𝑐 if any exist. He encrypts POP′𝐶𝑐 as C5 using
the original POP𝐶𝑐 and transmits it to FI.

(10) Once FI receives C5, if Resp == ACK, it credits Charlie’s account with Amt.
(11) Once TI receives C5 and Resp == ACK, it marks all of Charlie’s eCt as invalid (redeemed) in

the eCt𝐷𝐵 . Otherwise it aborts.
(12) If Resp != NAK, the TI decrypts C5 and updates Charlie’s POP in its AT𝐷𝐵 .

6 EXPERIMENT SETUP
We first present the hardware and software overheads associated with the implementation of the
PUF-Cash protocol on our test bed and then present a run time analysis.

Fig. 10. Experiment set for the evaluation of PUF-Cash.

6.1 Device Resource Utilization
The test bed consists of one server and three devices as shown in Fig. 10. The token issuer (TI) is
implemented on a Dell PowerEdge T440 Server with 32 1.8 GHz processors and 128 GB of main
memory. The financial institution (FI), Alice and Bob run on a set of Digilent ZYBO-Z7 boards,
which utilize Xilinx Zynq 7010 SoCs [8]. The processor system (PS) incorporates a 667 MHz dual-
core Cortex-A9 processor, which has access to 1 GB of DRAM and a 1 Gbit/sec ethernet port. The
programmable logic side (PL) has 17,600 LUTs and 240 KB of PL-side block RAM (BRAM).

The TI and FI applications are implemented as multi-threaded C programs, while customer device
applications are single-threaded. The FI and device implementations are co-design applications,
where network and database functions are implemented in C on the PS, while encryption, secure

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:18 Authors, et al.

hash, SiRF PUF authentication bitstring and key generation functions are implemented as state
machines in the PL. The TI emulates the SiRF PUF in software. The server and devices are connected
to a network switch with 1 Gbit/sec of available bandwidth.

Table 1. PL-side resource utilization on the Zynq 7010.

SiRF Crypto
Resource Engine Netlist Total AES SHA-3 Total Available Overall

LUT 5842 796 37.72% 3128 3809 39.41% 17,600 77.13%
LUTRAM 60 96 2.60% - - 6000 2.60%

FF 4377 32 12.53% 2992 2244 14.88% 35,200 27.40%
BRAM blocks 5 (20 KB) - 8.33% - - 60 (240 KB) 8.33%

DSP 2 - 2.50% - - 80 2.50%
BUFG 2 - 6.25% - - 32 6.25%

The PL resources used by the SiRF PUF Engine and SiRF PUF netlist (Entropy source) are given in
Table 1. The percentage of resources used by all SiRF PUF components is shown in the 4th column.
The overheads of other components of the HOSE, i.e., AES and SHA-3 cryptographic functions, are
also presented in columns 5 and 6. The LUT row shows that SiRF PUF utilization is 37.72%, while
utilization of the cryptographic functions is slightly larger at 39.41%.

6.2 Database Size Overhead
The TI, FI and field-device applications utilize the sqlite3 database management software [11]. The
database size overheads for each of the databases shown in Fig. 10 are given in Table 2, with CD
used as an abbreviation for the customer device. The TI stores SiRF provisioning data in the NAT𝐷𝐵

and AT𝐷𝐵 for 140 ZYBO devices, each with 5072 DV𝑅 and 5072 DV𝐹 records (Rec), which supports
a challenge-response space of more than 224 bits per device (Note that the entire CRP space is 235
bits per device using the SiRF netlist configuration shown in Fig. 1, which is discussed further in
Section 8.1). Although each DV can be represented as a 16-bit fixed point number with 4 digits of
precision, indexing and other book-keeping within the database engine increase the size to 60 bytes
per DV record. Therefore, with 10,144 DV per device, the total storage is 594.3 KB per device. The
right-most column shows the total size of these databases after populating them with provisioning
data from 140 FPGAs.
The Challenge𝐷𝐵 , utilized by all entities in the PUF-Cash system, is 1 MB in size. Individual

record sizes within the MZT_AT𝐷𝐵 is given as 80 bytes per entry. From Fig. 2, a record consists of a
32-byte ZHK and nonce, and two 4-byte integers, leaving 8 bytes for database overhead. Assuming
each device stores a record for 140 other devices in the population, the overhead is 10.9 KB.

