Sourcing Trust From Peers with Physical
Unclonable Functions

Md Sadman Siraj*, Aisha B Rahman*, Cyrus Minwalla®, Eirini Eleni Tsiropoulou® Senior Member, IEEE,
Jim Plusquellic*, Senior Member, IEEE
{mdsadmansiraj96, arahman3, eirini, jplusq} @unm.edu*, cminwalla@bank-banque-canada.ca'
*Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, USA
tFinancial Technology Research, Bank of Canada, Ottawa, ON, Canada

Abstract—Traditional authentication schemes rely heavily on
trusted third parties that act as certificate authorities to source
authentication credentials. In this paper, we describe an offline,
end-to-end mutual authentication and session key generation
protocol, called PUF-based Peer Trust (PPT), where authenti-
cation and session key generation between two parties (Alice
and Bob) is implemented using physical unclonable functions
(PUFs) and authentication information from neighboring peer
devices (Charlies). Trust among the parties is established by
defining an effort-reward model based on Contract Theory that
leverages the trust beliefs provided by a set of peer devices.
Alice autonomously selects a set of trusted Teds from the set
of untrusted Charlies using a reinforcement learning algorithm
based on Stochastic Learning Automata. These Teds participate
in a peer trust authentication process designed to help Alice
decide if Bob is trustworthy. The Teds are incentivized to provide
accurate information (effort) via a reward system based on trust
scores. Alice computes a personalized trust belief distribution
for all the Charlies and utilizes it to eventually update the trust
scores of the selected Teds based on their contribution to Bob’s
authentication process. An experimental evaluation of the model
is carried out using a set of PUF-instantiated FPGAs. Detailed
numerical results are presented demonstrating the effectiveness
of the proposed scheme and its ability to correctly decide if Bob is
trustworthy based on incomplete information provided by peers.

Index Terms—Peer Trust, Contract Theory, Reinforcement
Learning, Physical Unclonable Functions, Internet of Things.

I. INTRODUCTION

The convergence of ubiquitous networking, cloud comput-
ing, and embedded intelligence has led to the rise of edge com-
puting and the Internet of Things (IoT). Applications for IoT
range from home to industrial automation, from local sensor
networks to vehicle-to-vehicle (V2V) communications. New
challenges emerge as networks evolve from local, constrained
environments to large, heterogeneous ecosystems, where the
cardinality and capability of individual nodes are always in
flux. Maximum utility is derived if the ecosystem can share
sensitive information, such as healthcare or payments data.

To achieve this, nodes must use a trust framework to
authenticate each other and rely on secure communication
channels to transfer information. Centralized approaches, such
as standards and certificates, solve the problem but require
an established infrastructure to function effectively. Local
methods of deriving trust between devices are needed for large,
heterogeneous networks where nodes vary greatly in compute
power, communications protocols and standards compliance,

as certain nodes may not be registered or may be incapable
of participating due to sporadic connectivity or insufficient
compute power.

Distributed approaches can be effective at establishing
trust, the most promising of which is the crowd-sourced
trust model, where trust between two IoT devices is derived
from transient neighbouring nodes available at that point in
time, despite their hardware configuration, compute power and
protocol support. Robustness of the method is enhanced if
differences in configuration and capability contribute to the
derivation of the final trust score, used as a proxy for the
level of trust. Additionally, devices should be able to ascertain
if the participant is honest or malicious, as an adversary
could introduce malicious nodes masquerading as honest ones.
Crowd-sourced approaches can be augmented by fusing the
protocol with a local, hardware-based root of trust, such as a
physical unclonable function (PUF). Equivalent schemes can
be constructed from asymmetric encryption algorithms such
as Diffie-Hellman and elliptic curve cryptography, but they are
not lightweight and necessitate the use of secure hardware to
store the key securely at rest. The composition of two distinct
controls enables defense in depth, significantly improving the
security posture in scenarios where connection to a remote
trusted authority may be unavailable.

A. Contributions

Presented in this work is a contract-theoretic mechanism
based on incentives for building trust between two devices
(termed Alice and Bob) operating in a large, heteroge-
neous network of IoT nodes. These nodes transact frequently
amongst each other using local connectivity, as access to a
trust authority is assumed to be sporadic and unpredictable.

The approach is distinct from traditional blockchain solu-
tions in that the final outcome (consensus) is local to Alice
and Bob and not a common state shared with all nodes in
the system. Furthermore, by relying on simple metrics that
all nodes possess, the model establishes independence from
the underlying hardware and communications architecture,
and is therefore compatible with a wide variety of applications.
Crucially, the approach is compatible across network bound-
aries and can bind cross-network devices in a common trust
framework, a property not commonly seen in other approaches.
Highlights of the scheme are as follows:

o The paper introduces a peer-to-peer authentication pro-
tocol designed to facilitate the secure information trans-
actions between two parties: Alice and Bob. The system
relies on a set of local devices, referred to as Charlies,
which act as intermediates to authenticate Alice and Bob.
The trust between these peers is established through a
unique method that uses authentication tokens issued by
a trusted authority.

« The proposed protocol introduces a novel offline contract-
theoretic (CT) mechanism for selecting the most trusted
peers among the set of nodes. The model derives trust
in an ad-hoc fashion by crowd-sourcing locally adjacent
nodes while staying robust against malicious behavior.

o The CT protocol is fused with an authentication protocol
using strong PUFs implementing low-level authentica-
tion functions. In particular, the PUF is the hardware
authentication source (a local root of trust), while the CT
mechanism authenticates based on past behaviour. This
two-factor approach significantly improves the resilience
of the protocol against adversarial attacks.

o The protocol was implemented and experimentally vali-
dated using representative hardware. Results suggest that
the protocol is effective at maximizing social welfare
while penalizing malicious nodes. While tested with a
specific PUF, it is compatible with any strong PUF.

B. Related Work

Distributed and decentralized trust models are an emerging
topic of interest in IoT environments, especially in indus-
trial IoT systems [1]. A trust-based certificate management
framework for industrial IoT networks is introduced in [2]
using a clustering architecture, signaling game theory for
certificate revocation, and an efficient short-lived certificate
verification scheme. A similar dynamic trust management
model is proposed in [3] to enhance the security, adaptiveness,
and resiliency in managing industrial data. A trust-preserving
mechanism for mobile crowd-sensing that uses probabilistic
trust assessment is analyzed in [4] to enhance the blockchain
transactions by filtering untrusted nodes and ensuring the
system’s reliability. A mobile edge computing-based trust
evaluation scheme is presented in [5] based on a probabilistic
graphical model to assess and manage the sensor nodes’
trustworthiness and enhance the reliability in smart industrial
IoT systems. The authors in [6] follow a game-theoretic
approach to incentivize facility nodes and ensure trustworthy
service provisioning in dynamic mobile IoT systems via ac-
counting for varying trust scores and service charges. Toward
jointly optimizing the resource allocation, network security,
and device collaboration in IoT systems, the authors in [7]
propose a reputation-based evaluation mechanism combined
with the blockchain technology that deals with the information
asymmetry among the IoT devices. Toward ensuring trust
and fair reward distribution among edge servers, the authors
in [8] present a decentralized edge computing platform that
integrates blockchain technology and enhances the IoT system
performance. A semi-centralized trust management system
for IoT data exchange is proposed in [9] by leveraging the
blockchain technology and a novel rotation-based consensus

protocol to enhance the reliability and address the challenges
posed by malicious devices.