The POP𝐷𝐵 is composed of two component tables. The POPA𝐷𝐵 stores 4 MB of SF, which is used
for all customers, and is therefore fixed in size. The POPB𝐷𝐵 record size is 296 bytes, leading to a
size overhead of 40.5 KB assuming each device stores data for 140 other devices. Combined with
the fixed overhead of the POPA𝐷𝐵 , the storage per device is 4.04 MB. The size of the challenges
stored in the MZT and HOSE DBs is small at 4.6 KB per device. The total overhead for a CD is the
sum of the last four rows, and is slightly larger than 5 MB.

7 EXPERIMENTAL RESULTS
Hardware experiments are used measure the performance of the PUF-Cash protocol operations. In
each experiment, the timing information is collected as the protocol executes the withdraw-transfer-
deposit sequence using an increasing number of eCts of sizes 1, 5, 10, 50, 100, up to 500,000, for a
total of 12 sequences. In each sequence, the entire set of tokens are processed through all operations,

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2023.

PUF-Based Digital Money with Propagation-of-Provenance and Offline Transfers Between Two Parties 1:19

Table 2. Database Size Overhead.

DB name Used By Base (MB) Rec (B) Per Device (KB) All Devices (MB)
NAT𝐷𝐵 TI 0 60 594.3 81.2
AT𝐷𝐵 TI 0 60 594.3 81.2

Chlng𝐷𝐵 TI/FI/CD 1 - - 1
MZT_AT𝐷𝐵 FI/CD 0 80 10.9 0.011

POP𝐷𝐵 FI/CD 4 296 40.5 4.040
HOSE/MZT𝐷𝐵 FI/CD 0 2372 4.6 0.005

thereby tokens are created, transacted and deleted, leaving the database in an empty state at the
beginning of the next sequence. In addition, the POP LLKs generated in each experiment are stored
to a file to allow an assessment of their statistical quality. The experiment as described is performed
40 times for statistical significance and to determine the limits on the transfer times.

7.1 Run Time Analysis
The processing and transfer times associated with the withdrawal, transfer and deposit operations
within the PUF-Cash protocol are plotted in Fig. 11a. The processing times, and 3𝜎 limits, are
plotted as a function of the number of eCt processed. The run times include the time taken to
complete all operations specified in the message exchange diagrams, including the network transfer
times between devices.
The processing time of all three operations is linear with respect to the number of tokens. The

transfer operation, which occurs exclusively between Alice and Bob’s devices, possesses the largest
processing time overhead. This is due largely to the limited processing capability of the devices.
The processing times associated with the smaller value transfer operations, e.g., from 1 cent to
10,000 ($100), are upper bounded at approximately 6 seconds. Processing times for amounts larger
than 10,000 begin to diverge, but remain less than 20 seconds up to 100,000 eCt ($1000). These
processing times are competitive with existing state of the art payment systems where settlement
occurs at the end of the transaction.

(a) (b)

Fig. 11. (a) Run times (y-axis) plotted against the number of eCt transferred (x-axis) for Withdrawal, Transfer
and Deposit operations, as measured on the devices. The number of eCt processed varies from 1 (1 cent)
to 500,000 ($5,000). Three-𝜎 variations in the measurements are shown as shaded regions around the mean
values. (b) NIST test results using 1,400 POP LLKs collected during execution of the protocol.

Table 3 gives mean run times and 3𝜎 limits for the timing-based (TB) authentication and key
generation operations. The mean time for each operation is less than 1 second for all operations

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:20 Authors, et al.

Table 3. SiRF PUF Primitive Run Time Analysis. Mean and ±3𝜎 values are given. All times in seconds (s).

DA VA SE LLK Enroll LLK Regen
0.764 ± 0.064 0.618 ± 0.057 0.715 ± 0.071 1.400 ± 0.025 0.919 ± 0.025

Table 4. PUF-Cash Primitive Run Time Analysis. Average transfer times per 100 elements plus fixed overhead
time. All times in seconds (s).

BootStrap (Total for 100 POP LLKs) MZT Enroll (Total for 100 MZT ATs)
5.9 per 100 + 3.5 0.025 per 100 + 3.0

except LLK Enroll. Table 4 gives the run time for the BootStrap operation carried out at device startup
(see Fig. 6). The value given corresponds to the total transfer time for 100 POPx elements, which
includes a fixed overhead of 3.5 seconds. The transfer times correspond to approximately 17 POPx
per second. MZT enrollment time (also performed during BootStrap) translates to approximately
4000MZT authentication tokens per second, with a fixed overhead of 3.0 seconds. A typical sequence
performed at startup includes DA, VA, SE, two LLK regeneration operations and the BootStrap and
MZT Enroll operations. The authentication and key generation operations (DA, VA, SE and LLK
Regen) take approximately 4 seconds. For 100 POP LLKs and MZT ATs, the total startup time is 4
+ 9.4 + 3.025 = 16.36 seconds.