Several other fields, such as crowdsourcing [10], internet
of vehicles [11], aerial communications among unmanned
aerial vehicles [12], sensor networks [13], have established
trust models to ensure reliable information exchange among
untrusted entities. A mutual authentication protocol for IoT
edge systems using Physical Unclonable Functions (PUFs)
is designed in [14] to ensure the robust security against
various cyber threats while minimizing the computational and
hardware overhead. Similarly, a noise-tolerant authentication
protocol based on the PUF Phenotype concept is designed in
[15] to enhance the security and performance in IoT networks
by leveraging machine learning techniques for authentication
rather than traditional error correction methods. A hybrid
consensus mechanism combining Proof-of-Stake and Practical
Byzantine Fault Tolerance is analyzed in [16] to enhance
the performance and resilience against dishonest nodes by
incorporating trust scores and rewards. A database of 10,000
vulnerable finite state machine designs is populated in [17] to
enhance the trust in hardware security by efficiently generating
and detecting vulnerabilities through large language models. A
decentralized trust management system based on blockchain
technology is analyzed in [18] for intelligent transportation
systems by using a transparent, consensus-based evaluation
model and trusted execution environments.

Despite the research efforts identified in the literature,
existing trust models in IoT often rely on centralized systems
or blockchain and consensus mechanisms. As such, they face
challenges related to computational demands, network diver-
sity, and scalability. Our proposed research work addresses
these gaps by introducing a contract-theoretic trust model that
uses Stochastic Learning Automata and Bayesian methods for
decentralized, cross-network trust management. This approach
enhances trust-building between IoT devices while minimizes
the reliance on centralized infrastructure and accommodates
diverse network environments. Specifically, our approach is
tailored to scenarios where devices spend a considerable
amount of time in local communications with each other, with
infrequent connections to a remote service.

The rest of the paper is organized as follows. Sections II-B
and II-C introduce the device level authentication model with
physical unclonable functions (PUFs) as the root of trust. The
contract-theoretic model is outlined in Section III. Section IV
describes the experiments and includes a sensitivity analysis,
Section V presents a security analysis, followed by the con-
clusion in Section VI.

II. PEER TRUST PROTOCOL
A. High Level Overview

The protocol is divided into an initial provisioning phase
executed once and a repeatable in-field authentication phase
where two devices (Alice and Bob) authenticate each other
by sourcing information from their neighbours. During provi-
sioning, devices are enrolled by the Issuing Authority (IA) in
a trusted secure environment. A PeerTrustpp is created per
device to bootstrap the initial authentications. This database is
updated during successive in-field authentications, which has

C: Ciphertext [x,y]: Concatenation of x and y
Yegeior»: PUF random vec. seed Chlng, = {v,, AN, SF,}

MA: Mutual Authentication AN: Authentication nonce

HPUF{c,): HPUF response to ching.
SPUF{(c,): SPUF response to ching.
<Key>XOR(): XOR with <Key>

SF: Spread Factors
SK. : Session Key

<actor>

Huash(): Hash function

Lo persistent memory where
Chlng s :=vy

o

GenNonce: TRNG nonce gen. SKG: Session Key Generation <Key>.Enc(): Encypt with <Key> ID_, 1o~ Customer ID
KK _yctor>- KEK Authen. key HK . ~: Hashed Authen. key <Key>.Dec(): Decrypt with <Key> HD_, .~ Helper Data
Alice IA Charlie; Charlie, Charliey
vee, @ MA & SKG ! ! !
select VECn SK/\ 1 SK#‘\ 1 : :
= 1 1
! P VA= GenNonce() 1 : |
ll L} 1
@ Veens i C| :=SK,.Enc(vy)) . E E
e i ' i
vap :=5K4.Dec(Cy) — MA &:SKG ! !
1] 1
(KK HD,) = : SKpy 47> SKie : !
1 4 » 1
HPUFy({vecs)) : ® > SKx |
@ ' “ i > SKpy
1 1 1 1
Hy oy Nay | i= SK 4 Dec(C,) | |
Loop: E Hian A;‘D u A noms v {Hgax, Day) = SKyy Dec(Cy) :
Ny, = GenNonce() ! @ K. T k . ! :—‘\‘ ‘_‘r“\‘
— ! KAl Al ! ' '
Hg ax == Hash(KK 4. XOR(ns) 1 NERDE A Hgalng| b | AlHgas|ns| P | A[Hgas|ns
O Seatneliica. n,\‘l)c E A | Heas|nas| | 1 [BIHkein2| ¢ [B|Hkpo|ne @ |B|Hgps|ne
2 ' - - | ' '
—1 ! $! $: $! §
Ali (Chlng,,. HD,,) PeerTrustpy : !
Alice stores {Chlnga ;. . H
ga1- HDay E Cy = SKyy Ene([ID, Hy oo ”A‘])E PeerTrustpp E PeerTrustpy E PeerTrustyp
i i i i
1

Fig. 1: Peefr Trust message exchange diagram for prévisioning.

three major stages: Available Charlies are down-selected using
a combination of PUF authentication and Contract Theory,
culminating in an optimal set of high-trust Teds that possess
authentication information on Alice and Bob. This is followed
by a mutual PUF-based authentication attested to by the
selected Teds. The protocol culminates in Teds generating
session key shards for Alice and Bob’s shared session key.

B. Provisioning

The Peer Trust enrollment process is illustrated as a message
exchange diagram in Fig. 1. Provisioning requires each of the
devices to generate authentication tokens (AT) and securely
transmit them to the Issuing Authority (IA). During provision-
ing, the customers, Alice, Bob, etc. obtain a set of challenges
from the IA. These challenges are used to generate a master
key KK 4, which provides the entropy (randomness), along
with a nonce n,, for the authentication tokens (AT) used in
the interactive portion of the Peer Trust protocol. Devices may
return for re-provisioning once ATs are exhausted.

The annotations MA and SKG denote mutual authentica-
tion and session key generation respectively. A third PUF-
based security function (PUF-SF) is used to generated LLK
bitstrings, which embed PUF-based security properties into a
set of lightweight tokens (ATs) used in the Peer Trust protocol.

The following describes the sequence of steps that customer
devices follow to generate the ATs, deliver them to the IA and
then have TA distribute unique sets to other customers.

1) A customer, Alice, Bob, Charlie, etc. (labeled Alice in
the figure) mutually authenticates and generates a unique
shared session key SK 4, with the Issuing Authority (IA)
using the PUF-SF functions.

2) IA generates a challenge seed v 41, encrypts it with SK 4
and transmits the packet C; to Alice.

3) Alice uses the seed v4; to extract a set of vectors vecs
from the Vecpp, which stores a shared master set of
challenges that she received during provisioning. She
applies the vectors to her hardware PUF, HPUFFE in
enrollment mode to generate a long-lived key, K K 4; and
helper data HD 4.

4) Alice generates a sequence of authentication tokens (AT)
by calling the TRNG associated with her PUF. Each
call generates a nonce ny4, that she XORs with K K 41,
and then hashes to produce Hp 4,, which refers to the
keyed-hash output. H 4, along with the nonce n 4, are
encrypted with SK 4 into packet C5 then sent to IA.

5) IA decrypts the packet and stores Alice’s ID A, Hy 4,
and n 4, in the PeerTrustpp. Steps 4 and 5 are repeated
n times enabling IA to store a sequence of authentication
tokens for Alice.

6) Customer devices, referred to as Charlies, request sets of
authentication tokens from IA. They each mutually and
privately authenticate and generate shared session keys,
SKrpy.