7.2 POP LLK Statistical Analysis
In this section, we assess the statistical quality of the LLKs generated during runs of the PUF-Cash
protocol. The MZT protocol utilizes only one LLK in the protocol, and therefore nearly all of the
LLK analyzed are produced by the POP protocol. The message exchange diagrams for withdrawal,
transfer and deposit shown in Figs. 7, 8 and 9 incorporate LLK refresh operations, which are
annotated as POP′𝑥𝑦 . In each withdraw-transfer-deposit sequence, Alice generates a new LLK for
herself during withdrawals and a second new LLK on behalf of Bob during transfers, and Bob
generates a new LLK during deposits. Therefore, during the execution of the 12 sequences in each
experiment, 36 LLKs are generated. The 40 repeated runs of the experiment yields a total of 1440
256-bit LLKs.
The 1440 LLKs are used as input to the NIST statistical test suite. Given the limited size of the

bitstrings (256 bits), only six of the NIST statistical tests are applicable, as shown in Fig. 11b. The
minimum pass threshold for a set size of 1440 bitstrings, and with 𝛼 set to the default value 0.01, is
1414. All six tests passed, with the Runs test representing the worst case, at 1418 passing bitstrings.

Inter-bitstring Hamming distance (Inter-HD) is commonly used to measure uniqueness among
the bitstrings. Inter-HD is computed by pairing bitstrings under all combinations and then counting
the number of bits that differ in each pairing. The ideal result occurs when half of the bits in any
pairing of the bitstrings differ.

Inter-HD𝑖, 𝑗 =

|𝑏𝑠 |∑
𝑘=1

𝑏𝑠𝑖,𝑘 ⊕ 𝑏𝑠 𝑗,𝑘

|𝑏𝑠 | (2)

Eq. 2 gives the expression for Inter-HD for a pair of devices (𝑖 , 𝑗) of length |𝑏𝑠 | = 256 bits. Inter-HD
is computed across all possible pairings of 1440 bitstrings, i.e., 1440*1439/2 = 1,036,080 combinations,
and averaged. The mean Inter-HD is 49.9992%, which is very close to the ideal value of 50%. No
failures of any type were observed in LLK regeneration over the 8+ hour run of the experiments.

8 SECURITY ANALYSIS
The TB authentication, session key generation and long-lived key generation PUF primitives
act as the root-of-trust for the entire system, and as such, represent the primary targets of an
attack. The TI extends the root-of-trust to customer devices using two different lighter-weight

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2023.

PUF-Based Digital Money with Propagation-of-Provenance and Offline Transfers Between Two Parties 1:21

mechanisms. The security properties of the MZT and POP protocols, characterized as single LLK
and challenge-response-based multi-LLK, respectively, draw from the root-of-trust by virtue of the
amount and type of security related information transferred and stored on the devices. From the
message-exchange diagrams, the security-sensitive data utilized by the MZT and POP protocols
always originates from the TI, and is authenticated and encrypted in transit by the TB primitives.
This requires adversaries to focus their attack on the PUF-based authentication and session key
generation functions localized to customer devices. We perform an exhaustive analysis of various
attack vectors at multiple levels of abstraction, from the physical device layer to protocol operations.

8.1 CRP Space Analysis
The TB security properties are rooted in the SiRF PUF’s physical source of entropy, which are
discussed at length in [21]. The size of the CRP space when utilizing DV sets of size 5072 (the
number of DVR and DVF stored in each of the NAT𝐷𝐵 and AT𝐷𝐵 databases in our experiments) is
given by 50722 ∗ 223/5072, yielding a total CRP space size of more than 235 possibilities in cases
where the TI stores all possible sets in its timing databases.

Fig. 12. Adversarial attack model to read out device responses.

8.2 Model-Building Attack Analysis
With the CRP space defined, we next describe an attack scenario where the adversary collects
CRPs from a device-under-attack (DUA), as a precursor to building a machine-learning model.
The message exchange diagram shown in Fig. 12 gives the sequence of operations carried out
when the device requests authentication, which occurs as the first action in mutual authentication
(MA𝑁𝐴/𝐴) in Figs. 2, 6, 7 and 9. Note that LLK generation and transmission is gated and encrypted
by the MA𝑁𝐴/𝐴 and SKG𝑁𝐴/𝐴 functions. Therefore, the adversary must first defeat these security
functions to extract response-based bitstrings, namely LLKs, from the PUF.