7) IA reads a set of unique ATs from the PeerTrustpp, one
AT for each of the provisioned devices. It then encrypts
the token along with the device ID as C'3 and transmits
the packet to Charlie,. Although not shown, the set of
ATs are deleted from the IA database to ensure that they
are not reused for other devices. Charlie, decrypts the
packet and stores the AT information in its PeerTrustp .

' Ciphertext fx,]: Concatenation of x and y HPUF(c,): HPUF response to chlng.

GenNeonce: TRNG nonce gen. Hpcyerors: Keyed Hash <Key>.Enc(): Encypt with <Key>

KK ot KEK key Hash(): Hash function <Key>.Dec(): Decrypt with <Key>
Bob Alice Charlie,.Charlie,, ..., Charlie,,

Ted selection and authentication

| Down-select Teds |

nsk_-l = [-[ku_i_DecEC‘_i)

SK,p = nsk; XOR nsk> XOR nsksy ...

)

P
]] T
@ REQ Peer Trust Authen., Exchange IDs : ! Ted, ! Ted, ! Teds
- 1
Broadcast Alice/Bob IDs; - AlHpqmy X AlHggp[ma| | Al Hy3)ns
Select Ted, from larger o @ — [B[Hgpyma| | | B|Hygoina| | B Hypsng
set of Charlie, (Contract Theory) . : ! [! 3
. : : H : H : a
Ci|Hi1 [71 (% Update Bob’s ATy if acc L | :
Ca|Hyo |no o ® i 1 KK :=HPUFicy) '
i 1! i+ Hy; == Hash(KK ; XOR(n;)) '
: : : n,; := GenNonce() @ :
! c ' Hy,j := Hash{KK; XOR(n)) 1
! . 1 [| "_ N ; 1
{Hkl| . } = Hkl| D‘EC((I: "I " Bob and Alice N C.i - Hkl.i'Enc([Hklii' T ”.i]J :
acdrEJ = (ﬂ_| ==1’;) 1 repeat for each Ted; . : : :
! '] 1
Bob & Alice authentication L ! :
KK,, := HPUF(cy) ; o n :: GenNonce(l} :
NI 6 @ |l CHymy; e
for(j=1.23...) . ' : " v
Hyy, = Hush(KKb XOR(n)) o ! :
for (j=123...) : . | :
'y := GenNonce() ! Vo I i
Hyhy = Hash(KKp, XOR(n'})) g ® o : : . oee
C; = Hyp; Enc([Hyy,. '}, n;]) — b1 {Higy g npy) : = Hy.Dec(C;) (10) :
1 Alice compares number 1 1 acclrej = (n;==np;) |
 of “acc’ to threshold | 1 Update Ted; ATpp with {Hyp,y. n'j] if ace
! -1 4 Z 4 L1
1 . [} 1 1
— acc/rej ‘j Repeat for Alice ! !
! [| | 1
Bob & Alice shared key generation Ul ns 2= GenNDnce{) '
for(j=1.2.3..) h C; 1+ Cj=HygEnc(nsk) I
nsk; := Hyy,.Dec(Cy) r—l @ I “ . ese
SK,, = nsk; XOR nsk,){OR nsks ..) o ! '
cr.v 1+ C=H Encinsk;) 1
for(=1,23.) @ T b oee
' :
1

Fig. 2: Peer Trust message exchange diagram for in-field authentication and session key generation.

C. In-Field Authentication and Session Key Generation

The message exchange sequence for the In-Field version
of the Peer Trust Protocol is given in Fig. 2. The goal of
the protocol is to enable Bob to select a set of trusted peers
(Ted;) who will serve as the authenticators for Alice and Bob,

e., to provide corroborative evidence to Alice and Bob that
they are who they say they are. Alice (the payer) starts the
Peer Trust In-Field exchange by contacting Bob to engage
in a transaction. For example, Alice may wish to make an
eCash payment to Bob for a product or service. Bob, as the
recipient of the payment must select a set of trusted Ted;
from surrounding nodes to authenticate Alice. To do so, he
broadcasts a message requesting PeerTrust to local neighbours
along with his and Alice’s ID. A set of locally connected
peers, referred to as Charlie;, respond if they possess ATs
for both Alice and Bob. Bob then runs a contract-theoretic

algorithm (CT) to down-select to a set of trusted peers,
referred to as Ted;. The following provides details regarding
the authentication component of the protocol. A description
of the CT algorithm is presented later in Section III. Note
that each pairwise communications link (Alice-Bob, Alice-
Ted;, Bob-Ted,) is a distinct channel and all packet encryption
operations use AES-256 in CBC mode.

1) Alice contacts Bob to pay for a product or service. Alice
and Bob exchange IDs.

2) Bob broadcasts to the community of locally connected
devices, Charlie; a message containing Alice and Bob’s
IDs. A set of Charlie; devices that possess ATs for both
Alice and Bob acknowledge that they can assist Bob.

3) Bob consults his PeerTrustpp and selects a subset of
Charlie; for which he has ATs. Bob then runs a contract-
theoretic Peer Trust algorithm to down-select further

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

to a set of the most-trusted Ted; from the Charlie;
devices (Section III). Bob communicates with Alice to
determine if she has AT for each of Bob’s selected Ted;.
Authentication fails if either Peer Trust fails to find a
sufficient number of trustworthy Teds or if Alice does
not possess ATs for the selected Teds.

Then, Bob extracts the n; nonces for each selected Ted;
and transmits the matching nonce to each Ted;.

Each Ted; hashes the received n; with their PUF-
generated LLK, K K;; to produce a response Hj;;, and
then proceeds to generates a new AT for the next authen-
tication operation. Each Ted; generates a new nonce 7,
using a PUF-based TRNG and then hashes it with K K;
to generate Hy,;. The original nonce and new AT are
encrypted with Hy,; and transmitted to Bob.

Bob receives each of the C; encrypted packets from
the Ted;, decrypts them using his database-stored Hi;
and then compares the original n; with the decrypted
version n; For every match, the corresponding Ted; is
authenticated and a secure channel established between
Ted; and Bob. Alice and Bob repeat Steps 4 through 6
for all Teds selected by Bob.

Bob & Alice authentication: Once all Ted; authentica-
tions succeed, Alice and Bob may proceed to authenticate
each other using the ATs supplied by each Ted;. Each
Ted; generates a nonce, n;, and transmits it to Bob over
the secure channel. Bob uses his stored challenges cp to
generate his LLK K K, and decrypts the nonces received
from the Teds. He constructs a shared session key, Hyp;
for each Ted;.

To refresh ATs for the next authentication, Bob generates
a new nonce, n;, XORs it with his PUF response and
hashes the result to generate a new session key, Hygp,.
Bob then constructs a packet, per Ted;, containing the old
nonce, n;, the new nonce, n;-, the new session key Hyp,,
encrypts it with Hy;; packet and transmits the resulting
Cjs to each Ted;.

Each Ted; receives the packet, decrypts it using Hyp;,
compares the decrypted np; with the previously sent
nj. A successful decryption and comparison denotes
a successful authentication, as only Bob’s PUF could
have produced the unique Hyp; in Ted;’s database. Once
authentication succeeds, each Ted; updates Bob’s entry
in its database with the new AT tuple Hyp, and ”3 Each
Ted informs Alice of Bob’s authentication status.

Alice compares the number of successful authentications
against a threshold. Bob is authenticated if the number of
successful Teds is above the threshold. Steps 7 through
11 are repeated to authenticate Alice. The protocol aborts
if either authentication attempt fails.