The following sequence describes the attack:
(1) The device controls the start of the transaction by sending an Authentication request message

to the adversary on the right. The adversary is assumed to be in possession of the device to
initiate this request.

(2) The adversary then specifies two parameters, 𝑣𝑥 and 𝑝′𝑥 . The 𝑣𝑥 parameter specifies a 32-bit
seed to an LFSR, that is used to pseudo-randomly select a set of vectors from the Vec𝐷𝐵 . We
assume the adversary is in possession of a copy of the Vec𝐷𝐵 and algorithm used by the DUA.
The 𝑣𝑥 and 𝑝′𝑥 parameters are sent to the DUA.

(3) The device defines 𝑝𝑥 by XOR’ing the adversary-generated 𝑝′𝑥 with the output of its TRNG.
The 𝑝𝑥 parameter is used by both the DUA and adversary to seed another LFSR in the DVDiffs
module that defines the pairing combinations of DVR and DVF used to create the DVD. We

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:22 Authors, et al.

assume the adversary knows the LFSR primitive used by the device to create the DVD. The
adversary cannot, however, control the final value of 𝑝𝑥 . The 𝑝𝑥 parameter is transmitted to
the adversary.

(4) The adversary extracts the vector sequence from the Vec𝐷𝐵 using a copy of the algorithm
that the device uses. The adversary accesses an instance of the NAT𝐷𝐵 to extract timing
data for the paths tested by the vectors. Since the adversary does not have access to the TI
version of this database, he/she must create a version using simulation experiments, which
assumes he/she has layout information related to the SiRF PUF instantiated on the DUA.
The adversary constructs a 2048-byte array of SpreadFactors, SFx, from the data extracted
from the NAT𝐷𝐵 . If SiRF PUF layout information is available, the SFx may represent good
approximations to what the TI provides to the device during a genuine exchange, otherwise
the SFx are random guesses. The adversary transmits the SFx to the device.

(5) The device selects vecsx and runs the SiRF PUF in enrollment mode, HPUF𝐸 , to produce
helper data HDx. The HDx is a bitstring of length 2048 bits, which reflects which of the
device-computed DVDco are strong (1), and which are weak (0). The HDx is transmitted to
the adversary for storage and analysis.

From this description, the adversary controls the challenge sequence parameter, 𝑣𝑥 , and opti-
mization parameters, SFx, and receives a helper data bitstring, HDx, as the response. The 𝑣𝑥 can be
manipulated by the adversary to force specific paths to be timed while the SFx can be manipulated
incrementally to force weak bits to become strong, and vise versa. However, the actual response
bits are not revealed (or even computed) by the SiRF PUF. Also note that the device can limit the
rate of authentication attempts, which would limit the amount of data the adversary can collect
over a given period of time.
It is the adversary’s goal to produce an HDx bitstring that is highly correlated to the HDx that

would be produced by the device under any arbitrary challenge, as a means of spoofing the identity
of the genuine device to the TI. This requires the adversary to send accurate estimates of the SFx
to the device during the model-building phase, to enable it to learn the bit classification, weak or
strong, corresponding to each of the 2048 DVD𝑐𝑜 .

The effectiveness of the model-building attack can be evaluated during the verifier authentication
stage, where the device compares the HDx bitstring input by the adversary with the version it
creates internally. The adversary again controls the 𝑣𝑥 and SFx transmissions to the device but
must now provide an HDx that is highly correlated to HDx produced internally by the device. To
date, we have been unsuccessful in attempts to carry out this type of attack.
Session key generation, SKG𝑁𝐴/𝐴, is gated by the success of verifier authentication and is not

performed unless the adversary succeeds in convincing the device it is communicating with an
authentic server. Although response bitstrings are sent in the clear over the network for SKG𝑁𝐴/𝐴,
the gating of this operation by MA𝑁𝐴/𝐴, the size of the CRP space and the lack of control over the
parameter 𝑝𝑥 will make it difficult to gather sufficient information to build an accurate model. If
the adversary instead just eavesdrops on genuine device-TI authentications, the adversary will be
tasked with identifying data communicated to/from a specific device because the MA𝑁𝐴/𝐴 functions
are privacy-preserving, and therefore, they do not reveal the identity of the device in the exchanged
messages.

8.3 Protocol Attacks
The security properties of MZT enrollment operation (Fig. 2), as well as all communication between
customer devices and the TI during the bootstrap, withdrawal and deposit transactions utilize

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2023.