Shared Key Generation: Once authentication is success-
ful, each Ted; generates a new nonce, nsk;, encrypts
them with Alice and Bob’s AT-generated session keys,
Hyq; and Hyyj, and transmits the encrypted packets C
and C; to Bob respectively. Bob decrypts the nsk nonces
and XORs them together to derive the session key S K.
Alice does the same to obtain the identical session key
S K 4. Alice and Bob are now authenticated and can now

communicate over a secure channel.

III. PEER AUTHENTICATION WITH CONTRACT THEORY

Peer trust plays a critical role in offline ad-hoc networks,
where a central authority for customer identification, authen-
tication, and confidential transactions may be absent. Trust is
established by crowd-sourcing peer information, supplemented
with updated information from their last online interaction
with the central authority, i.e. the IA. The proposed model uses
an effort-reward-based contract-theoretic model to incentivize
peers, denoted as Ted;, to report accurate data. In offline value
transfer transactions, such as electronic money transactions,
where Alice transfers funds to Bob, Bob relies on peer trust
information to verify Alice’s trustworthiness. To build this
trust model, Bob engages with a set of peers and performs
the following actions:

1) Bob broadcasts a request to nearby peers, Charlie;, within
the offline local network, asking if they possess authen-
tication tokens (ATs) for Alice and Bob. He collects the
network IPs of responders.

2) Bob measures the transmission delay (distance) and
workload (compute_congestiony,) for each Charlie; us-
ing a sequence of trial AES encryptions. He combines
this data with their trust levels (T'LC)) as provided by the
central authority during Bob’s last online session.

3) Bob selects a subset of trustworthy Charlie;, called Ted;
to assist in the authentication process. The subset size
NT depends on the transaction’s value, with higher-value
transactions requiring more Ted;.

4) Using a stochastic learning automata (SLA) algorithm,
Bob evaluates possible subsets of Ted; based on trust
metrics (PF) that integrate current beliefs and perfor-
mance data, as defined by Eq. 2.

5) Bob applies a Bayesian trust model to refine his trust
beliefs about Ted; based on historical transaction data,
providing probabilistic trust estimates in incomplete in-
formation scenarios.

6) Bob optimizes a reward contract for Ted; by pairing
their perceived effort with corresponding rewards. The
rewards adjust Bob’s historical trust records for Ted; to
incentivize their continued participation.

7) If Bob collects enough ATs to meet the authentication
threshold, Alice is authenticated, and the session key
generation begins. Otherwise, the protocol is aborted.

8) Bob updates transaction records (TR) in the PeerTrustp 5,
capturing trust scores and beliefs for each Ted;. These
records are periodically synced with the IA when Bob
regains internet access, enabling centralized updates to
the PeerTrustpp.

The ground truths beliefy for trust levels in the algorithm
are derived from Bob’s interactions with the IA. Bob provides
transaction records reflecting whether the Teds he interacted
with delivered valid AT during authentication. The IA aggre-
gates Bob’s data with input from other devices, leveraging
its global perspective to collect trust data from all customer
devices. After computing the updated ground truths based on
these interactions, the IA supplies them to Bob, enabling their
use in his subsequent offline transactions. In some scenarios,

the IA can also be directly involved with updates to customer
ground truths. For example, in an electronic cash scenario,
Alice’s trust score could be updated positively or negatively
based on whether the electronic tokens that Bob receives are
authentic or counterfeit.

Initially, all entities in the ad-hoc network possess the
same trust belief distribution beliefy, which represents the
contribution that each entity can provide to assist with the es-
tablishment of secure transactions between pairs of entities in
the network. Each entity can potentially provide a satisfactory
(S;-) or unsatisfactory (F jt) contribution to the crowdsourcing
process with a probability P; and Py, respectively. Bob’s
posterior belief based on the Ted; provided contribution in
the t*" transaction is derived from the Bayesian trust belief:

belief!

ombo[k][j] —
t t
beliefOst(1- P (1)
belie foPs> (1 — Py)% + (1 — beliefo) P} (1 — P)Fs

The SLA algorithm is charged with finding a subset of
Charlie;, that achieves a near optimal personalized feed-
back or PF level. To accomplish this, it first constructs
an array of all possible combinations of Ted; subsets of
Charlieg, ie., NCC = (’j) = #l]),, and then ran-
domly explores the combinations in this space, comput-
ing a PF for each combination using Eq. 2. Here, NT
represents the number of Ted; that Bob wishes to select,
NC' is the total number of Charlie; that possess ATs for
both Alice and Bob, and beliefcombo[n][j]’ TLCcombo[n][j]7
compute_congestion compolr)[j]» 4SLANCEombolx][j] aT€ BOb’s
belief, the Charlie trust information as it was received from
the central authority the last time that Bob was online, and
the current workload on the device k and norm_distance for
a specific combinational subset x of Charlie. The parameter
norm_distance is defined as the measured distance, divided
by the sum of the distance; for all Charlie,. The SLA is
configured with a learning rate parameter that controls how
much of the search space is explored and evaluated before
making a selection (details are provided in [19]).

belie feombolx][j] X T LC combolx][4]
compute Congestioncompolr]il X A1SEANCEcombolrli
PF = E bo[x][4] bo[x][5])

Z belie fi, X TLCy,)

“ compute_congestiony Xnorm_distancey,

2

After Bob selects the set of Teds who will support Bob’s
decision in terms of trusting (or not) Alice, Bob considers the
belzefmmbo []15] for the selected Ted and assigns a type type;
to the Teds that supported Bob’s crowdsourcing process based
on the normalized belie f. Based on the assigned type; and the
effort provided by each Ted, Bob executes a contract-theoretic
model (details are provided in [20]) to determine the optimal
reward; provided to each Ted. Considering the reward; and
the belie f that Ted; had about Bob as received from the central
authority the last time Bob was online, Bob updates offline

its trust level TLCcombo[/{][g] to Ted;, as TLCcombo[n” =
TLCOld

eombols][j]+a[reward -belie feombolj)jx]]» Where o € RT
is a tuning parameter allowing Bob to welgh more (or less)
the trust level stemming from the central authority or from the

offline transactions with Ted;. Then, Bob utilizes the updated
TLC compolx)[j] Values to reselect Ted; among the Charlie; in
a future transaction, while still remaining offline.

The nodes periodically reconnect to the IA to submit
histories, refresh authentication tokens, reward honest Teds as-
sisting Alice and Bob, penalize malicious ones, and aggregate
beliefs across nodes and transactions to form a global system
trust view. In a peer-based model, any given node can alternate
roles across transactions: as Alice when initiating, Bob when
responding, or Ted when assisting. The IA aggregates a belief
for each peer j using the local beliefs reported by the other
nodes based on transactions where j acted as a helper. Eq. 3
defines the incremental belief update for peer j at time ¢ and
includes the success or failure of new transactions reported by
a reconnecting peer, Bob. The belief at ¢ — 1 represents the
aggregation up to that point, while ¢ reflects updates based on
the current transaction outcome.

belief]’? =

-1 5% Ft
belzef]. - Py (1 — PS) J 3)

St St
belieft VP, (1 — Po)"5 4 (1 — belieft =) P7 (1 — Pp)"

The trustworthiness is updated incrementally, as per Eq. 4,
where 7% is the reward and o € R* is a weight factor.

t_
T; =

T;_l + 05(7’; . belief;) 4
The trust scores for each peer are derived by normalizing
their trustworthiness values across all peers using Eq. 4, where

N denotes the total number of nodes in the system.