PUF-Based Digital Money with Propagation-of-Provenance and Offline Transfers Between Two Parties 1:23

MA𝑁𝐴/𝐴, and therefore, they inherit the security properties of the TB functions, which were covered
above in the context of model-building attacks.

8.3.1 Process Integrity and Side-channel Attacks. The HOSE provides a secure environment in the
programmable logic (PL-side) of the FPGA which acts as a trusted execution environment (TEE).
As such, the HOSE embeds secrets that the untrusted processor-side cannot access and serves as
the primary mechanism to prevent duplication and double-spending of eCt. Access is managed
through two 32-bit memory-mapped registers that expose a limited API to the ARM CPU, where
only high-level protocol relevant methods are exposed, eliminating side-channel attacks. Unlike a
typical TEE where asymmetric keys are used, remote attestation in the HOSE relies on material
injected by the TI after the successful negotiation of strong PUF-based authentication. In particular,
entries in the 𝑃𝑂𝑃𝐷𝐵 are created by the TI and cannot be modified arbitrarily by other sources
except by the HOSE itself in a prescribed manner dictated by the protocol execution steps.

8.3.2 Exfiltration of Secrets. Both the MZT_AT𝐷𝐵 stored with the ARM processor and the 𝑃𝑂𝑃𝐷𝐵

stored in the HOSE could be subject to key exfiltration attacks. Both databases are protected by
encrypting the key material with a single-use PUF response. In Step 6 of the MZT protocol, a shared
key is created by XOR-combining a ZHK𝑦 key stored in the MZT_AT𝐷𝐵 for customer 𝑦 and a SiRF
PUF regenerated key (LLKMZTx), which is unique for every entry in the database. The HOSE is
similarly configured, with a unique 𝐿𝐿𝐾𝑥 generated from a unique challenge𝐶ℎ𝑙𝑛𝑔𝑋𝑥 per database
entry. The 𝑃𝑂𝑃𝐷𝐵 within the HOSE is additionally protected via API restrictions, which do not
contain software calls to read or replace keys, thus limiting the threat landscape to device physical
attacks.

8.3.3 Double-Spend Attacks. Alice is tempted to double-spend in an offline context. Two scenarios
are possible, one where Alice sends an identical token to Bob twice, and the other where Alice
sends an identical token to Bob and Charlie. The design and use of the HOSE as described in
Section 5.3.3 and Fig. 8 guards against both attacks. Here, we rely on the integrity of the HOSE,
which is equivalent to a trusted execution environment where the ordering of operations and their
trusted execution is guaranteed. In Step 7 of Fig. 8, Alice securely deletes eCt (by writing zeros to
memory) upon receiving an ACK from Bob. This ensures that tokens are destroyed upon transfer
and cannot be used in a later transaction. In future, we can consider certain PUF properties to
further strengthen this protection.

8.3.4 Replay Attacks. Replay attacks are mitigated via a key refresh mechanism embedded within
the protocol. In Step 6 of the protocol (Fig. 8), Bob encrypts and transmits a new challenge to Alice,
𝐶3. In Steps 7 and 8, Alice decrypts the challenge, generates a new response and associated helper
data, 𝑃𝑂𝑃 ′

𝐴𝑏
, 𝐻𝐷𝐴 and transmits an encrypted version (encrypted with the original 𝑃𝑂𝑃𝐴𝑏) back

to Bob, who stores an encrypted version in his POP database (𝑃𝑂𝑃𝐷𝐵). Both Alice and Bob will use
𝑃𝑂𝑃 ′

𝐴𝑏
as the session key for the next transaction. An adversary attempting to replay the transcript

of a prior transaction would not know the new session key and would not be able to encrypt or
decrypt packets.

8.3.5 Man-in-the-Middle (MITM) Attacks. The protocol relies on pre-shared keys to transfer sen-
sitive information. We can observe that all messages transferred over the insecure channel are
encrypted, and each stage of the protocol, be it withdrawal, transfer or deposit, begins with a
mutual authentication and session key negotiation step. Unless an adversary has prior knowledge
of the keys gleaned from other attacks described herein, it cannot extract any new information
from Alice or Bob. Ergo, the adversary can only perform a denial of service (DoS) attack at best in
which case the protocol simply aborts.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:24 Authors, et al.