, T)

Pi= SNy

Y=o Tj
Multiple transactions across nodes can be batched within a
single update interval. While global ordering is not required,
transactions from a single node must be reported in execution
order. Once new transactions are integrated, each node j’s
latest belie fjt becomes its new beliefy. As nodes connect
and report asynchronously, their ground-truth belie f; updates,
propagating the global belief across the network. However,
the aggregated belief lags behind the ground truth, with the
delay depending on reconnection frequency and transaction
volume. Thus, the IA’s belief is a delayed approximation of

the system’s true state.

IV. EXPERIMENTAL RESULTS
A. Experiment Setup

In this section, we report on characteristics of a hardware
implementation of the Peer Trust protocol. The experimental
test bed in shown in Fig. 3 and consists of a set of internet-
connected ZYBO-Z7-10 SoC FPGAs and a Dell PowerEdge
T440 server. The customer devices are instantiated with a
strong PUF called the Shift-Register Reconvergent-Fanout
(SiRF) PUF [21]. The Issuing Authority (IA) represents the
central authority and maintains the non-anonymous timing
(NATm) and anonymous timing (ATm) sqlite3 databases (DB).
These databases are used for PUF-based mutual authentication

I | Charlies/Teds
1A . B :
=
Alice &
=
o >
g
)
Z |—

NATm ATm Contract Challenge Authentication
Theory (CT) Token (AT)

SQLite3 Databases

Fig. 3: Experiment setup with IA, Alice, Bob and a set of
Charlies/Teds.

and encryption operations and are pre-loaded with provision-
ing data from 16 Zybo-Z7 devices. The IA runs a multi-
threaded application to provide AT and CT-related services
to the customer devices, Alice, Bob and the Charlies. The
customer FPGA devices run a single-threaded Peer Trust ap-
plication. The IA and customer devices are connected through
a wired network and a 100 Mb network switch. The following
SLA and CT parameters are used in the hardware evaluation
of the Peer Trust protocol, pg = 0.2, ap, = 0.51, a; = 0.49,
S, =0, F, =0, A=0.7, «a =0.01, and LR = 0.05, unless
explicitly stated otherwise.

The experiment setup configures Alice and Bob to down-
select two Ted devices from a set of four Charlie devices
using SLA, and once selected, the two Teds participate in
the Peer Trust offline authentication protocol between Alice
and Bob. Note that the model allows the number of required
Teds to be specified by Bob, and the number of valid Charlies
can vary from this lower bound upward to any number.
The experimental results presented in this paper utilize the
configuration shown in Fig. 3 but the results for larger numbers
of devices are very similar to the results presented here. The
experiments carried out evaluate several features of the Peer
Trust protocol, focusing on the behavior of the CT beliefs,
trustworthiness and trust scores recorded by Bob and those
associated with the periodic updates to the IA’s ground truths.

Different test scenarios are shown in Fig. 4. All test scenar-
ios are run for 100 iterations, where one iteration is defined
as a complete execution of the Peer Trust (PT) authentication
protocol as described in Fig. 2. Also, in all test scenarios,
Alice begins the PT authentication operation by contacting
Bob, which is followed by Alice and Bob exchanging IDs. Bob
then attempts to find a set of eligible Charlies by broadcasting
a request for assistance to all devices on the local area network.
Charlies respond to the request only if they possess ATs for
both Alice and Bob. The authentication token (AT) enrollment
process carried out at the beginning of each run guarantees that
the four Charlies have ATs for both Alice and Bob, enabling
all four to participate in all of the authentication transactions.

Scenario #1 Scenario #2

ReqAuth

E IDExchange

IAExchng

! | TAExchng
Rate =0

' Rate=0

A & B flip roles
flip rate = 0.1 o 1 random C,
ReqAuth Only ¥~ .-~ fails per iteration |
. FailRate=0.0 1 C|} FailRate=1
e Teds fixed | iy i
= v 5 Teds SLA |
L .= selected

! | TAExchng
' Rate=0

Fig. 4: Contract theory testing scenarios.

1.0 1.0 1.0 |10

(b)

°
®
e
®
°
o

Server's Trust Score (p)

°
>
S
@
S
B3

°
b
S
IS
S
b

2
£

t
048
:

£

Server's Bayesian Belief (1)
Server's Trustworthiness (T)

S
R
°
N
S
o
)
N

S
°
°
°
o
°
S
°

o 0 10 20 30 40 50 60 70 80 90 100 : o

1 2
Transaction ID Charlie ID

Fig. 5: Test Scenario 1.

Bob runs the CT algorithm to select a set of Teds. In order to
select the Teds using CT, Bob needs to obtain two distinct sets
of information from the Charlies. First, he needs an estimate of
compute congestion and network delay. For compute conges-
tion, Bob requests that each Charlie measures and transfers
the time taken to carry out a set of trial encryptions using
gettimeofday () system call. Bob obtains an estimate of
network delay by timing the round trip delay of a dummy
message transferred between him and each Charlie.

Bob reads the next set of information from his PeerTrustpp
database, where he extracts the current state of the following
CT parameters: belief, trustworthiness and trust scores, for
each of the Charlies. He also extracts the total number of AT
authentication successes and failures, where an AT authentica-
tion failure is defined as a failed attempt of Bob to authenticate
a given Charlie using the PT in-field authentication process
described earlier. An AT authentication can fail, for example, if
one of the Teds fails to provide a valid AT during the pairwise
authentication that occurs between Bob and each of the Teds
after the CT process completes. The state of the success or
failure field in the CT database is incremented for each Charlie
depending on the outcome of the pairwise authentications.
An authentication failure is emulated in our experiments in
a controlled (forced) fashion to enable the behavior of the CT
algorithm to be evaluated under different fail case scenarios,
corresponding, in part, to the test scenarios described below.

The parameter IAExchange Rate (Fig. 4) refers to an
exchange of information between Bob and the IA, which
occurs in actual deployments when Bob is able to reconnect
to the internet. An IAExchange Rate of 0 indicates that Bob
exchanges CT record updates with IA only after all 100 PT
iterations in the experiment, otherwise, it indicates periodic
exchanges occur at a rate equal to the value of the parameter
times the total number of transactions, e.g., 0.1 indicates an
exchange every 10 transactions in our experiments.

=
°
=
o
vy
o

@ - (b)

14
®

-

°
%
e
w
S
%

Server's Trust Score (p)

o

o
@
°
Y
S
@
S
Y

® Charlie0

® Charliel

" ® Charlie2

Charlie 3

0.0 0.0

0 10 20 30 40 50 60 70 80 90 100 0
Transaction ID

14
S
°
S
14
IS

Bayesian Belief ()
)
Y

o
N
°
N~
o
N
S
N

Server's Bayesian Belief (1)
Server's Trustworthiness (T¢)

14
°
S
°

1 2
Charlie ID

Fig. 6: Test Scenario 2.

B. Test Scenario Results

In test scenario #1, the goal is to evaluate the behavior
of the CT beliefs and trust scores on Bob’s device, in test
cases where specific Teds experience different AT failure rates.
The output of the SLA selection function is ignored and the
two Teds are fixed to specific Charlies, as shown by the
legend in Fig. 5a. This is equivalent to an offline scenario
in which only two Charlies have ATs for Alice and Bob.
The failure rates of Tedy and Ted; are set to 0.2 (one fail
in every five transactions) and to 0.1 (one fail in every ten),
respectively. Given that Ted; experiences a lower fail rate,
Bob’s belief should increase faster for Ted; than his belief
for Tedy. The beliefs computed by Bob for the two Teds
reflect the expected behavior (Fig. 5a). Specifically, the belief
of Bob for Ted; increases faster compared to Ted, given the
lower fail rate, resulting in a higher experienced cumulative
reward and trustworthiness. The IA’s belief, trustworthiness,
and trust scores also reflect lower values for Tedy compared
to Ted; in the final computed ground truths, with the initial
values annotated with horizontal lines in Fig. 5b. Also, it can
be observed that the trustworthiness and corresponding trust
scores of the unselected Charlies decreased due to their lack
of involvement in the authentication operations.

Test scenario #2 models the behavior of a malicious Charlie,
Cp, which experiences constant failures when authenticating
with Bob. This test case determines whether the proposed
approach is effective in reducing the probability of Bob
selecting Cy as a Ted. The SLA selection process is enabled to
choose the most trusted Charlies in order for the latter ones to
act as Teds. The results reveal that Bob’s belief regarding the
malicious Charlie Cy decreases over time given its failure to
provide appropriate services to Bob (Fig. 6a). On the other
hand, Bob’s belief in Co and Cjs increases, as they were
selected more frequently due to their consistent success in
meeting service expectations.

Interestingly, Bob’s belief about C; remains low despite the
fact that this device succeeds with authentication every time
it was selected. The small belief occurs initially because the
process implemented for measuring C;’s network and compute
congestion is subject to variation caused by interrupt handling
within the Linux OS running on the devices. The larger
values for network delay and compute congestion increases the
value of the denominator of Eq. 2, reducing the likelihood of
selection in the SLA algorithm. The CT algorithm design leads
to this behavior as once the cumulative beliefs of other devices
increases beyond a certain threshold, it is difficult for devices
penalized by early unlucky events to recover to a point where
they become eligible for selection once again. One approach
to avoid this anomalous behavior is to implement performance

g
=)
[
)

o
®

o o
o 00
\\
N
S
\
s
\

//"/ *|8
/ a’ B A
St --== Ted0

— Ted1

I
>

Bayesian Belief (u)
°
S

o
N

S
S
Server's Trust Score (p)

e
N

Server's Bayesian Belief (1)

0.0

0 10 20 30 40 50 60 70 80 90100 °“° 5 1 3 3 4 5 & 7 & § 10
Transaction ID Transaction ID

Fig. 7: Test Scenario 3.

measurements as slowly changing, running averages, which
would desensitize them to stalls caused by interrupt service
handling. Although not shown here, we confirmed this ap-
proach to be effective for eliminating this type of anomaly.

Focusing on the IA bar graph of Fig. 6b, the belief in Cq
and Cjs increases at the expense of the Cy and C;, whose belief
values decrease relative to their initial values (represented by
the horizontal lines). This shift stems from the failure of Cg
to adequately serve Bob and the inability of C; to recover
from the low performance measurement. Similarly, the IA’s
trustworthiness and corresponding trust score for C and Cs
both increase as a result of their successful selection and
service to Bob. However, C3 exhibits higher trustworthiness
values compared to C,, primarily because it was selected
more frequently. This increased selection leads to a greater
cumulative reward for Cs, thus, enhancing its trustworthiness
and, correspondingly, its trust score.

Test scenario #3 models an offline scenario where T is
the authentic device when selected by Bob, but is malicious
when Alice and Bob’s roles are reversed, i.e., when Alice
evaluates the trustworthiness of Bob. We force Ty to fail
for a sub-set of transaction iterations, specifically iterations
10 through 19, while assigning success to the remaining
authentications. The expectation is that the belief for Ty will
decrease rapidly during the ten failed transactions and then
recover over the remaining transactions. This test scenario also
sets the [AExchng Rate to 0.1, which indicates Alice or Bob
reconnects to the IA after every 10 iterations. The periodic
reconnections to IA enables the beliefs, trustworthiness and
trust scores of Alice and Bob to be evaluated both locally and
globally by the TA.

The CT Beliefs are plotted in Fig. 7a which illustrates
that Tedy’s belief drops between iteration 10 and 20, but
then start recovering over the remaining transactions to nearly
the maximum value of 1.0. The impact of the periodic IA
updates are also noticeable after every 10 transactions. Fig.
7b shows the Beliefs and Trust Scores computed by the TA
with the points representing the updates after each of the
10 transactions. Although the IA’s Beliefs track the device
local Beliefs, the Trust Score for Ty does not recover, which
indicates that Trust Score maintains a longer memory of the
failed authentications.

Test scenario #4 is constructed to determine whether the CT
fairly selects among the Charlies when the fail rates are equal
in the environment where AT failures are equally likely over
time for all devices. Here, we allow SLA to select two random
Teds to authenticate with Bob, but also force two random
Charlies to fail on each transaction. Therefore, the two Teds
selected have a 50% chance of failing in each transaction. A

=
°
=
o
vy
o

O

L]
=
&

G

Charlie 0
Charlie 1
® Charlie2

Charlie 3

o
©
.
o
o
o
o
S
]

14
>
°
>
14
>
S
S
Server's Trust Score (p)

14
S
°
S
14
IS

Bayesian Belief ()
)
Y

hhhhh

Server's Bayesian Belief (1)
Server's Trustworthiness (T¢)

°
N
i
E
i
&
k3
@
gy
3
4
i
i
{
ki
H
B
B
R
A
¥
7
FH
i
i
i
3
iy
B

°
N~
L)
o N
S S
° N

00 0 10 20 30 40 50 60 70 80 90 100 0.0 0

Transaction ID

1 2
Charlie ID

Fig. 8: Test Scenario 4.

50% fail rate is extremely high, but is used here to represent
the behavior that would normally occur over a much longer
time period. Given the probabilities of succeeding and failing
are equal, the CT beliefs should remain close to the initial
value of 0.2, and therefore, the probability of choosing any
particular Ted should be equal. The belief plot shown in
Fig. 8a confirms this expectation, with some small excursions
occurring at the end of the run. The belief and trust score
values computed by the IA (Fig. 8b) reflect the devices’ final
values, where variations in the heights are due to these small
excursions.

C. Resource Utilization and Performance Metrics

The SiRF PUF implementation consumes 5842 LUTs and
4377 FFs, while KK key generation is upper bounded by
1.5 second (additional details can be found in [21]). The
execution of the CT algorithm represents the second dominant
component of the total runtime. The CT runtime depends on
the number of iterations carried out by the SLA component to
reach convergence, and the non-linear optimization component
of contract theory. The parameters given earlier provide a
good trade-off between accuracy and runtime, with the average
number of iterations of 400 and an average runtime of 250
milliseconds, which varies over a range from 211 to 542
milliseconds. Note that the runtime includes fetching network-
based capability information from the Charlies.

The size of each AT in the PeerTrustpp is 68 bytes, making
a database which stores ATs for 1 million customers approx-
imately 68 MB in size, which can be easily accommodated
on typical flash memory cards. Communication overhead is
summarized as follows in reference to the numbers in Fig. 2.
The exchange in steps 2 and 3 are 4-byte IDs, while in step
4, Bob sends a 32-byte n;s to each of the Teds, and the Teds
respond with 96-byte encrypted packets. Step 7 involves the
Teds sending a 32-byte encrypted nonce to Bob while step 9
has Bob send 96-byte packets to the Teds. Finally, the Teds
send 32-byte packets to Alice and Bob in steps 12 and 13.
Steps 4 through 9 are repeated by Alice, making the total
number of bytes exchanged per Ted approximately 328 bytes.