8.3.6 Device Attacks. Certain physical attacksmay still be possible with the current implementation.
One possible vector is a NAND mirroring attack, whereby a copy of the NVM eCt𝐷𝐵 is made while
the device is at rest. After a transaction, the copy is restored, reflecting the prior token state.
This malicious operation is equivalent to double-spending because it restores eCt that Alice has
just transferred to Bob. While the double-spend attempt will eventually be detected during a
deposit sequence, and further only one device will succeed in making a deposit, devices in the field
participating in offline, transitive payments will still be defrauded. A second possible vector is a
fault injection attack, whereby a fault is injected into Alice’s device to prevent deletion of eCts
after the transfer to Bob is complete. While it may be difficult to pinpoint the precise fault location
in the FPGA fabric, a fault could be injected in the NVM controller itself. In both cases, the root
cause stems from the inability of the device to maintain a trusted state across power cycles. We
aim to investigate possible solutions for this attack in future work.

9 SUMMARY AND CONCLUSIONS
A PUF-Cash protocol is proposed, and assessed in FPGA hardware experiments, that leverages two
novel security protocols, called propagation-of-provenance (POP) and mutual-zero-trust (MZT),
both of which can take place exclusively between two untrusted parties and both constructed to
eliminate the need to interact with a trusted authority. POP is applied in this paper to secure the
propagation of eCash tokens (eCt) from one customer to another. It leverages the exponential
challenge-response space of a strong PUF, called the SiRF PUF, to allow recipients of eCt to
authenticate their origin back to the token issuing authority. Successive hand-offs between devices
utilize the combination of the payer’s SiRF-instantiated device and the recipient’s stored PUF
responses to authenticate eCt signatures.

A hardware-obfuscated secure enclave (HOSE) is introduced as a means of alleviating software
security issues which are difficult to address in microprocessor environments, and as a means of
preventing end-users from attempting to double-spend the eCt which they store. The HOSE is
implemented entirely in the programmable logic of an FPGA embedded within a system-on-chip
(SoC) device. A PUF-Cash protocol implementing bootstrap, withdrawal, transfer and deposit
transactions is built on top of the HOSE, and POP and MZT protocols. Future work will investigate
database-cloning attacks, network attack scenarios, and will further explore the model-building
resistance of the SiRF PUF.

REFERENCES
[1] Nur Arifin Akbar, Amgad Muneer, Narmine ElHakim, and Suliman Mohamed Fati. 2021. Distributed Hybrid Double-

Spending Attack Prevention Mechanism for Proof-of-Work and Proof-of-Stake Blockchain Consensuses. Future Internet
11 (2021). https://doi.org/10.3390/fi13110285

[2] Urbi Chatterjee, Rajat Subhra Chakraborty, and Debdeep Mukhopadhyay. 2017. A PUF-based secure communication
protocol for IoT. ACM Transactions on Embedded Computing Systems (TECS) 16, 3 (2017), 1–25.

[3] Urbi Chatterjee, Vidya Govindan, Rajat Sadhukhan, Debdeep Mukhopadhyay, Rajat Subhra Chakraborty, Debashis
Mahata, and Mukesh M. Prabhu. 2019. Building PUF Based Authentication and Key Exchange Protocol for IoT Without
Explicit CRPs in Verifier Database. IEEE Transactions on Dependable and Secure Computing 16, 3 (2019), 424–437.
https://doi.org/10.1109/TDSC.2018.2832201

[4] David Chaum. 1983. Blind Signatures for Untraceable Payments. In Advances in Cryptology. Springer US, Boston, MA,
199–203.

[5] David Chaum, Amos Fiat, and Moni Naor. 1990. Untraceable Electronic Cash. In Advances in Cryptology, Shafi
Goldwasser (Ed.). Springer, 319–327.

[6] Wenjie Che, Mitchell Martin, Goutham Pocklassery, Venkata K. Kajuluri, Fareena Saqib, and Jim Plusquellic. 2017. A
Privacy-Preserving, Mutual PUF-Based Authentication Protocol. Cryptography 1, 1 (2017).

[7] Jeroen Delvaux, Roel Peeters, Dawu Gu, and Ingrid Verbauwhede. 2015. A Survey on Lightweight Entity Authentication
with Strong PUFs. ACM Comput. Surv. 48, 2, Article 26 (oct 2015), 42 pages. https://doi.org/10.1145/2818186

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2023.

https://doi.org/10.3390/fi13110285
https://doi.org/10.1109/TDSC.2018.2832201
https://doi.org/10.1145/2818186

PUF-Based Digital Money with Propagation-of-Provenance and Offline Transfers Between Two Parties 1:25

[8] Digilent Corporation 2023. ZYBO-Z7 Reference Manual. Digilent Corporation, Pullman, WA. https://digilent.com/
reference/programmable-logic/zybo-z7/reference-manual?redirect=1

[9] Ujjwal Guin, Adit Singh, Mahabubul Alam, Janice Cañedo, and Anthony Skjellum. 2018. A Secure Low-Cost Edge
Device Authentication Scheme for the Internet of Things. In 2018 31st International Conference on VLSI Design and 2018
17th International Conference on Embedded Systems (VLSID). 85–90. https://doi.org/10.1109/VLSID.2018.42

[10] Isaiah Hull Hanna Armelius, Carl Andreas Claussen. 2021. On the possibility of a cash-like CBDC. Technical Report.
Sveriges Riksbank Payments Department and Research Division. https://www.riksbank.se/globalassets/media/
rapporter/staff-memo/engelska/2021/on-the-possibility-of-a-cash-like-cbdc.pdf

[11] Hipp, Wyrick And Company, Inc 2023. Sqlite3 webpage. Hipp, Wyrick And Company, Inc, Charlotte, NC. https:
//www.sqlite.org/index.html

[12] Tarek Idriss and Magdy Bayoumi. 2017. Lightweight highly secure PUF protocol for mutual authentication and secret
message exchange. In 2017 IEEE Int. Conf. on RFID Technology Application. 214–219. https://doi.org/10.1109/RFID-
TA.2017.8098893

[13] N. Irtija, E.E. Tsiropoulou, C. Minwalla, and J. Plusquellic. 2022. True Random Number Generation with the Shift-
register Reconvergent-Fanout (SiRF) PUF. In 2022 IEEE International Symposium on Hardware-Oriented Security and
Trust (HOST).

[14] Özgür Kesim, Christian Grothoff, Florian Dold, and Martin Schanzenbach. 2022. Zero-Knowledge Age Restriction for
GNU Taler. Springer-Verlag, Berlin, Heidelberg, 110–129. https://doi.org/10.1007/978-3-031-17140-6_6

[15] Bin Lian, Gongliang Chen, and Jianhua Li. 2014. Provably secure E-cash system with practical and efficient complete
tracing. International Journal of Information Security 13 (2014). https://link.springer.com/article/10.1007/s10207-014-
0240-2

[16] Mahabub Hasan Mahalat, Dipankar Karmakar, Anindan Mondal, and Bibhash Sen. 2021. PUF Based Secure and
Lightweight Authentication and Key-Sharing Scheme for Wireless Sensor Network. Journal of Emerging Technologies
in Computer Systems 18, 1, Article 9 (Sep 2021), 23 pages.

[17] Mahabub Hasan Mahalat, Shreya Saha, Anindan Mondal, and Bibhash Sen. 2018. A PUF based Light Weight Protocol
for Secure WiFi Authentication of IoT devices. In 2018 8th Int. Symp. on Embed. Comp. and System Design. 183–187.
https://doi.org/10.1109/ISED.2018.8703993

[18] Md Jubayer al Mahmod and Ujjwal Guin. 2020. A Robust, Low-Cost and Secure Authentication Scheme for IoT
Applications. Cryptography 4, 1 (2020). https://doi.org/10.3390/cryptography4010008

[19] Luca Mainetti, Matteo Aprile, Emanuele Mele, and Roberto Vergallo. 2023. A Sustainable Approach to Delivering
Programmable Peer-to-Peer Offline Payments. Sensors 23, 3 (2023). https://doi.org/10.3390/s23031336

[20] Jianbing Ni, Man Ho Au, Wei Wu, Xiapu Luo, Xiaodong Lin, and Xuemin Sherman Shen. 2023. Dual-Anonymous
Off-Line Electronic Cash for Mobile Payment. IEEE Transactions on Mobile Computing 22, 6 (2023), 3303–3317.
https://doi.org/10.1109/TMC.2021.3135301

[21] Jim Plusquellic. 2022. Shift Register, Reconvergent-Fanout (SiRF) PUF Implementation on an FPGA. Cryptography 6, 4
(2022). https://doi.org/10.3390/cryptography6040059

[22] Jim Plusquellic, Eirini Eleni Tsiropoulou, and Cyrus Minwalla. 2023. Privacy-Preserving Authentication Protocols
for IoT Devices Using the SiRF PUF. IEEE Transactions on Emerging Topics in Computing (2023), 1–16. https:
//doi.org/10.1109/TETC.2023.3296016