D. Sensitivity Analysis

In this section, we conduct a sensitivity analysis of the
proposed framework based on Test Scenario #1 where Tedg
and Ted; are selected, representing high and low failure
rates, respectively, over 10 transactions between Bob and the
selected Teds. Fig. 9a — 9b illustrate the impact on IA’s
belief and trustworthiness values for the two selected Teds
under varying initial belief o distributions and probabilities
of success ay, for their service to Bob.

The results reveal that as Bob’s initial belief po in the
selected Teds increases, the final belief and trustworthiness

=
°
)
-
)
=
o

(b) 3 Tedo
. 72 Ted1

(a) [Tedo
08 ZZ Ted1

S ¢
%
Server's Trustworthiness (T¢)
°
S
%

Server's Trustworthiness (T)

°
@
S
@
o
@
S
Y

°
S
)
S
)
s
14
S

°
~
e
N

Server's Bayesian Belief (1)
o
S
S
9

Server's Bayesian Belief (11)

0.0

=4
°

0.1

0.5 : 051 0.53 0.55 0.57 0.59
Probability of Success (ap)

Fig. 9: Sensitivity Analysis.

02 03 04
Initial Belief Distribution (Ho)

derived by the IA also increase. A steeper increase is observed
for Ted;, which has a lower failure rate in terms of successfully
serving Bob. This confirms the proper functioning of the
proposed framework, as Ted;’s favorable performance leads
to a higher belief and trustworthiness developed by the IA.
The initial belief serves as an offset, influencing both the final
belief and trustworthiness.

Similarly, as Bob’s initial probability of success a; regard-
ing the services provided by the selected Teds increases, the
belief and trustworthiness generated by the IA also increase,
with a steeper trend for Ted; which reflects its positive be-
havior. Additionally, the analysis shows that the probability of
success plays a more dominant role in shaping the IA’s belief
and trustworthiness compared to the initial belief, however,
with a smaller relative increment for trustworthiness. The
initial belief functions more as an offset, while the probability
of success significantly affects the belief update process and
ultimately acts as a primary factor in the final evaluation of
the belief and trustworthiness.

V. SECURITY ANALYSIS

The protocol as described previously derives trust through
the foundational building blocks of multi-party communication
between secure hardware devices provisioned at a trusted
Issuing Authority (IA). The physical PUF device and the low-
level authentication protocols used during enrollment were
studied exhaustively in [21] and [22]. In this work, we focus
on the security aspects of the in-field authentication protocol.
In all cases, the goal of the attack would be for an adversary
to have an honest Bob authenticate a dishonest Alice, where
Alice is either acting alone, in concert with one or more
dishonest Charlies, or a Mallory. In this analysis, we consider
both passive and active attacks.

A. PUF primitive

The protocol is instantiated using low-level primitives [22]
sourced from a strong PUF with high information complexity
[22] and TRNG capabilities. The prior work demonstrates
machine-learning resistance of the PUF. The PUF primitive
is critical to the low-level authentication and encryption func-
tions and therefore acts as a local root of trust for distributed
interactions. Additionally, except for the first two packets, all
packets in the protocol are encrypted using ephemeral, one-
time-use keys, ensuring confidentiality and integrity. The first
packet contains REQ and ID information, while the second is
a plaintext nonce, n;, sourced from Bob’s AT database and
unique to each Ted. This nonce is pairwise-bounded between
Bob and Ted;, i.e. upon receiving this nonce, Ted; must
use its PUF to regenerate its LLK to provide the matching

Hy; expected by Bob. If Hy;; is not what Bob expects, the
decryption will fail. Likewise if n; does not match, Ted; will
fail authentication.

B. Eavesdropping

As noted earlier, each pairwise communications link (Alice-
Bob, Alice-Ted;, Bob-Ted;) is a distinct channel and all
packets are encrypted using AES-256 encryption in CBC
mode. While an eavesdropping observer can capture Alice and
Bob’s ID from the initial REQ message or the initial nonces,
the information does not compromise the protocol in the later
steps.

C. Replay and Fraud

As noted earlier, initial values for all devices are provisioned
in a trusted environment in a secure facility. Crucially, all
ATs (Alice, Bob and participating Teds) are refreshed during
an authentication operation, ergo any single AT is used only
once and provisioned tokens are replaced with new versions
over time. It can be observed from the exchange that PUF
authentication layer is interleaved with the contract theoretic
layer. Both layers must verify for authentication to succeed.
For PUF authentication, each Charlie must produce a valid
authentication token on Alice that Bob can reference in his
local database. These tokens, while initially provisioned by
the TA, are refreshed in-field by the device itself, attesting
to the distributed nature of authentication. It is impossible
for a Charlie to produce a token on demand that was not
previously generated by Bob using his LLK. Any attempts to
impersonate or replay a token would result in authentication
failure, causing the protocol to abort.

D. Collusion

The Peer Trust model incentivies honest behaviour. The trust
scores record behaviour over time, with untrusted Charlies
being increasingly rejected from participation in future trans-
actions. However, two or more high trust Teds could also try
to collude with each other to extract the shared session key
or authenticate a fraudulent Alice, where fraudulent implies
that Alice is not provisioned by the IA and may not be a
PUF at all. Starting with session key extraction, since the
key shards are ephemeral and combined through an XOR
operation, they constitute the equivalent of a one-time pad
and successful exfiltration would require all Teds to collude
with each other. While this is possible, it becomes quickly
infeasible as the number of Teds grows large. The precise
determination of a suitable threshold of Teds will be studied in
future work. The latter scenario is more realistic: A fraudulent
Alice impersonating a PUF device could be constructed if an
attacker is able to exfiltrate the AT database from a legitimate
device using side-channel or NAND mirroring attacks. As
countermeasures, the database is encrypted at rest using a
PUF-based key-encryption-key (KEK). In KEK mode, the
secret key is derived from the response to a challenge stored in
non-volatile memory, making it impossible to recover the key
without powering on the device and applying the challenge to
the PUF. During processing, a trusted execution environment
(TEE) can protect individual records against side-channel
attacks. A TEE was not used here but is trivial to add to
protect software-implemented steps.

E. MITM

In the MITM scenario, an adversary, Mallory, spies on
all communications channels, intercepting and manipulating
packets as needed. Given that an MITM attack is a superset
of eavesdropping, and since MITM can act as the ultimate
colluder, the primary attack on the protocol stems from an
MITM adversary. In the worst-case scenario, Mallory can be
assumed to be working with a fraudulent Alice. If Alice is
compromised for some reason, then Mallory, in partnership
with Alice, could access a valid database provisioned by the
IA. This would allow Mallory to (a) supply ATs authenticating
Alice to Bob, (b) use the right session key (H K) to encrypt
communications, authenticating itself as a Ted. Mallory can
effectively pretend to be any number of Teds (or Charlies) to
Bob using this approach. Additionally, if Mallory pretends to
be all of the Teds participating in the exchange, then they can
learn (or create) all of the shards created in the session key
generation stage and eavesdrop on Alice and Bob’s transaction
(confidentiality leakage).