[23] John Ross Wallrabenstein. 2016. Practical and Secure IoT Device Authentication Using Physical Unclonable Functions.
In 2016 IEEE 4th Int. Conference on Future Internet of Things and Cloud. 99–106. https://doi.org/10.1109/FiCloud.2016.22

[24] Bo Yang, Kang Yang, Zhenfeng Zhang, Yu Qin, and Dengguo Feng. 2016. AEP-M: Practical Anonymous E-Payment
for Mobile Devices Using ARM TrustZone and Divisible E-Cash. In Information Security, Anderson C A Nascimento
Matt Bishop (Ed.). Springer International Publishing, Cham, 130–146. https://link.springer.com/chapter/10.1007/978-
3-319-45871-7_9

[25] Meng-Day Yu, Matthias Hiller, Jeroen Delvaux, Richard Sowell, Srinivas Devadas, and Ingrid Verbauwhede. 2016. A
Lockdown Technique to Prevent Machine Learning on PUFs for Lightweight Authentication. IEEE Transactions on
Multi-Scale Computing Systems 2, 3 (2016), 146–159. https://doi.org/10.1109/TMSCS.2016.2553027

[26] Jingliang Zhang, Lizhen Ma, and Yumin Wang. 2007. Fair E-Cash System without Trustees for Multiple Banks. In 2007
Intl.1 Conf. on Computational Intelligence and Security Workshops (CISW 2007). 585–587. https://doi.org/10.1109/CISW.
2007.4425563

[27] Jiliang Zhang and Gang Qu. 2020. Physical Unclonable Function-Based Key Sharing via Machine Learning for IoT
Security. IEEE Transactions on Industrial Electronics 67, 8 (2020), 7025–7033. https://doi.org/10.1109/TIE.2019.2938462

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2023.

https://digilent.com/reference/programmable-logic/zybo-z7/reference-manual?redirect=1
https://digilent.com/reference/programmable-logic/zybo-z7/reference-manual?redirect=1
https://doi.org/10.1109/VLSID.2018.42
https://www.riksbank.se/globalassets/media/rapporter/staff-memo/engelska/2021/on-the-possibility-of-a-cash-like-cbdc.pdf
https://www.riksbank.se/globalassets/media/rapporter/staff-memo/engelska/2021/on-the-possibility-of-a-cash-like-cbdc.pdf
https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://doi.org/10.1109/RFID-TA.2017.8098893
https://doi.org/10.1109/RFID-TA.2017.8098893
https://doi.org/10.1007/978-3-031-17140-6_6
https://link.springer.com/article/10.1007/s10207-014-0240-2
https://link.springer.com/article/10.1007/s10207-014-0240-2
https://doi.org/10.1109/ISED.2018.8703993
https://doi.org/10.3390/cryptography4010008
https://doi.org/10.3390/s23031336
https://doi.org/10.1109/TMC.2021.3135301
https://doi.org/10.3390/cryptography6040059
https://doi.org/10.1109/TETC.2023.3296016
https://doi.org/10.1109/TETC.2023.3296016
https://doi.org/10.1109/FiCloud.2016.22
https://link.springer.com/chapter/10.1007/978-3-319-45871-7_9
https://link.springer.com/chapter/10.1007/978-3-319-45871-7_9
https://doi.org/10.1109/TMSCS.2016.2553027
https://doi.org/10.1109/CISW.2007.4425563
https://doi.org/10.1109/CISW.2007.4425563
https://doi.org/10.1109/TIE.2019.2938462

	Abstract
	1 Introduction
	2 Previous Work
	2.1 Mutual Authentication and Session Key Exchange
	2.2 Electronic Money

	3 Hardware Security Primitives
	3.1 SiRF PUF Architecture
	3.2 Challenge and Response Construction
	3.3 Strong Timing-Based Authentication and Key Generation Protocol Primitives

	4 Mutual-Zero-Trust Protocol
	4.1 MZT Enrollment Operations
	4.2 MZT In-Field Operations

	5 PUF-Cash Protocol
	5.1 PUF-Cash Overview
	5.2 Propagation of Provenance (POP) Qualities
	5.3 PUF-Cash Protocol Details

	6 Experiment Setup
	6.1 Device Resource Utilization
	6.2 Database Size Overhead

	7 Experimental Results
	7.1 Run Time Analysis
	7.2 POP LLK Statistical Analysis

	8 Security Analysis
	8.1 CRP Space Analysis
	8.2 Model-Building Attack Analysis
	8.3 Protocol Attacks

	9 Summary and Conclusions
	References