The Peer Trust layer incentivizes Charlies to be honest.
Mallory’s behaviour would penalize innocent Charlies who
would then fail to be selected in subsequent transactions with
Bob. While this might also pose a barrier to Mallory for
future transactions, they could simply cycle the Charlies being
impersonated such that Bob always sees a fresh set of Charlies.
Therefore it is crucial that the database stored on local devices
is protected as mentioned earlier. The PUF’s hardness provides
the main defense against such attacks. The likelihood of
Mallory brute-force guessing an ephemeral key in transit is
27128 therefore considered highly unlikely. Additionally, Bob
expects Mallory to send packets encrypted by a session key
that is only possible to generate by either successfully model-
building the PUF to simulate Teds at the time of transaction
or physically attacking in-field devices to exfiltrate the AT
database. Thus we show that all attacks revert to circumventing
the hardness of modeling the PUF primitive itself.

VI. CONCLUSION

In this paper, a dual layer trust model is presented such
that Alice and Bob can authenticate each other while off-
line but in the presence of other devices and construct a
secure channel for communications. A dual layer trust model
combines PUF-based authentication with an offline contract-
theoretic crowdsourcing framework that incentivizes honest
behaviour. A PUF-based provisioning and in-field protocol is
fused with a Peer Trust model that exploits the concept of
Bayesian trust belief and optimal selection of devices via a
stochastic learning automata algorithm fusing the two layers
with compute/network characteristics. The algorithms were
implemented and tested on representative hardware to repli-
cate real-world behaviour. Four distinct scenarios were tested
to demonstrate the efficacy and sensitivity of the algorithm
under different conditions. Results indicate that the contract-
theoretic framework efficiently maximizes the level of crowd-
sourced trust, despite distinct patterns of malicious behaviour
or altered environmental conditions. Directions for future work
may include experiments encapsulating additional scenarios, a
detailed sensitivity analysis and a formal security model.

[1]

[2]

[3]

[5]

[6]

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

REFERENCES

P. Zeng, A. Liu, C. Zhu, T. Wang, and S. Zhang, “Trust-based multi-
agent imitation learning for green edge computing in smart cities,” IEEE
Transactions on Green Communications and Networking, vol. 6, no. 3,
pp. 1635-1648, 2022.

C. Boudagdigue, A. Benslimane, A. Kobbane, and J. Liu, “Trust-based
certificate management for industrial iot networks,” IEEE Internet of
Things Journal, vol. 10, no. 14, pp. 12 867-12 885, 2023.

——, “Trust management in industrial internet of things,” IEEE Trans-
actions on Information Forensics and Security, vol. 15, pp. 3667-3682,
2020.

L. Zhang, G. Feng, S. Qin, X. Li, Y. Sun, and B. Cao, “Trust-
preserving mechanism for blockchain assisted mobile crowdsensing,”
IEEE Transactions on Computers, vol. 72, no. 11, pp. 3113-3126, 2023.
T. Wang, H. Luo, W. Jia, A. Liu, and M. Xie, “Mtes: An intelligent
trust evaluation scheme in sensor-cloud-enabled industrial internet of
things,” IEEE Transactions on Industrial Informatics, vol. 16, no. 3, pp.
2054-2062, 2020.

P. Dass and S. Misra, “Fact: Facilitating trustworthy services in mobile
iot systems,” IEEE Systems Journal, vol. 17, no. 4, pp. 5511-5518, 2023.
Z. Zhou, F. Ye, J. Gao, S. Zhang, and X. Geng, “Ensuring long-term
trustworthy collaboration in iot networks using contract theory and
reputation mechanism on blockchain,” IEEE Internet of Things Journal,
vol. 11, no. 2, pp. 2420-2437, 2024.

L. Cui, S. Yang, Z. Chen, Y. Pan, Z. Ming, and M. Xu, “A decentralized
and trusted edge computing platform for internet of things,” IEEE
Internet of Things Journal, vol. 7, no. 5, pp. 3910-3922, 2020.

Y. Liu, C. Zhang, Y. Yan, X. Zhou, Z. Tian, and J. Zhang, “A semi-
centralized trust management model based on blockchain for data
exchange in iot system,” I[EEE Transactions on Services Computing,
vol. 16, no. 2, pp. 858-871, 2023.

S. Fu, X. Huang, L. Liu, and Y. Luo, “Bfcri: A blockchain-based
framework for crowdsourcing with reputation and incentive,” [EEE
Transactions on Cloud Computing, vol. 11, no. 2, pp. 2158-2174, 2023.
P. K. Singh, R. Singh, S. K. Nandi, K. Z. Ghafoor, D. B. Rawat,
and S. Nandi, “Blockchain-based adaptive trust management in internet
of vehicles using smart contract,” [EEE Transactions on Intelligent
Transportation Systems, vol. 22, no. 6, pp. 3616-3630, 2021.

M. Huang, A. Liu, N. N. Xiong, and J. Wu, “A uav-assisted ubiquitous
trust communication system in 5g and beyond networks,” IEEE Journal
on Selected Areas in Communications, vol. 39, no. 11, pp. 3444-3458,
2021.

S. Hriez, S. Almajali, H. Elgala, M. Ayyash, and H. B. Salameh,
“A novel trust-aware and energy-aware clustering method that uses
stochastic fractal search in iot-enabled wireless sensor networks,” IEEE
Systems Journal, vol. 16, no. 2, pp. 2693-2704, 2022.

S. Abdolinezhad and A. Sikora, “A lightweight mutual authentication
protocol based on physical unclonable functions,” in 2022 IEEE Inter-
national Symposium on Hardware Oriented Security and Trust (HOST),
2022, pp. 161-164.

H. Fei, O. Millwood, P. Gope, J. Miskelly, and B. Sikdar, “Phenoauth:
A novel puf-phenotype-based authentication protocol for iot devices,”
in 2024 IEEE International Symposium on Hardware Oriented Security
and Trust (HOST). 1EEE, 2024, pp. 309-319.

H. Qushtom, J. Misi¢, V. B. MiSi¢, and X. Chang, “A two-stage pbft
architecture with trust and reward incentive mechanism,” IEEE Internet
of Things Journal, vol. 10, no. 13, pp. 11440-11452, 2023.

D. Saha, K. Yahyaei, S. Kumar Saha, M. Tehranipoor, and F. Farah-
mandi, “Empowering hardware security with 1lm: The development of a
vulnerable hardware database,” in 2024 IEEE International Symposium
on Hardware Oriented Security and Trust (HOST), 2024, pp. 233-243.
X. Chen, J. Ding, and Z. Lu, “A decentralized trust management
system for intelligent transportation environments,” IEEE Transactions
on Intelligent Transportation Systems, vol. 23, no. 1, pp. 558-571, 2022.
G. Fragkos, C. Minwalla, E. E. Tsiropoulou, and J. Plusquellic,
“Enhancing privacy in puf-cash through multiple trusted third parties
and reinforcement learning,” J. Emerg. Technol. Comput. Syst., vol. 18,
no. 1, sep 2021. [Online]. Available: https://doi.org/10.1145/3441139
G. Fragkos, C. Minwalla, J. Plusquellic, and E. E. Tsiropoulou,
“Local trust in internet of things based on contract theory,” Sensors,
vol. 22, no. 6, 2022. [Online]. Available: https://www.mdpi.com/1424-
8220/22/6/2393

J. Plusquellic, “Shift register, reconvergent-fanout (sirf) puf
implementation on an fpga,” Cryptography, vol. 6, no. 4, 2022.
[Online]. Available: https://www.mdpi.com/2410-387X/6/4/59

[22] J. Plusquellic, E. E. Tsiropoulou, and C. Minwalla, “Privacy-preserving

authentication protocols for iot devices using the sirf puf,” IEEE Trans-
actions on Emerging Topics in Computing, pp. 1-16, 2023.

